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Aperiodic dynamics are known to be essential in the formation of perceptual mecha-
nisms and representations in biological brains. Complex systems concepts are helping us

to understand the properties of nonlinear systems that are fundamental for the emer-
gence of complex spatio-temporal patterns in natural and biological systems. Advances

in neuroscience and computational neurodynamics are applying these concepts of self-
organization to understanding the spatio-temporal patterns observed in biological brains.

In this paper we introduce a neural population model that is capable of replicating the
important aperiodic dynamics observed in biological brains. We use the model to self-

organize cognitive maps in an autonomous agent.
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1. Introduction

The study of nonlinear dynamics has expanded in all areas of science in the past

decades for many reasons. Nonlinear dynamics provide new conceptual and theoreti-

cal tools that allow us to understand and examine complex phenomena that we have

never been able to model before. Nonlinear dynamics seem to show up everywhere,

in physical systems such as electrical circuits, lasers, optical and chemical systems.

Such dynamics are especially prevalent in the biological world, from fractal growth

patterns in biological development and city formation to the self-organizing charac-

teristics of population models, and the importance in regulating healthy biological

rhythms such as the beating of the heart.

Nonlinear systems in critical states have many interesting properties. Phe-

nomenon such as stochastic and chaotic resonance are known which enable such

systems to detect the presence of signals much better in noisy environments than

linear systems are capable of doing.1 Their greatest interest lies, however, in their

fundamental relationship to self-organization and emergence of complex patterns

and behaviors in complex environments. Aperiodic dynamics are both an indica-

tion of and a mechanism for the emergence of such self-organizing properties.
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Insights in nonlinear systems theory are beginning to be applied to understand-

ing the dynamics of the brains, and how such processes produce cognition. 2,3,4

Aperiodic dynamics are know to play a fundamental role in the mechanisms for

the self-organization of meaning in mammalian perceptual systems. 5,6 Neurologi-

cal evidence has shown that perceptual meanings (of recognized smells) are created

through the formation and dissolution of chaotic attractors in the olfactory bulb. We

will discuss this example of the self-organization of a perceptual pattern of mean-

ing. We use this type of organization in aperiodic systems to model the formation

of cognitive maps in the hippocampus of biological organisms.

2. K-Sets: A Neurodynamical Population Model of Brain

Dynamics

2.1. Aperiodic Dynamics in Olfactory Systems

In their influential paper, Skarda and Freeman argued that chaos, as an emergent

property of intrinsically unstable neural masses, is very important to brain dynam-

ics. 5 In experiments carried out on the olfactory system of trained rabbits, Freeman

was able to demonstrate the presence of chaotic dynamics in EEG recordings and

mathematical models. In these experiments, Freeman and associates conditioned

rabbits to recognize smells, and to respond with particular behaviors for particular

smells (e.g. to lick or chew). They performed EEG recordings of the activity in the

olfactory bulb, before and after training for the smells.

The EEG recordings revealed that in fact chaotic dynamics, as shown by the

observed strange attractors, represented the normal state when the animal was

attentive, in the absence of a stimulus. These patterns underwent a dramatic (non-

linear) transition when a familiar stimulus was presented and the animal displayed

recognition of a previously stored memory, through a behavioral response. The pat-

tern of activity changed, very rapidly, in response to the stimulus in both space and

time. The new dynamical pattern was much more regular and ordered, very much

like a limit cycle, though still chaotic of a low dimensional order. The spatial pattern

of this activity represented a well defined structure that was unique for each type of

odor that was perceptually significant to the animal (e.g. conditioned to recognize).

Figure 1 shows an example of such a recorded pattern after recognition of a stimuli

of the EEG signals and the associated contour map. In this figure after recognition,

all of the EEG waves are firing in phase, with a common frequency which Freeman

called the carrier wave. The pattern of recognition is encoded in the heights (ampli-

tude modulations) of the individual areas. The amplitude patterns, though regular,

are not exact limit cycles and exhibit low dimensional chaos. In other words, differ-

ent learned stimuli were stored as a spatio-temporal pattern of neural activity, and

the strange attractor characteristic of the attention state (before recognition) was

replace by a new, more ordered attractor related to the recognition process. Each

(strange) attractor was thus shown to be linked to the behavior the system settles

into when it is under the influence of a particular familiar input odorant.
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Fig. 1. EEG carrier wave patterns (left) and contour map (right) of olfactory cortex activity in

response to a recognized smell stimulus (from Freeman, 1991, p. 80)

Figure 2 shows the effects on the spatial attractor pattern due to learning. Every

time a new odor was learned by the animal, all of the existing attractor patterns

changed. In this figure the contour pattern of activity for sawdust is shown (be-

fore learning the banana odor), for the banana odor, and then again for sawdust.

Notice that the spatial pattern for sawdust no longer resembles its previous pat-

tern. Whenever an odor becomes meaningful in some way, changes in the synaptic

connections between neurons in different parts of the olfactory cortex take place.

Just as in the Hopfield model and other neural networks, these changes are able

to create another attractor, and all existing attractors are modified as a result of

this learning. However, in real brains, the attractors of perceptual meaning are not

simple point attractors, but are specific strange attractors.

Fig. 2. Change in contour maps of olfactory bulb activity with the introduction of a new smell

stimulus (from Freeman, 1991, p. 81)

Freeman suggests that “an act of perception consists of an explosive leap of the

dynamic system from the basin of one (high dimensional, in the attentive state)

chaotic attractor to another (low dimensional state of recognition). 6 These results

suggest that the brain maintains many chaotic attractors, one for each odorant an

animal or human being can discriminate. Freeman and Skarda speculate on many

reasons why these chaotic dynamics may be advantageous for perceptual categoriza-

tion. For one, chaotic activity continually produces novel activity patterns which

can provide a source of flexibility in the individual. But since chaos is a ordered

state, such flexibility is under control. As Kelso remarks, 7 such fluctuations contin-

uously probe the system, allowing it to feel its stability and providing opportunities
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to discover new patterns. Another advantage of chaos is that it allows for very rapid

switching between attractors, which random activity is not able to do. Freeman also

proposed that such patterns are crucial to the development of nerve cell assemblies.

2.2. K-Set Model of Aperiodic Dynamics

The K-set hierarchy, developed by Freeman and associates, 8,2,5,6 is both a model of

neural population dynamics and a description of the architectures used by biological

brains for various functional purposes. The original purpose of the K-set was to

model the dynamics observed in the olfactory perceptual system. The lowest level

of the hierarchy, the K0 set, provides a basic unit that models the dynamics of a local

population of tens of thousands of neurons. The dynamics of the K0 set are described

by a second order ordinary differential equation feeding into an asymmetric sigmoid

function:

ab
d2x(t)

dt2
+ (a + b)

dx(t)

dt
+ x(t) = f(t) (1)

This equation was determined by measuring the electrical responses of isolated

neural populations to stimulation and other conditions. The a and b parameters are

time constants that were determined through such physiological experiments. x(t)

is the pulse density of the modeled neural population, in other words the average

number of neurons that are pulsing in the population at any given point in time.

f(t) is a nonlinear asymmetric sigmoid function describing the influence of incoming

activation, and is given in equation 2.

f(t) = k[1− exp(−
ev−1

k
)] (2)

A K0 unit models the dynamics of an isolated neural population. From the basic

K0 unit can be built up architectures that capture the observed dynamics of increas-

ingly larger functional brain areas. The KI models excitatory-inhibitory feedback

populations. KII models interacting excitatory-inhibitory populations and corre-

spond to organized brain regions such as the olfactory bulb (OB) or the prepyri-

form cortex (PC). KIII combine 3 or more KII populations to model functional

brain areas such as perceptual cortex or hippocampus, and are capable of aperiodic

dynamics of the type observed in these regions to, for example, derive meaning

from perceptual senses. In the simulations presented in this paper, we use a dis-

cretized version of the K-model (described in 9,10) developed for use in large-scale

autonomous agent simulations.

In the original K model, the purpose of the KIII set was to model the chaotic

dynamics observed in rat and rabbit olfactory systems. 11,12,13 KII are capable of

oscillatory behavior, as described above. When three or more oscillating systems

(KII) of different frequencies are connected through positive and negative feedback,

the incommensurate frequencies can result in aperiodic dynamics. The dynamics of

the KIII are produced in just this manner, by connecting three or more KII units of
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differing frequencies together. The KIII set was not only capable of producing time

series similar to those observed in the olfactory systems under varying conditions

of stimulation and arousal, but also of replicating power spectrum distributions

characteristics of biological and natural systems in critical states. 14,15

The power spectrum is a measure of the power of a particular signal (or time

series as for example that obtained from an EEG recording of a biological brain) at

varying frequencies. The typical power spectrum of a rat EEG (see Figure 3, top)

shows a central peak in the 20-80 Hz range, and a 1/fα form of the slope. The

measured slope of the power spectrum varies around α = −2.0. 1/fα type power

spectra are abundant in nature and are characteristic of critical states, between order

and randomness, at which chaotic processes operate. Power spectra of biological

brains have been observed to vary from α = −1.0 to α = −3.0. The atypical part

of the experimental EEG spectra is the central peak, indicating stronger oscillatory

behavior in the γ frequencies. This central peak in the 20-80 Hz range is known as

the γ frequency band, and is associated with cognitive processes in biological brains.

The K-models are capable of replicating the power spectra of biological EEG signals,

as shown in Figure 3, bottom. 9,6

The KIII sets are capable of organizing perceptual categories in the fashion ob-

served in biological perceptual systems. The KIII used as such a pattern classifier is

very robust and compares well with more standard methods of pattern classification.
1

3. Hippocampal Simulation

Meanings, or perceptual categories, seem to be a property of the formation of ape-

riodic attractors in the spatio-temporal activation of neuronal groups. The nor-

mal baseline background state in perceptual systems appears as a high-dimensional

chaotic attractor. When sensory information is received and impinges on the re-

ceptors the dynamics of the neuronal populations change dramatically. When the

sensory information is remembered as being something experienced in the past, the

neuronal dynamics fall into a new chaotic attractor that represents the recognition

of the stimuli. Failure of the perceptual system to recognize the stimuli results in

the attractor remaining in the high-dimensional basal background state. If this un-

recognized stimuli is associated with a pain or pleasure signal, a new attractor will

be formed to capture the meaning of the new stimuli.

The same basic mechanisms of attractor formation in perception are also be-

lieved to be used by brains in other areas to form longer-term memory and be-

havior producing structures. 16,? We use the basic KA-III architecture, described

previously, to simulate the formation of cognitive maps in the hippocampus of an

autonomous agent. One function of the hippocampus appears to be the formation of

long-term representations of the environment, which can be used to navigate to goal

locations, remember where food sources and shelter are located, etc. These environ-

mental representations are usually refered to as cognitive maps. In this experiment,
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Fig. 3. The power spectrum of a rat Olfactory Bulb EEG is simulated with the KA-III model.
The calculated “1/f” slope of the EEG and model is approximately -2.0. Rat OB data from (Kay

04), KA power spectrum from (Harter 2004)

we show how aperiodic attractors can be shaped and associated with locations in

the agents environment, in a way that we speculate is similar to the processes used

by the real hippocampus to form cognitive maps. These attractors have interesting

spatio-termporal properties. For example, attractors for locations that are close to

one another will be more similar to each other than locations further apart. We

will next show how these types of representations can be formed in an autonomous

agent, and how they might be used to perform goal-directed navigation and route

planning tasks.

3.1. Experimental Architecture

In this experiment, we used the Webots virtual environment to simulate a Khepera

robot moving in and learning an environment. 17 Figure 4 (bottom left) shows the

morphology of the Khepera agent. The Khepera robot is a simple agent that contains

8 infra-red and 8 light sensors. The sensors are positioned around the periphery of

the body, with most sensors concentrated in the front of the robot. The agent has two
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independently controlled wheels that allow it to move forward, backward, and turn

left or right in place. The environment for this experiment is shown in figure 4. In the

environment we place 8 light sources, which will be used as salient environmental

locations. The light sources can be thought of as locations of food, or some other

type of positive environmental feature. The light sources are detectable to the agent

at a distance, and the detection range is indicated in Figure 4. In addition to

the 8 salient environmental locations, there are 4 landmarks. The landmarks are

always detectable to the agent, and it knows the distance and direction to each

of the 4 landmarks as part of its sensory information. These landmarks provide a

means of localization for the agent, so that it can judge its relative position in the

environment.

Fig. 4. Agent morphology (bottom left) and environmental setup for hippocampal simulations.

The environment contains landmarks, used as allocentric reference points by the agent, and salient
environmental locations, such as food sources. The agent is only able to detect the presence of a

food source when it is within a particular range of it.

The architecture of the simulated hippocampus is shown in Figure 5. The por-

tions of the architecture that form the cognitive map of the environment are sim-

ulated by a KA-III. These are the CA1, CA2 and CA3 layers, and are based on

biological evidence of the structure of the hippocampus. The CA3 and CA1 lay-

ers each contain an 8x8 array of KA-II units (for a total of 64 units in each CA

region). The CA2 layer has a single KA-II unit. Within the CA3 and CA1 layers,

the KA-II are connected to one another via lateral connections. Each of the four

nearest neighbors are connected to one another (the edges wrap around to techni-

cally form a torous out of the layers). The e1 units are connected to the four closest

neighboring e1’s, and similarly the i1 units are also connected to the four closest
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neighbors.

Fig. 5. Architecture of KA-III hippocampal simulations. The CA1, CA2 and CA3 areas form a

KA-III. CA1 and CA3 are 8x8 matrices of KA-II units. CA2 contains a single KA-II. An example

of the CA3 layer is shown below. Each e1 unit (top sheet) is connected to its four nearest neighbors
as is each i1 unit (bottom sheet). The units at the edges have connections that wrap around, so

technically the sheets form tori. The top sheet of excitatory units form KA-II with the bottom

sheet of inhibitory units by connecting with the unit immediately above/below along with two

other units. We show an example of the KA-II formations in the lower-left and upper-right (only

two examples of the actual 64 KA-II formed are shown in the figure). Hebbian modification occurs

only among lateral connections in CA1 and CA3. Input from the landmarks feeds into an 8x8
matrix of KA-0 units (DG). Projecting connections between the CA1, CA2 and CA3 are formed
by fan-out connectivity, where each unit fans-out and connects with a number of units in the

projecting layer. See text for full description.

There are various projecting connections between the CA layers. For simplicity,

the layers in this experiment have been fully connected to one another, and we

indicate this using bi-directional arrows in Figure 5. When a layer projects to an-

other layer, each of the e1 (or sometimes i1) units projects to multiple units in the
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other layer. We use a fan-out parameter to determine the level of connectivity. For

example, if we have a fan-out of 10 between layers CA1 to CA3, each unit in CA1

is connected to 10 other units in CA3. The projecting connections that fan-out to

other layers are chosen at random. So, in the previous example, the 10 projecting

fan-out connections would have been chosen at random in the target CA3 layer. The

fan-out parameter for projecting connections is chosen so that the layers are fairly

sparsely connected, and reflect to some degree the observed projecting connectivity

in the biological hippocampus.

Orientation beacons are fed into the hippocampal simulation through the DG

region (Figure 5, left). The DG layer contains an 8x8 matrix of KA-0 units. Orienta-

tion signals from the 4 landmarks are fed into the DG units. Each of the 4 landmarks

has 8 units associated with the direction to the landmark, and 8 units associated

with the distance. Directions are broken into 8 cardinal units, North, NorthEast,

East, SouthEast, South, SouthWest, West and NorthWest. Units are sensitive to the

direction of a particular landmark, though we use a graded response with a normal

distribution, instead of a simple winner-takes-all configuration. ? Similarly there are

8 cardinal distance values VeryClose, Close, MediumClose, Medium, MediumFar,

Far, VeryFar, Distant. Again a graded response with normal distribution is applied

to the units. The DG area feeds into the CA3 area.

3.2. Method

Learning is performed in this experiments using Hebbian modification. The lateral

connections between units in the CA1 and CA3 layers are the only ones subjected

to Hebbian modification. All other weights, including KA-II internal weights and

weights projecting between layers, are held constant. All weights are initialized to

small random values within some range. The modification of the lateral connections

in the CA1 and CA3 areas causes the attractor dynamics to be shaped in response

to and by the stimulation from the environmental landmarks. Hebbian modification,

however, is not turned on constantly. Hebbian modification only occurs when the

agent is within the detection range of a environmental location. Proximity to a

salient location causes a type of positive reinforcement signal. Therefore, attractors

are only shaped and affected when the robot is in environmentally salient regions.

We use a simple sensory-motor mechanism to cause wandering and exploration

behavior in the agent. This exploration behavior is not affected by the cognitive

map learning, but we will talk later about how the cognitive maps built by the

agent using aperiodic attractors may be used to perform goal-directed navigation.

The wander behavior is implemented using KA-0 units and is described in. 9

The agent is allowed to roam in the environment at random for 60 minutes.

While moving in the environment, the agent learns and builds a cognitive map. At

the end of this learning period, we examine the attractors that have been formed

to discover their properties.

We use two types of learning in the simulation, Hebbian modification as we
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have indicated and habituation. Hebbian modification only occurs when the robot

is within a certain range of a light source. When the robot is not within proximity to

a light source, no reinforcement signal is produced. During these times habituation

of the stimulus occurs. This has the effect of lessening the response of the simulated

hippocampus to unimportant regions in the environment. 1

The expected effects of this simulation with the two types of learning, Heb-

bian modification and habituation, is to form 8 distinct attractors (one for each

location). The aperiodic attractors will display complex spatio-termporal charac-

teristics. However, they should be identifiable such that when the agent is within

proximity to a particular location, the observed attractor that is generated in the

CA1 layer is unique. We discuss the results of this simulation next.

3.3. Results

Fig. 6. Amplitude Modulation (AM) pattern formation (right) in the CA1 area for the simulation
in response to four test points in proximity to each of the eight environmental locations. (Left top)

shows an example of 4 test points chosen at random in proximity to location E8. (Left bottom) is

an example of a half second of activity of the e1 units in the CA1 layer in response to test point

a at location E8. Amplitudes for each of these 64 time series were calculated simply by using the

standard deviation. These 64 measures of amplitude were the values used to produce the contour

maps that are shown. See text for full description.

We first give examples of the time series produced in the CA regions. Two

broad classes of activity patterns organize themselves as a result of the Hebbian and

habituation weight modifications. The spatial-temporal patterns stay in a relatively
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Fig. 7. Result of cluster analysis on AM vectors. This figure demonstrates that the spatio-
temporal dynamics of the CA1 layer cluster nicely into 8 attractors. The cluster analysis was

performed using the 64 vector of the amplitudes for each of the 32 test cases (4 test points at each
of the 8 locations). The attractors also form higher-level basins that capture, to some extent, the

proximity of the locations experineced in the environment. See text for full description.

high-dimensional background state when the agent is in an uninteresting location.

This pattern changes to a more regular (e.g. cyclic) pattern when the agent is close

to a food containing area. The differences in these patterns come about as a direct

result of Hebbian modifications being contingent on being within a meaningful area.

Evidence of this shift, between high dimensional background state and low di-

mensional recognition state, can be seen in Figures ??. In this figure, we show a

return plot of one of the units from the CA3 area (unit 27) when it is outside of

a food area (left) and when it is within (right). Notice that the dynamics for the

unit are much more cyclic and regular when the agent is in a recognized area. The

patterns of most of the units in the modeled hippocampus show similar transitions

in their patterns from unrecognized to important areas.

Next we look at the amplitude modulation (AM) patterns produced by the

hippocampal simulation. Figure ?? shows examples of the AM patterns formed in

the CA3 hippocampal matrix for 2 different locations within environmental regions

2, 4, 6 and 8 respectively. The AM patterns shown are from the CA3 hippocampal

region. This region has 8x8 units, for a total of 64 time series. We measure the

standard deviation of each of the 64 units for a 50ms time window, and plot the

results as an 8x8 contour map of the deviations of each of the units in the area. The

AM pattern contour plots, therefore, give you an idea of which units are more highly
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stimulated (higher amplitudes in their activity) and which are less so. As Figure ??

shows, the AM patterns are more similar to those produced from locations within

the same environmental region.

As a more complete test of the formation of unique AM patterns, we feed robot

with input from randomly selected locations, within the environmental food areas.

AM patterns were collected for the randomly selected regions and compared to one

another by calculating the euclidian distance between each pattern. This testing

showed that, in fact, the patterns produced within a region are consistently more

similar to one another, than those produced in another environmental region.

4. Discussion

The KA-III hippocampal simulation described here forms distinct AM patterns for

the 8 salient environmental regions. These patterns are aperiodic spatio-temporal

activity in the CA regions. The characteristic activity peaks in the AM patterns are

examples of so called ’place cell’ formation. Here we see high activity among certain

regions correlated with being in a particular environmental location. For example,

looking at the AM pattern for location 8 (Figure ??, right) you notice X peaks of

activity among the units in the region. It is possible to interpret these peaks as

being correlated with environmental locations, and therefore typical examples of

the place cell.

The next step in this research is to begin to understand how such AM patterns

might be used in the service of goal-directed navigation. It is known that if you

measure the onset time of place cells in a biological brain, this time gradually shifts

back in phase as the animal moves through the environment. This phase shift of

the onset of the place cells may be evidence of the formation of navigation planning

in the biological brain. One possible interpretation is that when the animal forms

an intention to travel to a goal location, a sequence of AM patterns cycle through

the hippocampus. This sequence can be interpreted as sequences of locations the

animal intends to visit, from the current one to the next one, etc. in order to reach

the goal. As the animal moves through the environment, its idea of the current

location changes, and thus this whole sequence shifts back in phase in real-time

to represent the next few intended steps the animal is planning to take. For this

type of mechanism to be organized, the AM patterns must not simple form in an

isolated way, but connections between adjacent locations must be incorporated into

the mechanism. If the agent learns which AM patterns are co-located to which

others, it may be possible to set up such a mechanism to produce a goal-directed

planning for navigating in the environment.

5. Conclusion

The self-organization of spatio-temporal patterns in nonlinear systems are essential

to cognitive mechanisms in biological brains. We need to better understand how

such mechanisms operate in order to build better models of cognition and smarter
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autonomous agents. This paper has demonstrated one such self-organizational mech-

anism for the creation of AM patterns in a cognitive map of an agents environment.
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