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Abstract. The Tutoring Research Group at the University of Memphis has developed a computer
tutor (called AutoTutor) that simulates the discourse patterns and pedagogical strategies of a
typical human tutor.  The dialog tactics were based on a previous project that dissected 100 hours
of naturalistic tutoring sessions.  AutoTutor is currently targeted for college students in
introductory computer literacy courses, who learn the fundamentals of hardware, operating
systems, and the Internet.  Instead of merely being an information delivery system, AutoTutor
serves as a discourse prosthesis (or collaborative scaffold) that assists the student in actively
constructing knowledge. A dialog manager coordinates the conversation that occurs between a
learner and a pedagogical agent, whereas lesson content and world knowledge are represented in
a curriculum script and latent semantic analysis.  The agent is a talking head with discourse-
sensitive facial expressions and synthesized speech.  Evaluations of AutoTutor have shown that
the tutoring system improves learning and memory of the lessons by .5 to .6 standard deviation
units.  This article describes the components of AutoTutor and contrasts two versions that follow
somewhat different teaching tactics.

INTRODUCTION

It is widely acknowledged in the field of education that students rarely acquire a deep
understanding of the material they are supposed to learn in their courses.  Students normally
settle for shallow knowledge, such as lists of concepts, a handful of facts about each concept, and
simple definitions of key terms.  Students lack the deep coherent explanations that organize the
shallow knowledge and that fortify the learner for generating inferences, solving problems, and
applying their knowledge to practical situations.  They lack the skill of articulating and
manipulating symbols, formal expressions, and precise quantities.  They lack the ability to
forecast how a complex system will behave when given different inputs.  The acquisition of
shallow knowledge is unfortunately reinforced by the traditional classroom activities and testing
formats.  Most classroom lectures are information delivery systems for shallow knowledge.
Most teachers’ questions are short-answer questions that require only single words or short
phrases in the student responses.  The format of most examinations consists of multiple choice,
true-false, or fill-in-the-blank questions that, once again, tap primarily the shallow knowledge.
Given this unfortunate state of affairs, many researchers and teachers in education have been
exploring learning environments and pedagogical strategies that promote deep comprehension.
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Constructivism is the most popular general approach to cracking the barrier of shallow
knowledge (Biggs, 1996; Bransford, Goldman, & Vye, 1991; Brown, 1988; Chi, deLeeuw, Chiu,
& LaVancher, 1994; Palincsar & Brown, 1984; Papert, 1980; Piaget, 1952; Pressley & Wharton-
McDonald, 1997; Rogoff, 1990; VanLehn, Jones, & Chi, 1992; Vygotsky, 1978).  According to
this approach, the learner needs to actively construct meanings and knowledge by interacting
with the world and other people.  Moreover, the premier meaning representations are coherent,
explanatory, and deeply rooted in the learner’s experiential knowledge base.  Learning
environments should stimulate active construction of knowledge and provide feedback on these
constructions rather than being mere information delivery systems.  Dialectical constructivism
stipulates that complex learning primarily occurs through an interaction between learners and
their environments, whereas exogenous constructivism emphasizes the constraints of the outside
world and endogenous constructivism emphasizes the cognitive and biological constraints of the
learner (Moshman, 1982).  Constructivist approaches have been so compelling that they have
shaped the standards for curriculum and instruction in the United States during the last decade,
e.g., Standards for the English Language Arts (NCTE, 1996), Curriculum and Evaluation
Standards for School Mathematics (NCTM, 1989), National Science Education Standards (NRC,
1996).

We believe that one-on-one tutoring is an ideal learning environment for investigating the
constructive processes systematically.  There are only two agents, namely the learner and the
student, so it is possible to systematically manipulate tutoring tactics and to observe the impact
on learning gains.  It is an open question of whether the tutor should be a human or a computer.
There seem to be advantages and limitations of both types of agent.  For example, human tutors
are presumably more personable, responsive, and deeper.  But they also get tired, are sometimes
irritated, and are not always consistent in implementing pedagogical strategies.  A new wave of
computer tutors are also simulating some of these human qualities, so maybe computer tutors
will be viable alternatives.  One such computer tutor (called AutoTutor) will be the focus of this
article.

THE EFFECTIVENESS OF ONE-ON-ONE TUTORING

At the heart of AutoTutor is the assumption that one-on-one tutoring is a powerful method of
promoting knowledge construction.  In fact, there is substantial empirical evidence that human
tutoring is extremely effective when compared to typical classroom environments.  Cohen, Kulik,
and Kulik (1982) performed a meta-analysis on a large sample of studies that compared human-
to-human tutoring with classroom controls.  The vast majority of the tutors in these studies were
untrained in tutoring skills and had moderate domain knowledge; they were peer tutors, cross-age
tutors, or paraprofessionals, but rarely accomplished professionals.  These “unaccomplished”
human tutors enhanced learning with an effect size of .4 standard deviation units, which
translates to approximately a half a letter grade.  Accomplished human tutors do substantially
better according to Bloom (1984), who reported an effect side of 2.0 standard deviation units in
learning gains (or 2 letter grades approximately).  So the advantage of human-to-human tutoring
over the classroom appears to vary between .4 and 2.0 standard deviation units, depending on the
expertise of the tutor.

Computer tutors have implemented some of the pedagogical strategies that have been
advocated in education.   One advantage of computer tutors is that particular pedagogical
strategies can be manipulated, as opposed to merely observed naturalistically.  This makes it
easier to determine whether a particular pedagogical component has a causal impact on learning
gains.  Moreover, the computer tutors have proven to be effective.  AutoTutor implemented the
pedagogical strategies and dialogue patterns of unaccomplished tutors and produced learning
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gains of .5 to .6 standard deviation units (Graesser, Bautista, Link, Kreuz, & TRG, 2001;
Graesser, VanLehn, Rose, Jordan, Harter, in press; Link, Pomeroy, DiPaolo, Rajan, Klettke,
Bautista, Kreuz, Graesser, & TRG, 2000).  During the last 20 years, intelligent tutoring systems
(ITS) have implemented several systematic strategies for promoting learning, such as the error
identification and correction, building on prerequisites, frontier learning (expanding on what the
learner already knows), student modeling (inferring what the student knows and having that
guide tutoring strategies), and building coherent explanations (Anderson, Corbett, Koedinger, &
Pelletier, 1995; Gertner, & VanLehn, 2000; Koedinger, Anderson, Hadley, & Mark, 1997;
Lesgold, Lajoie, Bunzo, & Eggan, 1992; Sleeman & Brown, 1982; vanLehn, 1990).  The ITSs
that have been successfully implemented and tested (such as VanLehn’s Andes physics tutor and
Koedinger’s PACT algebra tutor) have produced learning gains of approximately 1.0 standard
deviation unit, i.e., one letter grade (Corbett, Anderson, Graesser, Koedinger, & VanLehn, 1999;
du Boulay, 2000).  According to the available evidence, the learning gains of the sophisticated
ITSs (1.0 SD) are higher than those of unaccomplished human tutors (.4 SD), but not quite as
good as the accomplished human tutors (2.0 SD).  AutoTutor’s performance (.5 to .6 SD) is on
par with unaccomplished human tutors.

It appears that there are two different mechanisms that potentially explain the effectiveness
of tutoring (Corbett et al., 1999; Graesser, Person & Magliano, 1995).  The first is the
sophisticated tutoring strategies that have been identified in the ITS literature.  The second is the
dialog patterns and natural language that help the tutor scaffold the learner to new levels of
mastery.   According to Graesser et al. (1995) and the theoretical foundation of AutoTutor, there
is something about discourse and natural language (as opposed to sophisticated pedagogical
strategies) that explains the effectiveness of unaccomplished human computers.  The
performance assessments of ITS systems indicate that the sophisticated tutoring strategies move
the tutoring process one giant step further.  Therefore, the ideal computer tutor would
presumably embrace both of these mechanisms.

WHAT DO UNACCOMPLISHED TUTORS DO?

AutoTutor incorporate features of tutorial dialog that are prevalent in normal tutoring sessions
with unaccomplished human tutors.  In previous research projects funded by the Office of Naval
Research, Graesser and Person videotaped, transcribed, and analyzed nearly 100 hours of
naturalistic tutoring sessions (Graesser & Person, 1994; Graesser et al., 1995; Person & Graesser,
1999).  The corpus of tutoring sessions included (a) graduate students tutoring undergraduates on
the fundamentals of research methods and (b) middle school students tutoring younger students
in basic algebra.  After analyzing this rich corpus, Graesser and Person discovered what tutors do
versus do not do during most tutoring sessions.  Our discoveries were enlightening and often
counterintuitive.

The question arises as to why we analyzed and simulated an unaccomplished tutor rather
than a skilled professional tutor.  There are several reasons.  First, transcripts were not available
for a reasonable sample of tutors who had both tutoring training and high expertise in the subject
matter.  Thus, accomplished tutoring expertise was unavailable, as is typically the case in nearly
all school settings.  Second, we were convinced that it was technologically feasible to simulate
the discourse and pedagogical strategies of unaccomplished tutors, but not accomplished tutors.
Third, unaccomplished tutors are known to be effective in producing learning gains, so
simulating such mechanisms is worthwhile.

Our anatomy of normal tutoring sessions revealed that the tutors do not use most of the ideal
tutoring strategies that have been identified in education and the ITS enterprise.  These strategies
include the Socratic method (Collins, 1985), modeling-scaffolding-fading (Collins, Brown, &
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Newman, 1989; Rogoff, 1990), reciprocal training (Palincsar & Brown, 1984), anchored situated
learning (Bransford et al., 1991), error diagnosis and remediation (Sleeman & Brown, 1982),
frontier learning, building on prerequisites (Gagne, 1977), and sophisticated motivational
techniques (Lepper, Woolverton, Mumme, & Gurtner, 1991).  Detailed discourse analyses have
been performed on small samples of accomplished tutors in an attempt to identify sophisticated
tutoring strategies (Fox, 1993; Hume, Michael, Rovick, & Evens, 1996; Merrill, Reiser, Ranney,
& Trafton, 1992; Moore, 1995; Putnam, 1987).  However, we discovered that nearly all of these
sophisticated tutoring strategies were virtually nonexistent in the naturalistic tutoring sessions
that we videotaped and analyzed (Graesser et al., 1995; Person & Graesser, 1999).   Tutors
clearly need to be trained how to use the sophisticated tutoring tactics because they do not
routinely emerge in typical tutoring sessions with untrained tutors.

The 5-step dialog frame is one of the prominent dialog patterns in naturalistic tutoring
(Graesser & Person, 1994).  The five steps in this frame are presented below.

Step 1: Tutor asks question (or presents problem)
Step 2: Learner answers question (or begins to solve problem)
Step 3: Tutor gives short immediate feedback on the quality of the answer (or solution)
Step 4:  The tutor and learner collaboratively improve the quality of the answer.
Step 5:  The tutor assesses the learner’s understanding of the answer

This 5-step frame has been adopted in AutoTutor.  This 5-step dialog frame in tutoring is a
significant augmentation over the 3-step pattern that is prevalent in classroom instruction.  That
is, Mehan (1979) and others have reported a 3-step pattern that is often called IRE: Initiation (a
question or claim articulated by the teacher), Response (an answer or comment provided by the
student) and Evaluation (the teacher evaluates the student contribution).  These IRE steps
directly correspond to steps 1, 2, and 3 of the 5-step dialog frame for tutoring.  Graesser et al.
(1995) argued that the advantage of tutoring over the classroom lies primarily the lengthy multi-
turn exchange in step 4.  Another possibility might be Step 5.  However, our anatomy of
naturalistic tutoring revealed that tutors only minimally assess the learner’s understanding of the
student in step 5.  The tutor normally asks “Do you understand?” and then the vast majority of
student responses are positive (“Yes”), even though most of the students have a vague,
incomplete, or incorrect understanding (Person, Graesser, Magliano, & Kreuz, 1994).  In fact, it
is the better students who tend to answer “No” to these comprehension-gauging questions,
perhaps because they are more self-regulated learners or have more fine-tuned metacognitive
strategies (Hacker, Dunlosky, & Graesser, 1998).  An ideal tutor would press the student further
by asking follow-up questions that diagnose whether the student truly understands the answer.

Our anatomy of human tutoring revealed that human tutors generate dialog moves that are
sensitive to the quality and quantity of the preceding student turn. They adapt to what the student
says, but do not analyze the student’s knowledge at a fine-grained level.  The tutor presents
dialog moves that are both responsive to the student and that facilitate the student in actively
constructing knowledge.  The tutor dialog move categories that we identified in human tutoring
sessions are provided below.

(1) Positive immediate feedback.  "That's right"  "Yeah"
(2) Neutral immediate feedback.  "Okay" "Uh-huh"
(3) Negative immediate feedback.  "Not quite" "No"
(4) Pumping for more information.  "Uh-huh" "What else"
(5) Prompting for specific information.  "The primary memories of the CPU are

 ROM and _____"
(6) Hinting.  “What about the hard disk?”
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(7) Elaborating. “CD ROM is another storage medium.”
(8) Splicing in the correct content after a student error.
(9) Summarizing.  "So to recap," <succinct recap of answer to question>

After spending nearly a decade toiling over thousands of pages of tutoring transcripts and
staring at hundreds of hours of videotaped tutoring sessions, we decided to it was time to put our
knowledge to good use and build AutoTutor.

WHAT IS AUTOTUTOR?

The Tutoring Research Group (TRG) at the University of Memphis has been developing a
computer tutor, called AutoTutor, that simulates a typical human tutor (Graesser, Franklin,
Wiemer-Hastings, & TRG, 1998; Graesser, VanLehn, et al., in press; Graesser, Wiemer-
Hastings, Wiemer-Hastings, Kreuz, & TRG, 1999; Person, Graesser, Kreuz, & Pomeroy, & TRG,
in press; Wiemer-Hastings, Graesser, Harter, & TRG, 1998).  AutoTutor attempts to comprehend
student contributions and to simulate dialog moves of human tutors.  AutoTutor-1 attempts to
simulate the dialog moves of normal (unskilled) tutors, whereas AutoTutor-2 incorporates more
sophisticated tutoring strategies.  AutoTutor is currently being developed for college students
who take an introductory course in computer literacy.  These students learn the fundamentals of
computer hardware, the operating system, and the Internet. AutoTutor is written in the Java
programming language and is currently implemented on Pentium Computers in an NT operating
system.

A brief snapshot of AutoTutor-1 in action should concretize the nature of AutoTutor.
AutoTutor works by having a conversation with the learner.  AutoTutor appears as a talking head
that acts as a dialog partner with the learner.  The talking head delivers AutoTutor’s dialog
moves with synthesized speech, intonation, facial expressions, and gestures.  The major question
(or problem) that the learner is working on is both spoken by AutoTutor and is printed at the top
of the screen (see Figure 1).  The major questions are generated systematically from a curriculum
script, a module that will be discussed later. AutoTutor’s major questions are not the fill-in-the
blank, true/false, or multiple-choice questions that are so popular in the US educational system.
Instead, the questions invite lengthy explanations and deep reasoning (e.g., answers to why, how,
what-if  questions).  The goal is to encourage students to articulate lengthier answers that exhibit
deep reasoning, rather than to recite short snippets of shallow knowledge.  There is a continuous
multi-turn tutorial dialog between AutoTutor and the learner during the course of answering a
major question (or solving a problem).  When considering both the learner and AutoTutor, it
typically takes 10 to 30 turns during the tutorial dialog when a single question from the
curriculum script is answered.  The learner types in his/her contributions during the exchange by
keyboard.  For some topics, there are graphical displays and animation, with components that
AutoTutor points to. AutoTutor was designed to be a good conversation partner that
comprehends, speaks, points, and displays emotions, all in a coordinated fashion.
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Figure 1: AutoTutor with Marco Talking Head

The exchange below is one of the shorter tutorial dialogs between a college student and
AutoTutor.  This student was an above average student in the computer literacy class.

01 AUTOTUTOR: When you turn on the computer, how is the operating system first
activated and loaded into RAM?

02 STUDENT: When the computer is turned on a file is automatically booted up.
03 AUTOTUTOR: Anything else?
04 STUDENT: This file contains the operating system.
05 AUTOTUTOR: What else?
06 STUDENT: The operating system is then read into RAM and activated.
07 AUTOTUTOR: Right.  The CPU executes instructions in ROM, which helps the operating

system to start.
08 STUDENT: After being read from ROM the OS is activated.
09 AUTOTUTOR:  Right.  Let’s review what we’ve just gone over.  The operating system

must first be stored on the hard disk.  When you turn on the computer, the CPU executes
instructions stored in ROM.  These instructions help boot the operating system.  The
operating system is then loaded from the hard disk into RAM.

AutoTutor first asks a how-question in turn 1.  Then the student provides answer information in
turns 2, 4, 6, and 8.  These answers are encouraged by AutoTutor’s pumps in turns 3 and 5 (i.e.,
“Anything else?”, “What else?”).  AutoTutor delivers these pumps in an effort to encourage the
student to actively construct knowledge.  Thus, instead of being an information delivery system
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that bombards the student with a large volume of information, AutoTutor is a discourse
prosthesis that attempts to get the student to do the talking and that explores what the student
knows.  As discussed earlier, AutoTutor adopts a constructivist theoretical view that a key
feature of effective learning lies in assisting students in actively constructing subjective
explanations and elaborations of the material, as students answer questions and solve problems
that require deep reasoning.  At the same time, however, the students need to answer enough
questions and to solve enough problems for them to understand the constraints of the domain
knowledge.  It would not be good for the student to flounder unproductively for a long time.
Consequently, AutoTutor sometimes needs to bring the student back on track by supplying cues
and clues that lead to the evolution of a complete answer to the question.  These clues include
hints, prompts for the student to fill in a word or phrase, and assertions that fill in missing ideas.
The student had forgotten about the role of ROM in launching the operating system, so
AutoTutor brings up ROM in turn 7.  The student builds on this suggestion in turn 8.  At that
point, the important pieces of a good complete answer have been covered, so AutoTutor
summarizes the answer in turn 9.  AutoTutor periodically gives positive immediate feedback
after the student contributions (i.e., “right.”).  This feedback is not only motivating, but creates
the impression that AutoTutor is listening to what the student is communicating.  These
characteristics of a tutorial exchange are quite similar to discourse patterns in normal tutoring
between humans.

It is important to point out that there is an asymmetry in the communication media between
AutoTutor and the learner.  AutoTutor talks, points, and displays information whereas the only
input channel for the student is typing information via the keyboard.   It presumably would be
better for both conversational participants to speak, point, gesture, and display information.  It
certainly would be more natural.  The Tutoring Research Group is indeed exploring this
alternative.  However, there are widely acknowledged technical challenges in building a reliable
speech recognition system for continuous speech.  The technologies that interpret user’s gestures,
head nods, facial expressions, and graphical input are even more undeveloped.  When these
technologies are more available and reliable, they can be explored, tested, and compared.  At
present, however, AutoTutor is confined to keyboard input from the user.  It could perhaps be
argued that keyboard input from the learner may end up producing higher learning gains than the
evanescent speech input.  It forces the user to articulate their answers in writing, more carefully
thought out, with language that is more technical than conversational.  The impact of alternative
communication media on learning gains is one important direction for future research (see
Whittaker, in press).

MECHANISMS OF AUTOTUTOR

It is beyond the scope of this section to review all of the components of AutoTutor.  Instead, the
focus will be on those mechanisms that are most relevant to tutorial dialog and teaching tactics.
At this point we have developed two versions of AutoTutor, which we refer to as AutoTutor-1
and AutoTutor-2.  AutoTutor-2 has somewhat different conversation parameters and dialog
tactics that were added to get the student construct more information and do more of the talking
in the mixed-initiative dialog.

Curriculum scripts with example problems, deep questions, graphics, and animation.

A curriculum script is a loosely ordered set of skills, concepts, example problems, and question-
answer units.  Most human tutors follow a script-like macrostructure, but briefly deviate from the
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structure when the student manifests difficulties, misconceptions, and errors. The content of the
curriculum script in tutoring (compared with classrooms) has more deep reasoning questions
(e.g., why, how, what-if, what-if-not), more problems to solve, and more examples (Graesser et
al., 1995).

The curriculum script in AutoTutor organizes the topics and content of the tutorial dialog.
The script includes didactic descriptions, tutor-posed questions, example problems, figures, and
diagrams (along with anticipated good responses to each topic).  There also is a glossary of
technical terms with definitions (i.e., answers to the learner’s “What does X mean?” questions).
There were 36 topics (i.e., example problems or deep reasoning questions) in AutoTutor-1, 12
each for the hardware, the operating system, and Internet.  Each topic is represented simply as a
set words, sentences, or paragraphs in a free text format. Thus, it is easy for a lesson planner to
create new topics and content with a simple authoring tool; there is no need to craft the content in
structured LISP or Prolog code, which is routinely done when systems are created in most ITSs.

Associated with each topic is a focal question, a set of basic noun-like concepts, a set of
ideal good answer aspects (each being roughly a sentence of 10-20 words), different forms of
expressing or eliciting each ideal answer aspect (i.e., a hint, prompt, versus assertion), a set of
anticipated bad answers (i.e., bugs, misconceptions), a correction for each bad answer, and a
summary of the answer or solution.  Except for the hints, prompts, and corrections, the
preparation of curriculum script requires no special computer knowledge on the part of the lesson
planner.  The system was designed this way so that AutoTutor could be used for a large range of
topics (virtually any topic except those that require the precision of mathematics) and so lesson
planners could develop the content with minimal knowledge of discourse or computer science.

Verbal content

Appendix A shows a portion of one of the curriculum scripts on the topic of operating systems.
This curriculum script was developed for AutoTutor-2.  The difficulty level of this question is
moderate, as opposed to easy or difficult.  Context information is presented prior to the focal
question: How does the operating system of a typical computer process !several jobs
simultaneously, with only !one CPU?  The explanation point symbol (!) is part of the mark-up
language to the talking head; it designates that the word should be stressed in the synthesized
speech.  The ideal answer to this question is a lengthy answer that has 5 good answer aspects
(i.e., expected good answers), signified as A1, A2, … A5.  Appendix A includes information about
two of the 5 good answer aspects, but not the other three good answer aspects.  For example, the
first good answer aspect is: The operating system helps the computer to work on several jobs
simultaneously by rapidly switching back and forth between jobs.  There is a verbal description
associated with each good answer aspect (preceded by pgood in Appendix A).  The student’s
input, entered by keyboard, is constantly compared to each of the 5 good answer aspects as the
dialog evolves, turn by turn.  Latent Semantic Analysis (LSA), a component that will be
discussed later, is used to assess the match between student contributions and each good answer
aspect.

Very often, a student cannot articulate a particular good answer aspect.  AutoTutor needs to
provide some scaffolding to extract this information from the student or to get the student to
articulate this knowledge. Assertions, hints, and prompts provide this scaffolding. Assertions
succinctly articulate the desired information (signified by passert).  Hints are questions (signified
by phint) that lead the student to the desired information (signified by phintc). Prompts are
assertions that that leave out the last word (signified by pprompt); when these get articulated,
there is a stress intonation contour that strongly encourages or signals the student to fill in the
desired word (signified by ppromptk).  After the student types in the response to the prompt,
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AutoTutor presents the correct missing word or expressions in a prompt response (signified by
ppromptc).   It should be noted that there are several prompts and hints for each good answer
aspect.  AutoTutor attempts to extract the desired information from the student by many different
cues and clues.

The curriculum script also has a number of bad answers that capture common bugs and
misconceptions.  When a student expresses a contribution that matches one of the bad answers
(signified by bad and bbad), then AutoTutor corrects the error by splicing in a correction
(signified by splice).

Graphics and animation

AutoTutor has graphic displays and a small number of animation clips that coordinate graphic
and animated displays, speech synthesis, facial expressions, communicative gestures, and
pointing. Extensive use of multimedia can have its advantages.  But there are also liabilities from
“feature bloat” to the extent that a multimedia show splits the attention of the student (Sweller &
Chandler, 1994).  The coordination of the visual and auditory information was guided by recent
research on multimedia, education, and cognitive science to the extent that research is available.
For example, narrative information (i.e., what AutoTutor says) needs to be sequenced
simultaneously with visual information (Mayer, 1997), text and pictures must be in spatial and
temporal contiguity (Moreno & Mayer, 1999), and it is not a good policy to present lengthier
narrative messages in both a text and an auditory modality simultaneously (Kalyuga, Chandler, &
Sweller, 1999).

Natural language extraction and speech act classification

AutoTutor needs to classify the speech acts of student contributions in order to flexibly respond
to what the student types in.  AutoTutor segments the categorized string of words and
punctuation marks within a learner’s turn into speech act units, relying on punctuation to perform
this segmentation. Then each speech act is assigned to one of the following speech act
categories:  Assertion, WH-question, YES/NO question, Metacognitive comments (I don’t
understand), Metacommunicative acts (Could you repeat that?), and Short Response.  Speech act
classification is performed by accessing lexicons, identifying the parts-of-speech of words,
executing finite state transducers, and consulting frozen expression catalogues.  Marineau et al.
(2000) tested and compared speech act classifiers that had architectures with neural networks,
syntactic parsers, versus surface feature extraction.

Latent Semantic Analysis

The fact that world knowledge is inextricably bound to the process of comprehending language
and discourse is widely acknowledged, but researchers in computational linguistics and artificial
intelligence have not had a satisfactory approach to handling the deep abyss of world knowledge.
AI researchers have traditionally relied on semantic networks and conceptual graph structures
(Lehmann, 1992; Lenat, 1995), which unfortunately take years to develop in extensive
knowledge engineering efforts.  Recently, Latent semantic analysis (LSA) has recently been
proposed as a statistical representation of a large body of world knowledge (Kintsch, 1998;
Landauer & Dumais, 1997; Landauer, Foltz, & Latham, 1998).  An LSA space can be created
and tested for a very large corpus of documents in a short period of time (less than a month).
LSA provides the foundation for grading essays, even essays that are not well formed
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grammatically, semantically, and rhetorically; LSA-based essay graders can assign grades to
assays as reliably as experts in composition (Foltz, 1996; Landauer et al., 1998). An LSA space
is created after processing a large corpus of texts that are relevant to the topic being tutored.  The
LSA uses singular value decomposition to reduce a large Word by Document co-occurrence
matrix to approximately 100-500 dimensions.  LSA capitalizes on the fact that particular words
appear in particular texts (called “documents”).  Each word, sentence, or text ends up being a
weighted vector on the K dimensions.  The “match” (i.e., similarity in meaning, conceptual
relatedness) between two words, sentences, or texts is computed as a geometric cosine (or dot
product) between the two vectors, with values ranging from 0 to 1.  The match between two
language strings can be high even though there are few if any words in common between the two
strings.  LSA goes well beyond simple string matches because the meaning of a language string
is partly determined by the company (other words) that each word keeps.

As mentioned earlier, AutoTutor successfully used LSA as the backbone for representing
computer literacy. The quality of student answers were successfully computed from the
assertions expressed during the student’s turns.  A student with high ability had (a) a high mean
LSA between the assertions and good answer aspects and (b) a low mean LSA match with bad
answers.  LSA can evaluate the quality of the learner’s answers as well graduate student research
assistants in a computer literacy class (Graesser, Wiemer-Hastings, Wiemer-Hastings, Person,
Harter, & TRG, 2000; Wiemer-Hastings, Wiemer-Hastings, Graesser, & TRG, 1999).

LSA does not have the capability of comprehending text at a deep level.  It is essentially a
knowledge-based, statistical pattern matcher.  It does an impressive job evaluating the matches
between student contributions and expected good answers or bad answers.  However, LSA is not
equipped to account for the order of words, syntax, logical expressions, quantification, negations,
rhetorical relations between clauses, and other analytical components of comprehension.  More
traditional symbolic architectures in artificial intelligence and computational linguistics are
needed to perform these analytical processes.  In fact, we are currently developing hybrids
between LSA and symbolic systems in our current versions of AutoTutor (Graesser, VanLehn, et
al., in press).   However, it should be recognized that the current symbolic systems face serious
challenges handling scruffy, conversational discourse, so we would not be surprised if the
analytical mechanisms accommodate a low percentage of user contributions.  LSA is available
when the analytical symbolic processors fail.  Perhaps humans follow a similar processing
trajectory.

Dialog management

Smooth conversation requires dialog management.  There needs to be discourse markers and
other cues that guide the student in the exchange and that can accommodate virtually any input of
the student (Core, Moore, & Zinn, 2000; Freedman, 1999; Moore, 1995; Soller, Linton,
Goodman, & Lesgold, 1999).  A collaborative exchange between AutoTutor and the learner
requires a mutual understanding of the turn-taking process.  In human-to-human conversations,
speakers signal to listeners that they are relinquishing the floor and that it is the listener’s turn to
say something (Clark, 1996; Nofsinger, 1991; Sacks, Schegloff, & Jefferson,  1978). However,
human-to-computer conversations lack many of the subtle signals inherent to human
conversations.  When conversational agents lack turn-taking signals, the learner does not know
when or if the learner is supposed to respond, and is sometimes confused when the tutor
generates particular dialog moves.  These problems have been minimized in AutoTutor after a
systematic analysis of human tutorial dialog, the human-computer interface of AutoTutor, and
rounds of testing.
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Dialog management in AutoTutor has four subcomponents: (1) A Dialog Advancer Network
(called the DAN), (2) a set of fuzzy production rules, (3) the selection of the next good answer
aspect to cover, and (4) the articulation of a selected good answer aspect.  These are the
components that are primarily responsible for making AutoTutor an effective dialog partner so it
is important to describe them in sufficient detail.

Dialog Advancer Network (DAN)

A dialog advancer network (DAN) manages the exchange by specifying appropriate discourse
markers (e.g.,Moving on, Okay), dialog move categories, and frozen expressions within the
tutor’s turn.  It does this in a fashion that is sensitive to the learner’s previous turn.  There are the
following different categories of dialog moves that AutoTutor generates: main question, short
feedback (i.e., positive, neutral, negative), pumps (uh huh, tell me more), prompts (The primary
memories of the CPU are ROM and _____), prompt response (and RAM), hints, assertions
(which is synonymous with “elaboration” in the remainder of this article), corrections, and
summaries.  The DAN is formally an augmented state transition network because the selection of
a dialog move category on tutor turn N+1 is sensitive to a large space of parameters computed
from the dialog history.  The DAN in AutoTutor-1 does a fairly impressive job in managing the
conversation, based on our performance data (Person, Graesser, & TRG).

Figure 2 is the DAN for AutoTutor-1.  AutoTutor generates one or more dialog acts during
turn N+1.  The process begins by determining the primary speech act category in student turn N.
This normally is easy to determine because the vast majority of student turns have only 1 or 2
speech acts.  When there are more than one student speech acts, the most recent speech act is
typically the one that is counted.  AutoTutor then generates one or more dialog acts that are
responsive to the student’s contribution.  If the student produces a frozen expression that requests
the tutor to repeat itself (Could you say that again?), AutoTutor-1 produces a discourse marker
(Once Again) and repeats itself. If the student Asserts something, then AutoTutor-1 gives
evaluative feedback and advances the conversation with another dialog move.

In most turns, AutoTutor first microadapts to the student with short feedback and then
advances the conversation further by selecting one of the substantive dialog moves (prompt, hint,
assertion, correction, summary).  But there are two other linguistic/discourse ingredients that are
needed to make a smooth exchange.  First, there a variety of discourse markers and frozen
expressions that cue the student as to the discourse function of an ensuing dialog move.  The
discourse functions of hints, prompts, assertions, and corrections are quite distinct, but the
student will be confused if the functions are left vague.  Second, the final dialog act in a turn
must make it perfectly clear to the student what to do next.  It is best to end AutoTutor’s turn
with a prompt or question so that the student knows what to do next.  Otherwise, the student will
sit with a blank stare, not knowing who has the floor.
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Figure 2. Dialogue Advancer Network (DAN)

Some example dialogs will illustrate some of the disasters that can occur when the DAN is
absent or flawed.  The current DAN has solved nearly all of AutoTutor’s turn-taking problems in
the useability tests. But our earlier versions were not perfect. The dialog excerpts below were
collected in an alpha test in the early stages of AutoTutor.  There are three parties in these
interactions: AutoTutor, the learner, and a dedicated lab assistant who was immediately available
to answer questions.  It should be noted that there is no lab assistant dedicated to a single student
in beta tests and field tests of AutoTutor.  In Excerpts 1 and 2, the topic is parts and uses of a
computer. In Excerpt 3, AutoTutor is discussing the features of RAM.  AutoTutor’s dialog moves
are labeled in parentheses; the information in brackets refers to the students’ utterances that were
directed to a human lab assistant during alpha testing.

Excerpt 1

1.1 AutoTutor (Prompt): See if you can get this. Computers can be used to analyze data by
finding averages, standard deviations, or performing many other kinds of . . .?

1.2 Student to lab assistant: [Oh, just answer the question?  Um.  So, am I still supposed to
answer that question (pointing to the main topic question that remains on the

monitor)?]
1.3 Student types: i don't know
1.4 AutoTutor (Prompt Response): kinds of statistics.
1.5 Student to lab assistant: [Okay, this is really confusing.  I don't understand what the

question is supposed to be.]
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1.6 Student types: i don't know

Excerpt 2

2.1 AutoTutor (Assertion): Also, a computer has a monitor.
2.2 Student to lab assistant: [I just answer yes or no?]
2.3 Student types: yes

Excerpt 3

3.1 AutoTutor (Assertion): And, the CPU uses RAM as a short-term memory.
3.2 Student to lab assistant: [Should I, like, I can just say how I think he's unintelligible?]
3.3 Student types: i am not sure
3.4 AutoTutor (Neutral Feedback): Uh-huh
3.5 AutoTutor (Assertion): Also, RAM's contents disappear when the computer is turned

off.
3.6 Student types: what?
3.7 AutoTutor (Neutral Feedback): Uh-huh
3.8 AutoTutor (Hint): So, how does the CPU get information from RAM?
3.9 Student types: I am not sure
3.10 AutoTutor (Neutral Feedback): Uh-huh
3.11 AutoTutor (Summary): So, RAM is primary memory storage and is changeable. It is

used by the CPU as short-term memory. The CPU both writes to and reads
from RAM. The contents of RAM disappear when the computer is turned off.

These three excerpts highlight several of AutoTutor’s original conversational deficits. One
glaring deficit involves the students’ uncertainty about when it is their turn to respond to
AutoTutor. Turn-taking is an integral feature of the conversational process. To facilitate the turn-
taking process in human-to-human conversations, speakers signal to listeners that they are
relinquishing the floor, i.e., it is the listener’s turn to say something (Clark,, 1996; Hobbs, 1979;
Nofsinger, 1991; Sacks et al., 1978). However, human-to-computer conversations lack many of
the subtle paralinguistics signals inherent in human conversations.  When conversational agents
like AutoTutor lack turn-taking signals, computer users often do not know when or if they are
supposed to respond.  In conversations with AutoTutor, students were frequently confused after
AutoTutor’s Assertions (equivalent to Elaborations in Figure 2), after Prompt Responses, and
after those Hints presented in declarative mood. They were confused because they did know what
the function of the speech act is.  When Hints were in interrogative mood (question form), they
were not problematic for students.  Most of these problems have been corrected by preceding the
substantive dialog moves with appropriate discourse markers and frozen expressions that signal
their functions.  Sometimes the talking head needed to give gestures to clarify the function of the
discourse move.

It should be noted that the DAN is a departure from more intelligent dialog management
systems that involve dynamic planning (Freeman, 1999; Moore, 1995; Rich & Sidner, 1998).
Such systems perform dynamic planning of dialogue moves on the basis of knowledge states,
goals, and beliefs that the tutor infers about the student and that the tutor believes is in the
common ground.  Unfortunately, the language of learners is extremely vague and underspecified
so the application of these models may have limited value. The primary challenge in discourse
management in tutorial dialog is managing vague assertions of students rather than accurately
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inferring specific knowledge states of learners.  In fact, Graesser et al.’s (1995) in depth analysis
of human tutorial dialog revealed that tutors have only a crude, approximate sense of what
students know.

In a recent analysis, we examined how AutoTutor utilized the DAN while interacting with
students. More specifically, we wanted to document AutoTutor’s DAN pathway choice for each
student turn. Sixty-four students enrolled in a computer literacy course agreed to interact with
AutoTutor in exchange for course credit. AutoTutor covered 24 computer literacy topics during
each of the tutoring sessions and written transcripts were generated for all of the sessions. Three
of the 24 computer literacy topics were randomly selected from each of the 64 transcripts. Thus,
192 mini-conversations were included in the DAN analysis.

The frequency distribution for the most well-traveled pathways is provided in Table 1. All
pathways with frequencies lower than 10 are not included in the table.  We were somewhat
encouraged in that AutoTutor utilized 30 of the 78 legal DAN pathways and that there were no
instances of illegal pathways after student turns.  It is clearly the case, however, that the current
version of AutoTutor is not maximizing the DAN to its full potential and that adjustments need
to be made to break some of AutoTutor’s poor conversational habits. Two common problems
will illustrate this.

Table 1. Frequency Distribution of DAN Pathways Chosen by AutoTutor-1

DAN Pathway                                                                                                         frequency        
Prompt Response → Advancer → Prompt 215
Positive Feedback → Prompt Response → Advancer → Prompt 179
Pump 169
Comprehension Short Response Advancer → Prompt 133
Repeat Short Response Advancer → Advancer     81
Neutral Feedback → Prompt     79
Prompt Response → Advancer → Summary     56
Positive Feedback → Prompt Response → Advancer → Summary     46
Prompt Response → Advancer → Elaboration → Advancer → Summary     37
Neutral Feedback → Hint     32
Positive Feedback → Prompt Response → Advancer → Elaboration →

Advancer → Summary     26
Positive Feedback → Prompt Response → Advancer → Elaboration →

Advancer → Prompt     10
Prompt Response → Advancer → Elaboration → Advancer → Prompt     10
*Total pathways                  1134
*All pathways with frequencies below 10 are not included in the table.
--------------------------------------------------------------------------------------------------------------------

The two most frequently traveled DAN pathways were the Prompt Response →
Advancer → Prompt pathway (215 occurrences) and the Positive Feedback → Prompt Response
→ Advancer → Prompt pathway (179 occurrences). These two pathways alone comprised
roughly 35% of all of the chosen pathways. In addition, 245 of the remaining pathways also
ended in a Prompt. Hence, approximately 56% of the pathways ended with AutoTutor Prompting
the student. This is problematic for two reasons. First, prompting a student at these rates is
undesirable pedagogically. Human tutors usually reserve Prompts for medium to low ability
students who are reluctant to provide any information. By relying on Prompts so often,
AutoTutor is not giving students the opportunity to elaborate their knowledge about the topics.
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Second, frequent prompting thwarts the conversational nature of AutoTutor that we are trying to
promote. Prompts only require one or two word responses from students rather lengthier
contributions that frequently occur in conversations.  We have attempted to fix the Prompt
problem by altering some of the pathways in the DAN and by modifying the conditions that
trigger Prompts.
 AutoTutor also has a problem with some of the short-immediate feedback pathways.
Specifically, AutoTutor never selects the DAN pathways that include three of the short
feedback categories (i.e., positive-neutral, negative-neutral, and negative). It would be
wonderful if AutoTutor chose to ignore these pathways because all of the student
Assertions were high in quality.  Unfortunately, this was not the case. Many of the student
Assertions contained misconceptions and a number of others were only partially correct.
We have addressed the feedback problem by revising some of the dialog management
components discussed below.

Fuzzy production rules

The selection of a dialog move category is sensitive to various parameters that are induced from
the dialog history.  The selection of the next category is determined by a set of 15 fuzzy
production rules (Kosko, 1992). Fuzzy production rules are tuned to (a) the quality of the
student’s assertions in the preceding turn, as computed by LSA, (b) global parameters that refer
to the ability, verbosity, and initiative of the student, and (c) the extent to which the good answer
aspects of the topic had been covered.  For example, consider the following dialog move rules:

(1) IF [student Assertion match with a good answer aspect = HIGH or VERY HIGH]
THEN [select POSITIVE FEEDBACK]

(2) IF [student ability = MEDIUM or HIGH
& Assertion match with good answer aspect = LOW]
THEN [select HINT]

In Rule 1, AutoTutor will provide Positive Feedback (e.g., Right) in response to a high quality
student Assertion.  In Rule 2, AutoTutor will generate a Hint to bring the relatively high ability
student back on track (e.g., What about the size of the programs you need to run?).  The dialog
move generator currently controls the substantive dialog moves: Pump, Hint, Splice, Prompt,
Prompt Response, Assertion, Summary, and five forms of immediate short-feedback (positive,
positive-neutral, neutral, negative-neutral, and negative).

Selection of next good answer aspect (GAA)

As mentioned earlier, an answer to a deep-reasoning question consists of a set of good answer
aspects (A1, A2, … An), all of which need to be covered during the tutorial dialog.  The selection
of the next GAA to cover was determined by the zone of proximal development in AutoTutor-1.
AutoTutor-1 keeps track of the extent to which each aspect (Ai) has been covered as the dialog
evolves for a topic.  The coverage metric varies from 0 to 1 and gets updated as each Assertion is
produced by the tutor or learner.  LSA is used to compute the extent to which the various
Assertions cover the particular aspects associated with a topic.  If some threshold (t) is met or
exceeded, then the aspect Ai is considered covered. AutoTutor-1 selects, as the next aspect to
cover, the aspect that has the highest subthreshold coverage score.  For example, suppose that the
threshold is .70 and the LSA values are .35, .66, .87, .02, and .71 for aspects 1 through 5,
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respectively.  The next GAA to select would be A2 because its .66 LSA coverage value is below
.70 and higher than the other aspects at subthreshold (.35 and .02).  A3 and A5 are above
threshold and therefore regarded as covered.  Therefore, AutoTutor-1 builds on the fringes of
what is known in the discourse space between the student and AutoTutor.  A topic is finished
when all of the GAA’s have LSA coverage values that meet or exceed the threshold t.

AutoTutor-2 was designed to improve the pedagogical quality of the tutor over and above
AutoTutor-1.  AutoTutor-2 incorporated tactics that attempt to get the student rather than the
tutor to articulate the GAA that was selected. Whereas AutoTutor-1 scored aspect (Ai) as
covered if it was expressed by either the tutor or the student, AutoTutor-2 counted only what the
student says when evaluating coverage; so if aspect (Ai) was not expressed by the student, it is
not scored as covered at all.  This forced the student to articulate the explanations in their
entirety, an extreme form of constructivism.  In essence, AutoTutor-2 makes the student do all of
the talking, whereas AutoTutor-1 regarded points as being covered if either party articulated the
information in a shared discourse space.

AutoTutor-2 was also designed to improve conversational smoothness.  AutoTutor-1 could
hop around from GAA to GAA without any attempt to be coherent.  Therefore, AutoTutor-2 had
an algorithm that considered three criteria for generating the next GAA:  the zone of proximal
development (as in AutoTutor-1), discourse coherence, and centrality.  The discourse coherence
criterion attempts to have the next GAA be coherently related to the previous GAA.  That is, the
next aspect (Ai) is selected that is most similar to the previous aspect that was covered.
Centrality is an index of how connected an aspect is to other GAA’s.  AutoTutor-2 selects Ai if it
has a high family resemblance (match) to the remaining uncovered aspects; that is, there will be
an attempt to select an aspect that drags in the content of the remaining aspects to be covered.
Whereas AutoTutor-1 capitalized on the zone of proximal development exclusively, AutoTutor-2
also considered conversational coherence and pivotal ideas when selecting the next good answer
aspect to cover.

Articulation of the next good answer aspect

As discussed above, there are pedagogical advantages to having the student articulate knowledge
(as in AutoTutor-2) rather than having the knowledge be delivered by the tutor (which often
occurs in AutoTutor-1).  Therefore, a good answer aspect (GAA) was considered covered in
AutoTutor-2 only if it is articulated by the student.  There also should be a pedagogical value in
having the knowledge be articulated precisely, formally, and with appropriate symbolic
expressions rather than in the informal language that is typical of conversation (Biber, 1988;
Clark, 1996).  It could be argued that precision, formalization, and symbolization are critical
features of the learning process that partly explain the success of the PACT algebra tutor
(Heffernan & Koedinger, 1998; Koedinger et al., 1997) and the Andes physics tutor (Gertner &
VanLehn, 2000).

There were a variety of ways to get the student to articulate the knowledge in AutoTutor-2.
One method was to have a larger family of hints and prompts associated with any particular
GAA.  Each hint or prompt was designed to elicit a different noun-phrase, prepositional phrase
or clause in the GAA. In essence, the hints and prompts are selected until the missing
constituents have been supplied by the student.  A second method was to have the tutor model
the articulation of the good answer and to persistently stay on a GAA until it was articulated by
the student.  In fact, AutoTutor-2 implemented up to two cycles of “hint-prompt-assertion” when
extracting the constituents of a particular GAA.  That is, a hint was first generated in tutor turn
N, then a prompt in turn N+2, then an assertion in N+4, and then additional cycles until all of the
content was articulated by the student.  This principle of progressive specificity in hinting
mechanisms has been implemented in the ANDES physics tutor and in the PACT algebra tutor,
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but these systems have not yet finished implementing tutorial dialog in natural language.  One
method of getting the student to articulate the content more precisely is to raise the LSA
threshold (t) for coverage of a GAA.  As the threshold approaches 1.0, the student would be
expected to articulate the information in a fashion that more closely matches the exact wording in
the GAA.

Talking head with gestures

Researchers have recently developed computer-generated animated talking heads that have
facial features synchronized with speech and in some cases appropriate gestures (Cassell &
Thorisson, 1999, Cohen & Massaro, 1994; Johnson, Rickel, & Lester, 2000).  Ideally, the
computer controls the eyes, eyebrows, mouth, lips, teeth, tongue, cheekbones, and other parts of
the face in a fashion that is meshed appropriately with the language and emotions of the speaker
Picard, 1997).  A talking head is an important feature of AutoTutor because it concretely grounds
the conversation between the tutor and learner.  A talking head also provides a separate channel
of cues for providing mixed feedback to the learner.  When a learner’s contribution is incorrect
or vague, for example, the speech is often positive and polite whereas the face has a puzzled
expression; this conflicting message that satisfies both pedagogical and politeness constraints
would be preferable to a threatening speech message that says “That’s wrong” or “I’m having
trouble understanding you.”  The nonverbal facial cues are known to be an important form of
backchannel feedback during tutoring (Fox, 1993; Graesser et al., 1995), as well as other
contexts of conversation (Clark, 1996).  Similarly, pitch, pause, duration, amplitude, and
intonation contours are among the intonation cues that signal backchannel feedback, affect, and
emphasis (Brennan & Williams, 1995).

AutoTutor’s dialog moves are delivered by a talking head that synchronizes synthesized
speech, facial expressions, and sometimes gestures.   Microsoft Agent is currently being used as
the talking head with synthesized speech, with parameters of the facial expressions and
intonation being generated by fuzzy production rules (McCauley, Gholson, Hu, Graesser, &
TRG, 1998).  Unfortunately, the grain size of the intonation and facial parameters of Microsoft
Agent is too crude to handle the subtle facial expressions that we desire.  Also, the sequential
constraints of microcomputers make it difficult to handle the synchronization of components in
parallel.  For example, the current version of Microsoft Agent does not allow AutoTutor to point
and to display facial expressions at the same time that it produces synthesized speech.
Therefore, AutoTutor-2 has a version that uses Java 3D plus a neurofuzzy controller to allow
lower-level programming for new behaviors on the fly, after interpolating from a sample of pre-
scripted prototype behaviors during its development.  The animated agents in the MIT Media
Labs (Cassell & Thorisson, 1999) normally require several powerful computers to provide
synchronization of speech, intonation, face, and gesture, whereas AutoTutor-2 is delivered on a
Pentium.

EVALUATIONS OF AUTOTUTOR

AutoTutor has been tested on nearly 200 students in a computer literacy course at the University
of Memphis.  The tutoring was provided as extra credit in the course at a point in time after the
students had allegedly read the relevant chapters and attended a lecture in the course.  So
AutoTutor gave students an opportunity to have additional study of the material.  Our evaluations
of gains in learning and memory were very promising.  AutoTutor provided an effect size
increment of .5 to .6 SD units when compared to control conditions (Graesser, Bautista, et al.,
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2001; Graesser, VanLehn, et al., in press; Link et al., 2000).  This increment in learning was
found for test questions that tap both deep and shallow learning.  These results are on par, if not
better, than the .4 SD effect size that occurs in normal human tutoring (Cohen et al., 1982).

In order to illustrate our methods of assessing learning gains, consider one of the
experiments that we conducted on AutoTutor-1 (Graesser et al., 2001).  AutoTutor-1 was tested
on 36 students in a computer literacy class.  Each student had the three macrotopics (hardware,
operating systems, Internet) assigned to a different condition, using a suitable counterbalancing
scheme: AutoTutor (student uses AutoTutor to study one of the macrotopics), Reread (student re-
reads a chapter associated with a different macrotopic), and no-read Control (student does not re-
study the remaining macrotopic).  A repeated measures design was used so that we could
evaluate Aptitude x Treatment interactions; that is, we could assess whether AutoTutor is
relatively effective for some categories of learners but not others (such as high versus low
performers overall).  On the average, students took 38 minutes to use AutoTutor, which was
somewhat less time than the 45 minutes assigned in the Reread condition.  There were 3 outcome
measures.  There was a sample of testbank questions that were actually used in the computer
literacy course; these were in an N-alternative multiple-choice format .  We discovered that all of
these questions were shallow according to Bloom’s taxonomy of cognitive difficulty (Bloom,
1956). There was a sample of deep multiple choice questions, one question for each of the 36
topics, that tapped causal inferences and reasoning.  And finally, there was a cloze test that had 4
critical words deleted from the ideal answers of each topic; the students filled in these blanks
with answers.  The proportion of correct responses served as the metric of performance.  We also
combined all three outcome measures into a composite score.  There were significant differences
in composite scores among the three conditions, with means of .43, .38, and .36 in the AutoTutor,
Reread, and Control conditions, respectively, F(2, 70) = 6.10, p< .05.  Planned comparisons
showed the following pattern: AutoTutor > Reread = Control.  The effect size of AutoTutor over
Control was .5.  A repeated measures ANOVA was performed that crossed the three conditions
with the three types of subtests.  There was a significant main effect of condition, F(2, 70) =
48.03, p< .05, MSe = .038, a significant main effect to test, F(2, 70) = 3.06, p< .05, MSe = .037,
but no significant interaction.  Aptitude x Treatment interactions were not found in this study but
we remain in the hunt for such interactions.  These results support the conclusion that AutoTutor
had a significant impact on learning gains.

We have evaluated AutoTutor on the conversational smoothness and the pedagogical quality
of its dialog moves in the turn-by-turn tutorial dialog (Person, Graesser, Kreuz et al., in press).
When experts rate the quality of AutoTutor’s dialog moves, the mean ratings are positive (i.e.,
smooth rather than awkward, good rather than bad pedagogical quality), but there clearly is room
to improve in the naturalness and pedagogical effectiveness of its dialog.  In a recent study
performed in our lab, we performed a bystander Turing test on the naturalness of AutoTutor’s
dialog moves.  We randomly selected 144 tutor moves in the tutorial dialogs between students
and AutoTutor-1.  We asked 6 human tutors (from the tutor pool on computer literacy at the
University of Memphis) to fill in what they would say at these 144 points.  So at each of these
144 tutor turns, we had what the human tutor generated and what AutoTutor generated.  We
subsequently tested a group of 36 computer literacy students as to whether they could
discriminate between dialog moves that were generated by a human versus a computer; half in
fact were by human and half were by computer.  We found that these students were unable to
discriminate whether particular dialog moves had been generated by a computer versus a human;
the d’ discrimination scores were actually a bit negative (-.08), but not significantly.  This rather
impressive outcome supports the claim that AutoTutor is a good simulation of human tutors.

AutoTutor has done a surprisingly good job evaluating the quality of the answers that
students type in during the tutorial dialog.  AutoTutor attempts to “comprehend” the student
input by segmenting the contributions into speech acts and matching the student’s contributions
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to good answer aspects and bad answers through LSA (Landauer & Dumais, 1997).  Our research
revealed that AutoTutor is almost as good as an expert in computer literacy in evaluating the
quality of student answers to questions and the quality of contributions in the tutorial dialog
(Graesser et al., 2000; Wiemer-Hastings et al., 1999).  For example, 2 graduate student research
assistants had a correlation of approximately .5 to .6 when grading the quality of student answers,
whereas there is nearly a .5 correlation between AutoTutor’s LSA component and a graduate
student RA.  Some critics may not be impressed with the .5 to .6 interjudge reliability scores, but
it should be noted that the interjudge reliability correlations were approximately .6 to .7 when
Foltz (1996) had expert composition teachers grade essays.  The goal of this research is not to
carefully train a group of experts to optimize their reliability scores (a goal of some research
projects).  Instead, our goal is to obtain a reasonable estimate of the reliability of these scores in a
naturalistic context and to observe how well AutoTutor’s LSA component compares.  We found
that our LSA evaluator of the quality of student contributions was in the arena of graduate
student RA’s, the individuals who normally grade these answers in a university course.

Colleagues frequently ask how students respond emotionally to the talking head of
AutoTutor.  Unfortunately, we have not performed a systematic evaluation of the students’
emotions, but we do have a number of impressions after having run approximately 200 students.
Most students are initially amused by the talking head, but the amusement wears off in a few
minutes.  Some of the students initially have trouble understanding the synthesized speech, but
all of these students adjust within about 5 minutes and can comprehend AutoTutor.  All of the
students have found AutoTutor sufficiently engaging to complete the tutorial sessions. A
minority of the students occasionally become irritated when AutoTutor’s speech acts are
inappropriate or when the student thinks AutoTutor is not listening at a deep enough level.  Of
course, we would expect a diverse array of emotional responses to any new communication
technology.  Additional research is needed to assess the emotional response of students after they
work with AutoTutor for several hours, days, and weeks.   Additional research is also needed to
assess how much of the learning gains can be attributed to the talking head versus the other
language and discourse modules of AutoTutor.   

CLOSING COMMENTS

The success of AutoTutor rests on the fundamental premise that discourse patterns provide an
important class of teaching tactics and strategies.  A computer tutor can be viewed as a dialogue
partner that assists the learner in exploring his or her own knowledge and that exposes the
students to the constraints of the problem and the fragments of the good answer.  In essence,
AutoTutor is a discourse prosthesis that scaffolds the student to new levels of mastery through
conversation.  We believe that one important key to learning lies in getting the student to say the
right thing and the right time.
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Appendix A
An Example Topic in the Curriculum Script for One Question and Answer

\topic_Operating_System
\problem_solution-8 \moderate

\info-8 !Large, !multi-user !computers often work on several jobs !simultaneously.  This is
known
as !concurrent processing. Computers with state-of-the-art !parallel !processing use multiple
CPUs to
process !several jobs simultaneously. However, the typical computer today has only !one CPU.
So here's your !question.
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\question-8 How does the operating system of a typical computer process !several jobs
simultaneously, with only !one CPU?

\ideal-8  The operating system helps the computer to work on several jobs simultaneously by
rapidly switching back and forth between jobs.  By rapidly switch back and forth between jobs,
the operating system takes advantage of idle time on one job by working on another job.
Timesharing computers use concurrent processing whenever multiple users are connected to the
system.  A timesharing computer moves from terminal to terminal, checking for input and
processing each user's data in turn.  Concurrent processing is common in personal computer
operating systems that allow multitasking.  Multitasking allows the computer user to issue a
command that initiates a process in one application while the user works with other
applications.

\pgood-8-1 The operating system helps the computer to work on several jobs simultaneously by
rapidly switching back and forth between jobs.
\passert-8-1 The operating system switches rapidly !back and !forth between !jobs.
\phint-8-1-1 How can the operating system take advantage of !idle !time on the job?
\phintc-8-1-1 The operating system switches between jobs.
\phint-8-1-2 How does the operating system manage different programs?
\phintc-8-1-2 It switches rapidly back and forth.
\phint-8-1-3 Why would the operating system switch rapidly between jobs?
\phintc-8-1-3 The computer can work on several jobs simultaneously.
\pprompt-8-1-1 The operating system switches rapidly between
\ppromptc-8-1-1 Between !jobs.
\ppromptk-8-1-1 jobs.
\pprompt-8-1-2 Instead of being !sequential , the computer works on several jobs
\ppromptc-8-1-2 Several jobs !simultaneously.
\ppromptk-8-1-2 simultaneously, concurrently, at the same time.
\pprompt-8-1-3 Several jobs are run at the same !time by having the operating system
\ppromptc-8-1-3 The operating system !switch between jobs.
\ppromptk-8-1-3 switch, alternate.

\pgood-8-2 When there is idle time on one process or job, the operating system takes advantage
of this
idle time by working on another job.
\passert-8-2 The operating system takes advantage of idle time on !one job by working on
!another job.
\phint-8-2-1 How does the operating system avoid idle time on a job?
\phintc-8-2-1 When there is idle time on one process or job, the operating system works on
another job.
\phint-8-2-2 How can the !operating system take advantage of !idle !time on a job?
\phintc-8-2-2 The operating system works on another job.
\phint-8-2-3 What computer component allows the computer to work on !several jobs at the same
!time?
\phintc-8-2-3 The operating system.
\pprompt-8-2-1 When there is idle time on !one job, the operating system can work on another
\ppromptc-8-2-1 On another !job.
\ppromptk-8-2-1 job.
\pprompt-8-2-2 The operating system can work on !another job when the !first job encounters
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\ppromptc-8-2-2 Encounters !idle !time.
\ppromptk-8-2-2 idle time.
\pprompt-8-2-3 A job faces idle time when there is no progress on any of its
\ppromptc-8-2-3 Any of its !processes.
\ppromptk-8-2-3 processes.

THERE ARE 3 ADDITIONAL GOOD ANSWER ASPECTS

\bad-8-1 The operating system completes one job first and then works on another.
\bbad-8-1 The operating system does one job at a time.
\splice-8-1 The operating system can work on !several jobs at !once.

\bad-8-5 If I give my command and someone else gives their command, then my command will
be
carried out first.
\bbad-8-5 The command entered first is done first.
\splice-8-5 The operating system responds to !both commands !concurrently.

THERE ARE 5 ADDITIONAL BAD ANSWERS

\summary-8  The operating system !rapidly switches !back and !forth between !jobs. When there
is
idle time on !one job, the operating system switches to !another job.  multi !tasking allows the
computer to work concurrently on !one command while processing !other commands of a single
user.
!Timesharing allows several !users to use an operating system !simultaneously.


