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Abstract 
Biological organisms show an amazing ability during their ontogenetic development to adaptively develop 

strategies and solutions to the various problems of survival  that their environments present to them.  Dynamical 
and embodied models of cognition are beginning to offer new insights into how the numerous, heterogeneous 
elements of neural structures may self-organize during the development of the organism in order to effectively 
form adaptive categories and increasingly sophisticated skills, strategies and goals (Kelso 1995; Thelen & 
Smith 1994; Port & Van Gelder 1995; Clark 1997; Hendriks-Jansen 1996; Freeman 1999a; Franklin 1995, 
1997).   This development during the maturation of biological organisms, and the flexibility to adaptively 
modify behavior even in mature individuals in order to effectively survive in their environment, all without 
explicit instruction or prior representations of the world, represents a significant level of increased performance 
over the current best symbolic approaches to the development of artificial autonomous agents. 

Intelligent behavior is characterized by flexible and creative pursuit of endogenously defined goals.  It has 
emerged in humans through the stages of evolution that are manifested in the brains and behaviors of other 
animals.  Intentionality is a key concept by which to link brain dynamics to goal-directed behavior.  The 
archetypal form of intentional behavior is an act of observation through time and space, by which information is 
sought for the guidance of future action.  Sequences of such acts constitute the key desired property of free-
roving, semi-autonomous devices capable of exploring remote environments that are inhospitable for humans.  
Intentionality consists of the neurodynamics by which images are created of future states as goals, of command 
sequences by which to act in pursuit of goals, of predicted changes in sensory input resulting from intended 
actions (reafference) by which to evaluate performance, and modification of the device by itself for learning 
from the consequences of its intended actions.  These principles are well known among psychologists and 
philosophers.  What is new is the development of nonlinear mesoscopic brain dynamics, by which using chaos 
theory to understand and simulate the construction of meaningful patterns of neural activity that implement the 
perceptual process of observation (Freeman & Kozma 2000).  The prototypic hardware realization of intelligent 
behavior is already apparent in certain classes of robots.  The chaotic neurodynamics of sensory cortices in 
pattern recognition is ready for hardware embodiments, which are needed to provide the eyes, noses and ears of 
devices for survival and autonomous operation in complex and unpredictable environments. 

This research proposes to build on neurologically inspired, bottom-up, dynamic approaches to embodied 
category formation such as those done by Freeman (1975, 1999a), Kozma & Freeman (2000a, 2000b, 2000c) 
and Almassy, Edelman & Sporns (1998).  We will expand such systems to function in real-time demanding task 
environments, to adaptively develop skills and react to changing situations all by simply interacting within the 
environment and extracting the temporally relevant patterns or embodied categories.  We believe that building 
on such mechanisms from an embodied dynamical perspective will produce autonomous agents that display 
greatly increased flexibility in their behavior while also decreasing the amount of effort needed in order to 
program and train such agents to effectively perform the desired tasks.  Such models will represent a better 
understanding of how the brains of biological organisms not only form perceptual categories of their 
environment during development, but also form patterns of behavior based on such environmental categories. 

The behavior of the developed self-organizing agents will be illustrated on test scenarios, including software 
simulations, to show they display certain expected and unexpected behavioral patterns. In the last year of this 
project, possible links to research supported by ONR in the framework of Intelligent Distributed Agents (IDA) 
will be explored. 

1. Research Objectives 
The basic mechanism of survival for any biological organism appears to be the ability to adaptively form 

relevant categories from the flood of sensory data available to it, and to use such categories to guide its actions 
and behaviors in a useful and relevant manner for the given situation.  How exactly biological organisms are 
able to perform this task is still only incompletely understood.  The task is extremely difficult as it not only 
involves the formation of relatively static types of categories from environmental cues but also the recognition 
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of relevant temporal patterns over extended and varying time scales.  And even more amazing, such categories 
are not simply static information structures, but all past experiences seem always and instantly available to 
guide and afford patterns of behavior that are relevant to the current situation of the organism.  How such past 
experience can seem to be instantly available when needed for a similar but new situation is unknown. 

The research proposed here has four major objectives.  Exploration of the phenomenon of fusion of sensory 
information into a coherent picture from multiple perceptual channels.  The formation of embodied categories 
from chaotic neurodynamical mechanisms.  The formation of action-oriented representations capable of 
affording opportunities for action for an autonomous agent.  The self-organizing development of increasingly 
sophisticated skills, behaviors and goals in an autonomous agent. 

1.1. Dynamical Models of Sensory Fusion 
One goal of the proposed research is to explore new models of category formation in chaotic dynamical 

systems, and how such models may be similar to, and better models of, the category forming abilities of 
biological organisms.  This research will attempt to build models of static and temporal category formation 
based on neurological theories of brain functions that organize sensory patterns using chaotic dynamics (Skarda 
& Freeman 1987, Kozma and Freeman 2000c, Freeman 1999a).  In particular this research will be extending the 
current work being done to better understand how such models can fuse data from multiple sensory channels 
into a seamless and integrated whole and how the recurrent connections in such models allow the emergent 
formation of increasingly sophisticated embodied categories.  The fusion of sensory modalities in such dynamic 
models represents a different approach to sensory fusion over classic symbolic models.  Instead of a single 
integrating module that attempts to integrate all sensory modalities from preprocessing modules, in a dynamical 
perspective all separate sensory modalities continuously and concurrently inform one another through reentrant 
connections in order to form a sophisticated fusion of sensory data (Edelman & Tononi 2000).  In such 
dynamical models there is no central integration unit yet, somehow, a coherent and integrated picture of the 
salient environmental factors is built up in real time from such decentralized interactions (Kozma et al. 2000).  

Another goal of this research is to explore the ability of such models to recognize temporally relevant 
patterns within the environment of the organism.  This research will build dynamical models of category 
formation that operate and form categories in real-time from the sensory data available without supervision of 
the learning process.  This type of unsupervised learning in real-time of relevant categories is a necessary step 
in using such models in real-time autonomous agents. 

1.2. Embodied Category Formation 
Current theories of embodied cognition (Clark 1997, Hendriks-Jansen 1996) emphasize that embodied, 

situated categories represent the basis of cognition, from which affordances for action are identified and 
produced (Gibson 1979).  Embodied category formation is adaptively significant to the development and 
survival of biological organisms.  A goal of this research is to understand how such dynamical models of self-
organizing categorization are related to and may be used as the mechanisms of theories of embodied 
representations.  In particular, do such dynamical models represent a mechanism of embodied category 
formation as powerful as those of biological organisms. 

1.3. Action-Oriented Representations 
Embodied and situated categories are inherently action-oriented mechanisms that not only represent 

information about the species typical environment, but also afford opportunities for action for the organism.  A 
goal of this research is to extend the work done on chaotic dynamical systems as models of category 
representation, into using such models to also implement action selection mechanisms that can afford 
opportunities for relevant behavior in an autonomously behaving artifact. 
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1.4. Ontogenetic Development 
A further goal of this research is to explore the ability of action selection mechanisms to self-organize 

increasingly sophisticated patterns of behavior, similar to how categories self-organize as a result of the 
dynamics of the system.  In particular, can such an action selection mechanism self-organize behavior patterns 
in ways similar to the ontogenetic development of skills and strategies that many organisms experience during 
the developmental process.  Can we produce action selection mechanisms that self-organize behaviors 
hierarchically, where simpler behavior patterns combine to perform more complex tasks, and heterarchically, 
where previously unrelated situations and behaviors are recognized as similar and are related to one another?  
The same sorts of interactive emergence that enable the formation of embodied categories may also be capable 
of developing emergent patterns of behavior that self-organize into increasingly effective skills, strategies and 
goals for coping with the environmental niche.  A major goal of this research is to demonstrate the ability of 
such mechanisms to emulate this phenomenon of biological development to self-organize effective behavioral 
strategies during their ontogenetic development.  Such a system would answer the questions of ethologists of 
how the brains of biological organisms manage to organize their behavior into complex and effective 
hierarchies of behavioral patterns during maturation and yet manage to exhibit amazing flexibility in dealing 
with environmental challenges.  Such an action selection mechanism would be capable  of learning the niche 
relevant categories and skills simply by interacting within the environment in real-time. 

Ultimately we aim to develop new, more powerful models of category formation and action selection for 
autonomous agents inspired from bottom-up neurological theories of cognition.  Such theories are dynamical 
and embodied views of cognition and represent new directions of thought from those of classical symbolic and 
connectionist approaches.   We believe that autonomous agents developed from such a perspective will 
demonstrate a capacity for learning and an ability for the self-organization of complex and flexible patterns of 
behavior that represent significant improvements over the performance of existing approaches to building 
autonomous agents.   

2. Scientific Relevance 

2.1. Dynamical Brain Models 
Biological organisms are constantly faced with a dynamic and changing environment.  Survival under such 

conditions often requires the organism to react to quickly changing situations.  Under such conditions, complex 
representations of the situation become computationally intractable.  It seems unfeasible to attempt to trace 
every detail of the complex situation.  Waiting for more information or to discover optimal solutions does the 
organism little good if solutions cannot be produced in time to react to the immediate problem. Classical 
symbolic models of cognition ignore, or at least minimize, the importance of the constraints imposed on the 
cognitive system by real time embedded interaction with the environment.  Symbolic models view cognition as 
the discrete sequential manipulation of static representational structures.  The evolution of the cognitive system, 
in the symbolic approach, passes through a defined sequence of states.  However, such models do not speak to 
the timing of the states.  A dynamical approach to cognition emphasizes many differing aspects over classical 
symbolic and connectionist approaches.  Port and Van Gelder (1995) emphasize the importance of taking into 
account the dimension of time when thinking about and modeling cognitive processes: 

 
“The heart of the problem is time.  Cognitive processes and their context unfold continuously and 
simultaneously in real time.”  (Port & Van Gelder 1995, pg. 2). 
 
This basic insistence on the importance of real time interaction provides a new viewpoint of the cognitive 

processes.  Now, rather than a disembodied, sequential manipulation of symbols, cognition is seen as a 
continual process of mutually influencing change.  Real time constraints always impose limitations on the types 
and forms of computation that can be performed.  But rather than being a hindrance, these constraints often 
force the cognitive system to use specialized solutions, that are computationally cheap but get the job done. 
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Another basic concept of the dynamical approach is the ability of such systems to spontaneously manifest 
ordered structure or behavior.  The ability of such systems to self-organize represents a major conceptual tool 
that allows us to explain how intelligence and consciousness may arise from the interaction of elements that are 
themselves unintelligent and unconscious.  Kelso (1995) describes the human brain as: 

 
“… fundamentally a pattern-forming self-organized system governed by nonlinear dynamical laws. 
Rather than compute, our brain ‘dwells’  (at least for short times) in metastable states: it is poised on 
the brink of instability where it can switch flexibly and quickly.  By living near criticality, the brain is 
able to anticipate the future, not simply react to the present. (Kelso 1995, pg. 26)”  
 
A few basic conditions are required in order to induce self-organizing phenomenon (Kelso 1995, Kauffman 

1993).  A large number of interacting components must be present.  The components must massively interact 
with one another to generate nonlinear behavior.  The system is open with respect to energy, it consumes energy 
and dissipates heat or waste in order to maintain its structure far from thermo-dynamical equilibrium (e.g. 
death).   Such conditions are known to be necessary in order to induce self-organizing phenomenon in physical 
systems.  However, using such principles to build systems that are capable of the self-organization of behavioral 
patterns is still not well understood.  This research hopes to explore the question of how behavior patterns can 
self-organize into more complex forms that are adaptive and aid in the survival of the organism. 

We will also address the question of information coding in aperiodic (chaotic) attractors. This goes beyond 
the safe and thoroughly explored territory of equilibrium and bifurcational schemes that use fixed point-based 
encoding. Fixed point-based encoding is the basic principle of today's computing paradigm and is still the basic 
explanatory mechanism used for current top down dynamical models of cognition. Our proposal is a great leap 
into the non-equilibrium dynamics of unstable periodic orbits.  The complexity of the problems seems 
overwhelming, if not intractable and the intellectual challenge is indeed enormous. There is, however, hope that 
we can meet this challenge because we know existing systems working on this principle: brains. In the seminal 
paper by Skarda & Freeman (1987), the authors give a comprehensive account of spatio-temporal effects in 
brains using methods of dynamic system theory and chaos.  Studies in various laboratories have been conducted 
to harness the principle of chaotic encoding for understanding brain dynamics, see Babloyantz and Destexhe 
(1986), Tsuda (1992, 1994), Schiff et al. (1994), Aradi et al. (1995).  

Motivated strongly by neurophysiological observations, intensive research has been conducted in the field 
of computational neural networks utilizing chaotic encodings in software and hardware embodiments 
(Andreyev et al 1996; Aihara et al. 1990; Perrone & Basti 1995; Wang 1996; Schuster & Stemmler 1997; 
Borisyuk & Borisyuk 1997; Nakagawa 1998; Minai & Anand 1998).  In a separate development Freeman's KIII 
nets have been established as revolutionary new dynamic memory devices based on encoding in aperiodic 
(chaotic) attractors (Freeman 1994; Freeman, Chang, et al. 1997; Chang et al. 1998; Kozma & Freeman 2000b).  

Neurobiological observations provide a clue for the future direction of research. What distinguishes brain 
chaos from other kinds is the filamentous texture of neural tissue called neuropil, which is unlike any other 
substance in the known universe (Freeman 1995).  Neural populations stem ontogenetically in embryos from 
aggregates of neurons that grow axons and dendrites and form synaptic connections of steadily increasing 
density.  At some threshold the density allows neurons to transmit more pulses than they receive, so that an 
aggregate undergoes a state transition from a zero point attractor to a non-zero point attractor, thereby becoming 
a population. Mathematically such a property has been described in random  graphs, where the connectivity 
density is an order parameter that can induce state transitions (Erdos & Renyi 1960). Accordingly, state 
transitions in neuronal populations can be interpreted as a kind of percolation phenomenon in the neuropil 
medium. The dendritic currents of single neurons that govern pulse frequencies sum their potential fields in 
passing across the extracellular resistance, giving rise to extraneuronal potential differences manifested in the 
EEG, which correspond to the local mean fields of pulse densities in neighborhoods of neurons contributing to 
the local field potentials.  In early stages of development these fields appear as direct current "d.c." fields with 
erratic fluctuations in the so-called "delta" range < 1 Hz. The neurons are excitatory, and their mutual excitation 
provides the sustained aperiodic activity that neurons require to stay alive and grow. Unlike transistors, neurons 
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have a short shelf life if they are isolated and left inactive.  The activity of an excitatory population is self-
stabilized by a non-zero point attractor (Freeman 1975), giving rise to a field of nearly white noise, up to a 
frequency limit determined by the duration of the action potentials.  The feedback can be modeled as a one-
dimensional diffusion process, which randomizes the input of each neuron with respect to others’ output and its 
own output.  At some later stage, typically in humans after birth, cortical inhibitory neurons develop or 
transform from excitatory neurons, which contribute negative feedback, leading to the appearance of 
oscillations in the gamma spectrum of the EEG.  The mutual excitation persists, and, in fact, is essential for the 
maintenance of the near-linear range of cortical oscillations through a depolarizing bias. 

2.2. Embodied Cognition 
Clark (1997) also emphasizes the importance of real time interaction of the organism with the environment.  

For Clark: “ the first moral of embodied cognition is thus to avoid excessive world modeling, and to gear such 
modeling as is required to the demands of real-time, behavior-producing systems.”  (Clark 1997).   A second 
important concept in embodied cognition is the idea that perception and action are not separate and isolated 
systems, where perceptual information is passively gathered and then eventually acted upon once it is 
transformed by cognition.  Instead perception and action are fundamentally linked, right down to the neural 
structures and representations formed. 

According to Clark, solutions for organisms are softly assembled out of multiple, largely independent 
components.  Such interactive emergence of solutions yields both robustness and variability of the solutions to 
the problem.  The solutions that emerge are tailored to the idiosyncrasies of context, yet they satisfy some 
general goal of the organism. 

As we’ve seen before in the concepts of self-organization, solutions in embodied mechanisms are also 
conceived of as fundamentally decentralized.  Representations in embodied cognition are believed to be 
fundamentally action-oriented.  That is they simultaneously describe aspects of the world and prescribe possible 
actions.  They walk a balance between the passive representations of classical models and pure control 
structures.  

Cognitive processes can extend outside the head of the organism.  The world becomes part of the model or 
representation for the organism, and manipulations of the world state may serve to explore possible 
opportunities for action.  Such epistemic actions (Kirsch & Maglio 1994) are observable in biological organisms 
and are hard to explain under a strictly classical framework of cognition. 

The world is its own best representation.  This is a fundamental tenet of embodied cognition.  One should 
avoid costly, detailed world models and representations, in favor of embodied, action-oriented models.  Such 
representations discretize the perceptual input and only represent and act upon the information directly relevant 
to the action and goals of the organism (Von Uexkull 1934). 

Brooks (Brooks 1990) argues for behavioral decomposition, rather than functional decomposition, as a way 
of building situated, embodied robots.  While this is a step in the right direction, it lacks the flexibility and 
adaptability necessary to exhibit a true type of ontogenetic development.  Brook’s subsumption architecture 
does allow for a limited emergence of solutions from the interaction of many heterogeneous behaving elements.  
However, such emergence is limited and does not allow for the development of more sophisticated behavioral 
skills from the agents basic repertoire.  

2.3. Neural Darwinism 
Edelman’s theory of Neural Darwinism (Edelman 1987; Edelman & Tononi 2000) represents a selectional 

theory of brain development.  Selectional processes during the maturation of an organism’s brain represent 
possible mechanisms for the ontogenetic development of behavior and skills by the organism.  Some work has 
been done on implementing the mechanisms described by Edelman in real world behaving artifacts (Almassy, 
Edelman, Sporns 1998; Sporns, Almassy, Edelman 1999; Verschure et al. 1995). 

Our research into the development of behavior will be informed by the principles of Neural Darwinism.   
Our mechanisms will have the basic elements of Edelman’s approach, such as reentrant structure, degeneracy 
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and developmental selection.  But our approach will include the additional concepts of the developmental 
process as the evolution of a dynamical system.  In particular, the principles of dynamical cognitive systems, as 
described by Freeman (Freeman 1999a),  are further specifications on the mechanisms of the development of 
behavior. 

3. Technical Approach 

3.1. Principles of Cognitive Dynamics 
Our method is consistent with a dynamical approach to the development of an embodied cognition (Thelen 

& Smith 1994, Thelen 1995, Iverson & Thelen 1999, Kelso 1995).  In such a view of cognition, development is 
pictured as an ontogenetic landscape of evolving and dissolving attractors.  The attractors represent the 
development of stabile solutions and skills by the developing organism.  As time passes, the organism interacts 
with the environment and continuously solves and works out real time problems that confront it.  The solutions 
that the individual discovers in this real time interaction continuously affects the solutions that evolve in 
ontogenetic time.  Thus as stabile solutions to problems are discovered, they become the basis for the future 
development of further abilities based on previously discovered stable solutions.  Similarly, as the organism 
develops, stable solutions discovered previously may become unstable (due to morphological or developmental 
changes) which can push the system into new areas of the phase space in search of new behavioral solutions. 

In using dynamics we approach the problem by defining three kinds of stable state, each with its type of 
attractor.  The simplest is the point attractor.  The system is at rest unless perturbed, and it returns to rest when 
allowed to do so.  As it relaxes to rest, it has the history of what happened, but that history is lost after 
convergence to rest. 

A system that gives periodic behavior is said to have a limit cycle attractor.  The classic example is the 
clock.  When it is viewed in terms of its ceaseless motion, it is regarded as unstable until it winds down, runs 
out of power, and goes to a point attractor.  If it resumes its regular beat after it is re-set or otherwise perturbed, 
it is stable as long as its power lasts.  Its history is limited to one cycle, after which there is no retention of its 
transient approach in its basin to its attractor.  Neurons in populations rarely fire periodically, and when they 
appear to do so, close inspection shows that the activities are in fact irregular and unpredictable in detail, and 
when periodic activity does occur, it is either intentional, as in rhythmic drumming, clapping and dancing, or it 
is pathological, as in the periodic oscillations of the eyes in nystagmus, or of the limbs during Parkinsonian 
tremor, or of the cortex during the hypersynchrony of partial complex seizures that are revealed by near-
periodic spike trains.   

The third type of attractor gives aperiodic oscillation of the kind that is observed in recordings of EEGs.  
There is no one or small number of frequencies at which the system oscillates.  The system behavior is therefore 
unpredictable, because performance can only be projected far into the future for periodic behavior.  This type is 
now widely known as "chaotic".  The existence of this type of oscillation was known to Poincaré a century ago, 
but systematic study was possible only recently after the full development of digital computers.  The best 
known systems with chaotic attractors have a small number of components and a few degrees of freedom, as for 
example, the double-hinged pendulum, the dripping faucet, and the Lorenz, Chua, and Rössler attractors 
(Freeman 1999b).  These simple models are stationary, autonomous, and noise-free, forming the class of 
"deterministic chaos".   Large and complex real-world systems, which include neurons and neural populations 
are noisy, infinite-dimensional, nonstationary, non-autonomous, yet capable of chaotic behavior which has been 
called "stochastic chaos" (Freeman 2000).  The source is postulated to be the synaptic interaction of millions of 
neurons, which create fields of microscopic noise in cortex, but which are constrained by their own interactions 
to generate mesoscopic order parameters that regulate the spatiotemporal patterns of cortical activity revealed 
by the EEG.  These spatiotemporal patterns are revealed by spatial patterns of amplitude modulation ("AM 
patterns") of a spatially coherent aperiodic carrier wave in the gamma range of the EEG.  They appear in time 
series as bursts of oscillation, and their spatial patterning indicates the existence of an attractor landscape.   
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Figure 1 - K I I  scheme 

Figure 1.  KII scheme with four interconnected KII nodes.  Each node performs a nonlinear transformation according to a physiologically plausible 
asymmetric sigmoid function (Freeman 1975).  Nodes 1 and 2 are excitatory, while nodes 3 and 4 are inhibitory.  The system has 4 gain parameters; 
W_EE is the gain between the excitatory nodes, W_II is the gain between inhibitory nodes.  Gains W_IE and W_EI are for gains from E to I and I to 
E, respectively.  In the text, the response of the KII set to a given impulse is analyzed.  The impulse is coming through the Input channel. 

 

The discovery that brain dynamics operate in chaotic domains has profound implications for the study of 
higher brain function (Skarda & Freeman 1987).  A chaotic system has the capacity to create novel and 
unexpected patterns of activity.  It can jump instantly from one mode of behavior to another, which manifests 
the fact that it has a collection of attractors, each with its basin, and that it can move from one to another in an 
itinerant trajectory (Tsuda 1996).  It retains in its pathway across its basins its history, which fades into its past, 
just as its predictability into its future decreases.  Transitions between chaotic states constitute the dynamics that 
we need to understand how brains perform such remarkable feats as abstraction of the essentials of figures from 
complex, unknown and unpredictable backgrounds, generalization over examples of recurring objects never 
twice appearing the same, reliable assignment to classes that lead to appropriate actions, and constant up-dating 
by learning. 

The applied dynamic brain model will use principles of KIII sets.  The KIII model consists of various sub-
units; i.e., the KO, KI, and KII sets. The KO set is a basic processing unit, and its dynamics is described by a 2nd 
order ordinary differential equation. By coupling a number of excitatory and inhibitory KO sets, KI(e) and KI(i) 
sets are formed. Interaction of interconnected KI(e) and KI(i) sets forms the KII unit (Figure 1). Examples of 
KII sets in the olfactory system are the olfactory bulb, anterior olfactory nucleus, prepyriform cortex. Coupling 
KII sets with feed-forward and feedback connections, one arrives at the KIII system (Figure 2). 

Although the principles contributing to the KIII model have be known for a long time, certain stability 
issues represented serious obstacles in the practical use of KIII-based simulations. Applying advanced 
optimization techniques, the model could learn given input patterns but the performance of the system has been 
very sensitive to small changes in the model parameters (Chang, Freeman & Burke 1998). The reason for the 
problems has been identified as attractor crowding caused by the fragmentation of basins of attractors in the 
high-dimensional state space of KIII. Recently, a robust and stable operation of KIII has been achieved based 
on the concept of overlapping attractor basins (Kozma & Freeman 1999). KIII shows very good performance in 
learning input data and it can generalize efficiently in various classification problems.  These results will be 
extended to include intentional action in agents’  behavior via the plasticity of the underlying chaotic attractor 
basins. 
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Figure 2 - K I I I  model 

Figure 2.  Schematic view of the multi-layer KIII model;  the layers are: receptors, periglomerular cells, olfactory bulb with mitral and granule 
layers, anterior olfactory nucleus (AON), prepyriform cortex with excitatory and inhibitory layers, and deep pyramidal cells. 

3.2. The Limbic System Model of Intentional Behavior 
Brain scientists have known for over a century that the necessary and sufficient part of the vertebrate brain 

to sustain minimal intentional behavior is the ventral forebrain, including those components that comprise the 
external shell of the phylogenetically oldest part of the forebrain, the paleocortex, and the deeper lying nuclei 
with which the cortex is connected.  These components suffice to support remarkably adept patterns of 
intentional behavior, in dogs after all the newer parts of the forebrain have been surgically removed, and in rats 
with neocortex chemically inactivated by spreading depression.  Intentional behavior is severely altered or 
absent after major damage to the medial temporal lobe of the basal forebrain, as manifested most widely in 
Alzheimer’s disease. 

Phylogenetic evidence comes from observing intentional behavior in salamanders, which have the simplest 
of the existing vertebrate forebrains (Herrick 1948; Roth 1987).  The three main parts are sensory (which, as in 
small mammals, is predominantly olfactory), motor, and associational (Figure 3).  These parts can be judged to 
comprise the limbic system in all vertebrates, but in the salamander they have virtually none of the "add-ons" 
found in brains of higher vertebrates, hence the simplicity. The associational part contains the primordial 
hippocampus with its interconnected septum and amygdaloid nuclei, striatal nuclei, which are identified in 
higher vertebrates as the locus of the functions of spatial orientation (the "cognitive map") and temporal 
integration in learning (the organization of long and short term memory).  These processes are essential, 
inasmuch as intentional action takes place into the world, and even the simplest action, such as searching for 
food or evading predators, requires an animal to know where it is with respect to its world, where its prey or 
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refuge is, and what its spatial and temporal progress is during sequences of attack or escape.  The feedback 
loops that support the flow of neural activity in the neurodynamics of intentionality are schematized in Figure 4. 

                                          
Figure 3 - L imbic System 

Figure 3.  This schematic illustrates the sensory, motor, and associational components of the right hemisphere (seen from above) of the simplest 
extant vertebrate brain in the salamander.  The bidirectional connections between these 3 major subdivisions of the forebrain provide for the 
macroscopic interactions that support the neurodynamics of the process of intentionality: goal formation, action, perception, and learning from the 
sensory consequences of the action taken into the environment.  These components form the prototype of the limbic system, which is found in all 
vertebrate brains, typically buried within exuberant growth of other "add-on" structures that operate in concert with the limbic system. 

3.3. Selectional Mechanisms 
We will be building on neurologically inspired, bottom-up, dynamical models of populations of neurons that 

self-organize to form embodied categories and adaptive behavior.  The major predecessors of this line of 
research include those of Edelman (1987), Edelman & Tononi (2000), Freeman (1999a, 1995) and Skarda & 
Freeman (1987).  Specifically we will be building on research done by Kozma & Freeman (2000a, 2000b, 
2000c) on the formation of embodied categories from a chaotic spatiotemporal sensory environment and from 
Sporns, Almassy & Edelman (1999) and Almassy, Edelman & Sporns (1998) on the implementation of 
Edelman’s theory of Neural Darwinism in an embodied autonomous agent.  Our approach will extend such 
models to the realm of action selection in autonomous agents.  We will create models of action selection that 
identify opportunities for action from the embodied representations formed by the agents through their 
interaction with the environment.  Such models, we believe, will be capable of self-organizing increasingly 
sophisticated skills and behaviors in response to the demands of their task environment.  

                                      
Figure 4 - Brain State Schematic 

Figure 4.  This diagram of brain state space maps the multiple feedback loops that support the intentional arc.  Flow of neural activity inside the 
brain is in two directions.  Forward flow from the sensory systems to the entorhinal cortex and on to the motor systems is by spatial AM patterns 
of action potentials at the microscopic level, by which transmitting cortices drive the neurons in their targets.  Feedback flow from the motor 
systems to the entorhinal cortex by control loops, and from the entorhinal cortex to the sensory systems inside the brain, is by spatial AM patterns 
of action potentials at the mesoscopic level.  This feedback constrains and modulates the microscopic activity in the forwardly transmitting 
populations.  The mesoscopic feedback messages are order parameters that bias the attractor landscapes of the sensory cortices in preafference.  
Forward flow supports motor output and provides the content of percepts.  Feedback flow supports integrative processes in learning that lead to the 
wholeness of intentionality.  They enable the formation of a macroscopic AM pattern that reflects the integration of the activity of an entire 
hemisphere.  
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Our approach represents a selectional viewpoint of neurological function.  Selectional mechanisms are 

believed to aid in learning on the mesoscopic and macroscopic time scales.   Edelman & Tononi (2000) stress 
three main tenets of the theory of Neural Darwinism: developmental and experiential selection and reentry.   
Developmental selection generates extensive variability in the physical structures of the neural circuits which 
provides an immense and diverse repertoire of connectivity.  Experiential selection selectively strengthens or 
weakens connections between neurons based on experience and performance.  A diffusely projecting value or 
valence system guides and drives the selectional processes towards desired patterns of behavior.  
Developmental and experiential selection represent the variability and differentiation upon which selectional 
mechanisms can occur.  The third tenet, reentry, correlates spatiotemporal events among neuronal group maps.  
This process provides for the integration of spatiotemporal information and is a crucial property that allows for 
the formation of embodied representations and categories in an unlabeled and chaotic world (Edelman 1987, 
Edelman & Tononi 2000, Damasio & Damasio 1994). 

Selectional systems of sufficient diversity and variation display the property of degeneracy, which means 
that typically they contain many different structures that can perform a particular function or task and these 
varying structures are not necessarily identical.  This property of degeneracy is important as the system 
develops towards more discriminating and sophisticated modes of behavior.  What were at first many different 
structures for handling similar general events become specialized at recognizing and handling specific 
environmental contingencies   Or put another way, variations of general events seen before can be handled 
better by some equivalent degenerate structures than others.  Therefore degeneracy provides for a flexibility of 
behavior in coping with an infinitely varying task environment. 

3.4. Value Systems, Plasticity and Homeostatic Regulation 
Another important piece of the neuronal model is the presence of a diffusely projecting valence system.  The 

valence system provides constraints on the selectional mechanisms and drives the system towards behavior 
patterns that increase survivability and satisfy general requirements.  In biological organisms the valence system 
is a result of evolution by natural selection and represents a long history of experience of the species typical 
environment.  Although valence systems are typically thought of as fixed aspects of the biological organism, 
there is evidence that one of the key aspects in the power of the developmental processes of mammals is a 
modifiable valence system that can participate in the somatic selectional process (Sporns, Almassy & Edelman 
1999).  We will be developing models with modifiable valence systems. 

One view of a valence system is that it maintains a number of critical physical properties within certain 
viability zones.  Organisms are unable to live if they are not able to continually maintain these critical levels of 
intrinsic need for sustenance, regulation of body temperature, etc.  From a dynamical perspective, the properties 
can be thought of as state variables of the system.  The behavior of the organism must always be geared towards 
meeting these basic survival criteria.  Adaptive behavior is the ability to learn patterns of behavior that are 
better able to maintain this homeostatic balance of the essential variables of survival.  Homeostatic regulation 
represents an important guiding principle of the autonomous systems we are constructing.  The implementation 
of homeostatic regulation is a key to utilize the plasticity of the agents.  In addition to homeostasis, long-term 
habituation and almost instantaneous associative hebbian learning is used to achieve the desired robust 
performance (Kozma & Freeman 2000b). 

3.5. Computational Approach 
Our computational approach is to develop a software architecture that is targeted for a general parallel 

distributed hardware environment and that can be realized on different physical systems and parallel 
architectures.  The SODAS system will be broken into 2 layers: a logical layer that realizes an idealized 
simulated neurological model, and a physical layer that handles the realization of the idealized neurological 
model in some physical hardware environment.  The logical layer will implement an idealized neurological 
model based on the principles outlined above.  This layer will remain independent of the target hardware 
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environment, and should not need modifications when transporting or implementing agents in new 
environments.  The physical layer will be responsible for realizing the logical neurological model in a particular 
hardware environment.  It will provide an abstract interface for the logical layer that hides the details of 
communication and hardware architecture.  A physical layer will need to be developed for each differing 
hardware target upon which we wish to implement an agent.  Our first target physical hardware platform will be 
a parallel cluster machine. 

4. Expected Results 
The major result of our research will be to demonstrate the ability of our models to develop sophisticated 

and flexible behavioral patterns simply through the real-time interaction of the agent with its environment due 
to a process of ontogenetic development.  We will be expanding current models of the formation of embodied 
categories through dynamical processes to also self-organize an appropriate behavioral repertoire.  Our system 
will represent the first concrete implementation of the ideas of dynamic embodied cognition and ontogenetic 
development in a complete autonomous agent.  We will demonstrate the ability of such dynamical neurological 
models to form embodied category representations and to produce affordances or opportunities for behavior 
from such representations.  Further we hope to demonstrate a process of artificial ontogenetic development of 
skills, strategies and goals.  During the course of this research we will be developing various cognitive models 
of perceptual and motor tasks.  We will then use the results of such cognitive models to develop more complete 
autonomous agents for simulated environments.  

4.1. Conceptual Design 
The research would produce results on several levels.  On the conceptual level we would expect to establish 

theories of pulsing dynamics of internal representations modulated by sensory inputs, leading to category 
generation and learning in cognitive agents.  We would develop methods of shaping the attractor landscape of 
agents when needed, using learning methods at various time scales.  For example prompt associative (Hebbian) 
learning for the microscopic level, and long-term habituation and stability using chaos control, adaptive critics 
and re-normalization tools for the intermediate and macroscopic levels.  Further we would analyze various 
manifestations of mesoscopic organization using mathematical descriptions, and the role of this intermediate 
level in category formation.  We would compare the mesoscopic organization of our cognitive models to that 
observed in actual biological systems. 

In addition to the development of these conceptual tools for dynamical embodied category formation, we 
would also produce conceptual architectures of complete artificial limbic systems for intentionally behaving 
systems.  Such architectures would be modeled after the properties of known simple biological limbic systems.  
We expect that agents built upon such principles would exhibit a flexibility of behavior and a capacity for 
learning that is beyond the capabilities of current agent architectures.  In effect, we hope to build artifacts that 
display true intentionality and situated activity within their environment.  The design of the components and 
architectures of these artificial limbic systems would form the basis for implementations and demonstrations in 
various autonomous agents. 

4.2. Motor Coordination Tasks 
Some of the first models we will build will be extensions of dynamical category formation.  Our first 

models combining perception and action will be of simple motor coordination tasks, such as limb 
synchronization tasks and the production of oscillatory movements and their dynamic modification in response 
to environmental challenges.  The Haken-Kelso-Bunz model (Kelso 1995, Haken, Kelso & Bunz 1985) is a top 
down dynamical model of the attractor states of a particular motor task performed by humans.  In this task, 
people are asked to swing their index fingers back and forth (like car windshield wipers) to the beat of a 
metronome.  People naturally exhibit one of 2 attractors, in-phase motion and anti-phase motion.  This and other 
types of limb coordination tasks (Fuchs & Kelso 1994, Kelso 1995) provide a well studied domain of self-
organizing behavior upon which to initially test our bottom-up neurological models.  We expect to build models 
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that emulate the types of phase transitions observed in these coordination tasks.  This will provide alternative 
models of these self-organizing phenomenon to the traditional top-down models developed to explain such 
phenomenon.  This will also provide some simple domains in which to integrate perceptual and motor activities 
and to test the ability of our artificial limbic systems to self-organize behavior in ways that are similar to 
biological organisms.   

4.3. Real-Time Task Environments 
An interesting domain studied by psychologists is in the development of skills while performing certain 

motor tasks in a real-time cognitively challenging game, such as Tetris (Kirsch & Maglio 1994).   In this 
demanding environment, many behaviors are observed that can not be explained from a classical perspective 
(sense-act-plan).   Many actions, called epistemic actions by Kirsch and Maglio,  do not directly serve or bring 
the player closer to a goal.  Some rotations and translations are performed simply to manipulate the perceptual 
environment.  It is believed that these types of manipulations are performed because, contrary to a classical 
perspective, people do not build complete complex representations of the task domain.  Such complex 
representations are too computationally expensive to be supported in the demanding real-time task environment.  
Instead people use the environment itself as its own representation, and simple physical manipulations of the 
“environment out there”  are actually types of representational manipulations.  The purpose of such epistemic 
actions are not directly relevant to a goal, but serve to change the perceptual environment in such a way that 
new affordances or opportunities for action may be directly observed from the situation.  One objective of this 
research is to develop behavior producing systems that demonstrate these types of epistemic actions.   Systems 
observed to display these types of behavior can be argued to be cognitively plausible models of action selection, 
and will indicate the validity of our embodied representational mechanisms as models of biological 
embodiment. 

The Tetris environment, and other real-time demanding games, are also wonderful domains for studying the 
developmental process of skills from simple novice behaviors to advanced expert skills.  Such development of 
skills can happen quickly in humans, in a matter of hours of interaction with the task environment.  From simple 
motor skills and goals, players typically self-organize more complex and sophisticated patterns of behavior.  
Not only do the behavior patterns organize, but also the structure and type of goals pursued by the players 
evolve as they gain experience with the task environment.  We expect to build models that will be able to 
display some of these characteristics, to organize increasingly sophisticated levels of behavior by interacting 
with the environment.   

Such real-time demanding task domains also offer opportunities for the further  study of the formation of 
embodied category representations.  In particular, we will need to develop neurological models that can operate 
in real-time, using frequency based signaling rather than a simulated series of time steps (Verschure et. al 1995).  
In forming categorical and behavioral patterns in real-time, we will need to obey the dictate of embodied 
cognition to avoid excessive world modeling and gear that which is required to the demands of real-time, 
behavior-producing systems (Clark 1997).   

4.4. Mobile Robotic Simulators 
After the development of small models for isolated cognitive tasks, we will begin the development of more 

complex and complete autonomous agents.   The goal of this phase of the research will be to develop models 
that could one day be used in real world robotic agents.  We will begin by building agents for autonomous 
mobile robot simulators for various simple tasks.  We expect to display the ontogenetic development of 
behavior in a more complex and realistic perceptual environment than that offered by the initial task domains of 
the research.  Tasks will range from simple navigation and map building tasks, to the self-organization of higher 
level behaviors in the pursuit of endogenously defined goals.  Our first environment will be the Khepera 
simulator environment. 
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4.5. Autonomous Agents 
During the past five years the “Conscious”  Software Research Group, under Franklin’s direction, has 

designed and developed software agents that implement Global Workspace Theory, a psychological theory of 
consciousness and cognition. One of these “conscious”  software agents, IDA (Franklin, Kelemen, and 
McCauley 1998), is intended to automate all the duties of a Navy “detailer”  who assigns a sailor a new billet at 
the end of his or her current tour. This entails accessing personnel and job databases, choosing jobs via 
deliberation to offer the sailor while remaining within the Navy’s policies, and negotiating with the sailor in 
natural language. IDA is a quite complex software system with many modules each typically inspired by some 
computational mechanism drawn from the “new AI.”   IDA can recognize and classify incoming sense objects 
(pieces of text). She cannot, however, learn to recognize and classify new sense objects. Nor would her current 
mechanisms allow her to recognize and classify within a much more complex and demanding sensory modality 
such as vision. This is a major weakness of IDA as a model of cognition. 

In the third year of the project being proposed here we plan to equip IDA with an additional sense (probably 
vision or audition) whose mechanism will be based on that developed during the first two years. This 
mechanism should be ideally suited to a sensory modality in which an individual object typically appears in a 
multitude of different presentations. IDA will provide a test bed for experimentation with such a sensory 
mechanism. 
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6. Management Plan 
 
The research personnel at the University of Memphis include Dr. Robert Kozma (PI) and Dr. Stanley P. 
Franklin  and Derek Harter (co-PIs) and their graduate and undergraduate students. The project involves the 
Department of Mathematical and Computer Sciences, which is the administering unit.  
 
 
The research personnel at the University of  California Berkeley include Dr. Walter J. Freeman (co-PI) and his 
graduate and undergraduate students.  The project involves the Department of Molecular and Cell Biology. 
 
 
Dr Robert Kozma is the PI and the team leader of our project. He is responsible for running the project, 
coordinating his Lab’s involvement in the research issues  related to the fusion of sensory information in a 
dynamical embodiment and data processing, including the relationship of sensing and intentional action.  
 
Dr. Stanley P. Franklin and his students will be responsible for the integration of various models of dynamical 
cognition developed into existing autonomous agents. He will coordinate collaborative activities between this 
research project and existing systems. 
 
Dr. Walter J Feeman will work on how the biological principles of neurodynamics can be implemented in 
mathematical and computational models of intentionally behaving systems.  His expertise in the neurodynamics 
of biological systems will be consulted as a guide in building such models. He will also coordinate collaborative 
activities and the broader impact of the project.  
 
Derek Harter will help in developing the mathematical and computational models of intentionally behaving 
systems.  He will be responsible for the implementation of the mathematical and computational models as 
various autonomous agent simulations. 
  
 
We will use two basic ways to networking people, ideas, and data: personal meetings and electronic 
communications and networking. 
 
 On the personal level: 
 
• Members at the Memphis campus will meet regularly in working discussions and also in the cognitive 

science and dynamical systems seminars; 
• There will be a kick-off meeting at the start of the project, and annual meetings at the end of each project 

year. Team members from the University of Memphis will participate in the annual meetings; 
• We will actively participate every year in national and international conferences to disseminate our results 

and to obtain feedback from the broad scientific community; 
• A Workshop will be organized by our team members in the 3rd project year.  
 
 
 
 
 
 
 



SODAS - 17 - 10/20/2000 

Electronic communication and networking: 
 
• We will use electronic mails to everyday communications among team members. We will produce a 

newsletter on a monthly basis, to summarize research activities, achievements and possible problems. This 
channel is crucial to the continuous interaction with our collaborators.  

• We will establish a web page of the project to display information on the project and the obtained results; 
• Via the web page, we will provide an access to the Repository of our data, prototype autonomous agents, 

and to the available methodologies, like Matlab files and data processing algorithms.  
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7. Cost Plan 

7.1. Year 1 
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7.2. Year 2 
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7.3. Year 3 
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7.4. Summary 
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7.5. Explanation 
Personnel 
 
1. We have 2 researchers as investigators in this project from the University of Memphis.  Dr. Robert Kozma 

and Dr. Stan Franklin are faculty members at University of Memphis.  Dr. Kozma will contribute 25% of 
his time to the project during the academic year, and full time during the summer months.  Dr. Franklin will 
contribute 1 month of summer time to the project per year.  

 
2. We have 1 researcher as investigator in this project from the University of California Berkeley.  Dr. Walter 

Freeman is a faculty member at UC Berkeley and will contribute 22% of his time to the project. 
 
3. Derek Harter is a Ph.D. student at the University of Memphis who will participate full time the first year as 

a programmer/analyst.  In the second and third years he will participate full time as a post doctoral associate 
with the grant. 

 
Equipment 
 
Equipment expenditures for year 1 will be used to build a 8 node parallel cluster computer.  This machine will 
provide a sufficiently powerful environment to build models of dynamical category formation and motor 
coordination tasks. Also in the year 1 equipment expenditures is budgeted for personal computers for 2 of the 
investigators upon which to develop mathematical models and other prototype simulations. The software budget 
for year 1 will buy licensing fees for various mathematical tools to be used throughout the project for model 
prototyping, and for the developmental and system software needed for the cluster computing environment. In 
year 2 we will be developing more complex neurodynamical models that will require the expansion of the 
cluster computer from 8 to 16 nodes, which will require the additional equipment expenditure to expand the 
cluster. 
 
Travel 
 
We have budgeted travel money for 2 domestic trips (or 1 international trip) for each of the Investigators per 
year to national or international conferences of interest to this research.  This money is also for domestic travel 
of the investigators for the annual project review meetings.  In year 3 we have budgeted extra travel expenses to 
pay for Workshop participants to travel to the University of Memphis. 
 
Workshop 
 
We will organize a Workshop in the last year of the project and invite the participation of  scientists with 
interest in our research.  Extra travel money has been allocate in year 3 to pay for travel expenses for some of 
the Workshop participants. 
 
Agent Simulators 
 
During years 2 and 3 we plan to explore various existing agent simulation environments upon which to test 
various aspects of our neurodynamical models.  The money budgeted for this includes the tasks of buying and 
evaluating different simulation environments, and necessary programming modification to interface the 
environments with our neurodynamical models developed for the parallel cluster machine. 
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Consultants 
 
We plan to invite speakers to the University of Memphis to consult with us, review our work and collaborate 
with various aspects of the project.  The money budgeted for consultants includes paying for travel and 
speaking. 
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8. Resumes 



SODAS - 25 - 10/20/2000 

Robert Kozma
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Stanley P. Franklin
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Walter J. Freeman
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Derek Harter
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9. Declarations and Certifications 
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10. Appendix 

10.1. Chaotic Resonance – Methods and Applications for Robust Classification 
of Noisy and Variable Patterns 

Kozma, R. and Freeman, W.J. (2000b) Chaotic resonance - methods and applications for robust classification of 
noisy and variable patterns. International Journal of Bifurcation and Chaos. (in press). 
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10.2. Emergence of Un-Correlated Common-Mode Oscillations in the Sensory 
Cortex 

Kozma, R., Alvarado, M., Rogers, L., Lau, B., Freeman, W. J. (2000) Emergence of un-correlated common-
mode oscillations in the sensory cortex.  Proceedings Computational Neuroscience Conference.  CNS*2000 
Special Issue of Neurocomputing. (in press). 
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10.3. Local-Global Interactions and the Role of Mesoscopic (Intermediate-
Range) Elements in Brain Dynamics 

Freeman, W. J. and Kozma, R. (2000) Local-global interactions and the role of mesoscopic (intermediate-range) 
elements in brain dynamics. Behavioral and Brain Sciences Vol. 23, No. 3, June, 2000. (in press). 


