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ABSTRACT

This report provides an understanding of Zellner’s (1962) seemingly unrelated
regressions (SUR) procedure, a discussion of some of SUR current issues, and an
application of SUR in stratified sampling. A survey of Mexican household meat con-
sumption and expenditures was used in the empirical application. One general model
and several individual models were estimated by the SUR procedure incorporating
sampling weights. Parameter estimates are reported and its standard errors are ap-
proximated by using the bootstrap.
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CHAPTER 1
INTRODUCTION

In 1962, Arnold Zellner presented a method of estimating parameters of a set of
regression equations. Zellner (1962) called his method seemingly unrelated regressions
(SUR) to reflect the fact that each equation is related to one another, even though
they seem to be unrelated. The regression equations seem to be unrelated because
unlike a simultaneous equations model where one or more of the independent variables
in one or more of the equations is itself a dependent variable, in seemingly unrelated
regression none of the variables in the system is simultaneously both independent
variable and dependent variable (Srivastava and Giles, 1987, p. 1). Therefore, even
though none of the variables in the system is simultaneously both independent vari-
able and dependent variable, “[t]here may still be interaction between the individual
equations if the random disturbances associated with at least some of the different
equations are correlated with each other” (Srivastava and Giles, 1987, p. 1). In simple
words, the terminology arises because estimating each equation separately will ignore
possible relationships of the equation errors (Griffiths et al., 1992, p. 549) whereas
estimating each equation into one model will consider possible relationships of the
equation errors even though the equations seem to be unrelated.

Zellner (1962) found that the regression coefficient estimators are at least asymp-
totically more efficient than the least squares equation-by-equation estimators. In
particular, a quite large gain in efficiency can be obtained when independent vari-
ables in different equations are not highly correlated and when error terms in different
equations are highly correlated. Additionally, Zellner (1962) explained a test for the
equality of all regression equation coefficients (also called test for aggregation bias).
His test can be used to determine if aggregated data (macro-data) has an aggrega-

tion bias problem or if disaggregated data (micro-data) can be aggregated without



suffering from aggregation bias.!

Zellner (1962) provided an empirical example to illustrate his SUR method of esti-
mating parameters. This example was later further discussed by Kmenta (1971, pp. 527—
528) and Theil (1971, pp. 295-302). Since Zellner (1962) presented his SUR model,
substantial literature has emerged. For example, let’s consider only the literature
on SUR studied by Zellner. Zellner and Hwang (1962) discuss further properties of
efficient estimators for SUR equations. Zellner (1963) discusses finite sample proper-
ties in estimators for SUR equations. Zellner (1971, pp. 244-246) restudies the error
correlations of the regression equations from a Bayesian point of view. Zellner (1969),
and Zellner and Montmarquette (1971) revisit the aggregation problem.

Literature dealing with SUR with unequal number of observations has also devel-
oped. This topic expands on the main topic discussed in this research. Studies in
this topic have illustrated how to handle a set of regression equations when the data
is time-series, cross-sectional or panel data. In cross-sectional data, there seems to be
more examples of cases when observations from one equation with respect to another
equation are missing. For instance, we can encounter the typical nonresponse due to
participants refusing to answer or we can encounter missing observations due to the
nature of the survey. In the latter case, there might be observations missing because
they were censored? or because people collecting information were time constrained?

or some kind of combination of both.*

'In general, aggregated data is a function of disaggregated data. Aggregation is the process of
going from disaggregated data to aggregated data. Hence, aggregation bias occurs when noise is
gained during the process of aggregation in such a way that any inference made from aggregated

data is biased. Section 2.4.1 provides several examples on how data can be aggregated.
2For instance, Wooldridge’s (2006, p. 610) example presented in Section 3.1 where we know the

value of a family’s wealth up to a certain threshold.
3For example, the design of the ENIGH 2006 survey, which was mentioned in Section 3.3, where

during the week of the interview not all possible consumption items will be purchased by the house-

holds.
4Consider again the case when not all consumption items will be purchased by households. Some

items are not purchased because they are too expensive and the households choose not to buy them,



Other studies dealing with SUR with unequal number of observations discuss
alternative estimators of the variance-covariance matrix of the error term (X), the
conditions under which one estimator of ¥ will perform better than another, and
whether it is relevant to use better estimates of X. In the latter case, it has been
found that better estimates of 3 or £ 7! need not imply better estimates of regression
coefficients. In addition, as it will be discussed in Section 3.3, a feasible GLS estima-
tor of the regression coefficients that ignores the extra observations in estimating X
(but not necessarily in estimating £~ or 3) compares favorably to a feasible GLS
estimator of the regression coefficients that seem to use all extra observations.

Given that SUR have been widely accepted and implemented, and the abundant
literature that has emerged, the general objective of this research is to provide an
understanding of the SUR procedure and to explain some of its current trends. The

specific objectives of this study are:

e explain Zellner’s (1962) SUR procedure and why it is preferred over the least

squares equation-by-equation,

e explain Zellner’s (1962) test for equality of regression coefficients (also called

test for aggregation bias),
e provide an empirical application of a SUR model, and

e explain the relevant findings from this empirical application.

The Mexican household meat consumption was selected as the empirical applica-
tion in this research. In order to familiarize with meat and its world market, Section
1.1 discusses the role meat plays in the agricultural sector, Section 1.2 talks about

the meat world market, and Section 1.3 explains the importance of analyzing meat

but some items are not purchased because households did not have the chance to buy them during
the week of the interview. In the former case, we do not have a measure of the maximum amount
households would have been willing to pay as explained by Pindyck and Rubinfeld (1997, p. 325) in

Section 3.1. In the latter case, the item was simply not recorded because of time constraints.



at the table-cut level. Then, Section 1.4 will expand on understanding Mexican meat
production and consumption. Finally, Section 1.5 will briefly talk about the data

that will be employed in the study.

1.1 Meat and the Agricultural Sector

The importance of agriculture in an economy varies significantly by country. For
example, in 2006, the nominal gross domestic product of the agriculture, forestry,
fishing and hunting sector of the United States was $122 billion (Northeast-Midwest
Institute, based on data from U.S. Department of Commerce, Bureau of Economic
Analysis). However, the total nominal gross domestic product in 2006 was $13.1947
trillion (International Monetary Fund-World Economic Outlook Database). There-
fore, during 2006, in the United States, the agriculture, forestry, fishing and hunting
sector contributed only about 1% of the total nominal gross domestic product (Figure
1.1). On the other hand, in 2005, the total nominal gross domestic product of Mexico
in 2005 was $0.76769 trillion (International Monetary Fund-World Economic Outlook
Database). However, during 2005, in Mexico, the agribusiness sector contributed 5%
of the total nominal gross domestic produduct (The World Bank and International
Monetary Fund, November, 2006) (Figure 1.2).

Meat plays an important role in world trade. According to Dyck and Nelson
(2003), global meat trade is over 24 million tons with a value over $43 billion in 2000,
which is about 10% of total agricultural trade. Additionally, global meat trade is
growing rapidly. From 1990 to 2000, global meat trade grew by aout 6% per year
(Dyck and Nelson, 2003).

Additionally, it is important to mention that globalization has lead to dependence
of one country’s meat consumption on another country’s meat production. For in-
stance, East Asia—defined as Japan, South Korea, and Taiwan—is usually the world’s
largest meat-importing region because the region is densely populated, with moun-
tains and forests that limit the land available for agriculture, making large-scale feed

production relatively expensive (Dyck and Nelson, 2003). Furthermore, the region
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Figure 1.1: U.S. Nominal GDP Contribution by Sector in 2006.

Note: All major sectors are from the North American Industry Classification System. Since data reported by the
Northeast-Midwest Institute excluded the mining and construction sector, the U.S. total nominal GDP reported by
the World Economic Outlook Database of the International Monetary Fund was used instead. Hence, the nominal
GDP share of the mining and construction sectors together is about 7%.

Source: Northeast-Midwest Institute who based its calculations on data from U.S.
Department of Commerce, Bureau of Economic Analysis. URL
http://www.nemw.org/gdpl.htm (Accessed on May 12, 2008). Pie chart computed
by author.

has also relatively high labor costs, and locating large-scale farms and processing
plants is sometimes difficult because of pollution concerns and land costs (Dyck and
Nelson, 2003). On the other hand, the United States, for example, has abundant
grains, meals, grass, forage, a large domestic market, and access to several large

foreign markets (Dyck and Nelson, 2003).
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Source: The World Bank and International Monetary Fund—Mexico: Financial
Assessment Program Update—Technical Note—Financing of the Private Sector,
November 2006, p. 21. URL
http://www.imf.org/external /pubs/ft /scr/2007 /cr07170.pdf (Accessed on May 12,
2008). Pie chart computed by author.



1.2 Mexico in the World Market

This section starts explaining how a country can have a competitive advantage
in producing meat (Section 1.2.1.1). In particular, it briefly discusses key production
inputs such as feed input costs, labor costs and capital costs, and the importance of
capital investments. Then, Section 1.2.1.2 through Section 1.2.3 explain the world
market trends, the relative importance of each meat in the world market and the major
players in the world with respect to production, consumption, imports and exports.
The discussion of Section 1.2.1.2 through Section 1.2.3 was based on the online data
provided by the Production, Supply and Distribution (PSD) of the Economic Research
Service (ERS) of the United States Department of Agriculture (USDA). All the charts
and tables reported in those sections were computed by the author by using such
database. The world total amounts reported by the USDA-ERS-PSD database does
not include all countries in the real world but rather a list of countries which represents
over 90% of real world total amounts. Furthermore, in order for the USDA-ERS-PSD
list of countries to appropriately represent the major players, the list is updated
periodically. The list of countries in the USDA-ERS-PSD database is an efficient
forecasting basis for identifying world trends. Beef and pork quantities are reported
in metric tons (MT) and in carcass weight equivalent (CWE). CWE is the weight of an
animal after slaughter and removal of most internal organs, head, and skin. Poultry
meat quantities are reported in metric tons (MT) and ready to cook equivalent. In
Section 1.2.1.2 through Section 1.2.3, beef includes beef and veal meat while poultry
meat only includes broiler meat (it does not include turkey meat).

Additionally, the reader will notice that the author refers to a world region as
a country. For instance, the European Union (25 countries) will be referred to as
one country. This was done to facilitate the flow of the discussion. It should be
noticed that during the period under consideration (1997-2006) not all 25 European
Union countries were part of the European Union (EU). For example, according
to the Microsoft Encarta Online Encyclopedia (2008), in 1995 Australia, Finland

and Sweden joined the European Union bringing the total number of nations to 15.



Therefore, starting in 1996 the EU was known as EU-15. However, in may 2004, 10
more countries (Cyprus, Czech Republic, Estonia, Hungary, Latvia, Lithuania, Malta,
Poland, Slovakia, and Slovenia) were added, bringing the total number of nations to
25. Then, in January 2007 two more countries were added (Romania and Bulgaria),
bringing the total number of nation to 27. For the period under consideration in
Section 1.2.1.2 through 1.2.3, this study assumed that the EU consisted of 25 countries
since 1996. This implies that those countries that were added to the EU in 2004, if
they appeared in the USDA-ERS-PSD database, were added to the total EU-15 to

compute a new total EU-25.

1.2.1 Production

Before starting any discussion about the leading meat producing countries, it is
more appropriate to explain why some countries may produce more meat than other
countries based on reasons other than the country’s size. Therefore, as explained be-
fore, this section will first discuss meat production competitiveness and then continue
to explain meat production in the world market context. Even though production
competitiveness may be one of the reasons why a country will be a leading exporter,
it should be kept in mind that there are other reason such as consumer preferences

for meat cuts that will also make a leading exporter be a leading importer.

1.2.1.1 Production Competitiveness

The competitive advantage of producing meat in a country depends on its costs
of production. In the world supply chain, the key inputs in producing meat are
feed, labor, and capital. These key inputs have an effect on the production of meat.
Additionally, they are all negatively related with the production of meat. That is, an
increase in any of these costs will negatively impact the production of meat.

For a livestock farmer the cost of feed input depends on the cost of growing,
processing, transporting and storing the feeds. The closer the livestock farmer is to

the feed input, the lower the transportation costs. Countries that have abundant



grassland and feedgrains such as corn, sorghum and oilseed meals such as soymeal
will have lower feed input costs and transportation costs. Lower feed input costs and
transportation costs will benefit the production of meats and depending on demand
conditions they might influence the price of meat to go down and exports to go up.

Lower labor costs either through low wages or economies of scale benefit the pro-
duction of meats. Labor costs are incurred in different phases: farming, slaughtering,
processing and distribution. Labor costs vary across countries depending on the de-
mand of labor and the availability of the workers with the required skills. For example,
a country with a relatively small agricultural sector and high unemployment will tend
to have very low wages in farming and in the livestock industry. Depending on meat
demand conditions, lower labor costs might influence the price of meat to decrease
and exports to increase.

Finally, similar to lower input costs and labor costs, lower capital costs benefit
the production of meat. Capital costs vary in different stages of the production cycle:
livestock farming, meat slaughtering, processing meat, and distributing meat. Capi-
tal costs might also vary within a production stage. For instance, livestock farming
requires financing in different activities: housing, efficient feeding and cleaning sys-
tems, environmental controls, and monitoring systems. Other production stages such
as meat slaughter, processing and distribution require even larger capital investments.

As important as having relatively low capital costs, is having access to financing.
For example, the United States has low feed input costs, relatively high labor costs,
and abundant capital investments. Then, the low U.S. input costs and economies of
scales significantly offset the U.S. relatively high labor costs. Mexico, on the other
hand, has higher feed input costs, low labor costs, but less capital investments than
the United States. As a consequence, the United States is among the leading meat

exporting nations while Mexico is among the leading meat importers.



1.2.1.2  World Market

World meat production increased 28% from 1997 to 2006 (see Table 1.1). Swine
has the largest world production with an average share of 46%. It is followed by poul-
try meat with an average share of 27% and beef with 28%. Swine production is ex-
periencing an increasing tendency. It went from 74,361,000 MT in 1997 to 99,776,000
MT in 2006, which is a 34% increase. For the period 1997-1999 beef production was
greater than poultry meat; however, since 2000 poultry meat production has been
greater than beef. Nonetheless, both meats have an increasing tendency. Poultry
meat production went from 43,216,000 MT in 1997 to 60,090,000 MT in 2006, which
is a 39% increase. Beef went from 49,237,000 MT in 1996 to 53,511,000 MT in 2006,
which is a 9% increase.

The world’s largest beef producing countries are the United States, the European
Union, Brazil, China, Argentina, Australia, Mexico, India, Russia, and Canada (Fig-

ure 1.3). Together these ten countries produce 89% of the total world beef production.
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Figure 1.3: World’s Largest Beef Producing Countries, Average 1997-2006.

Source: USDA-ERS-PSD Online Database, computed by author. Accessed on
March 17, 2007.

The world’s largest pork producing countries are Republic of China, the European

Union, the United States, Brazil, Canada, Russia, Japan, Mexico, Philippines, and

10



Republic of Korea (Figure 1.4). Together these ten countries account for 95% of the

total world pork production.
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Figure 1.4: World’s Largest Pork Producing Countries, Average 1997-2006.

Source: USDA-ERS-PSD Online Database, computed by author. Accessed on
March 17, 2007.

In the world market of poultry meat, the ten largest producing countries are
the United States, Republic of China, the European Union, Brazil, Mexico, Russia,
Japan, Thailand, Canada, and Argentina (Figure 1.5). Together these ten countries
account for 87% of world total poultry meat production.

Notice that Argentina, Australia, and India, who are among the top ten leading
beef producing countries (Figure 1.3), are not among the top ten leading pork produc-
ing countries (Figure 1.4). Similarly, Japan, Philippines, and Korea, who are among
the top ten leading pork producing countries, are not among the top ten leading beef
producing countries (Figure 1.3). Furthermore, comparing Figure 1.3 with Figure
1.5, it can be seen that Australia and Russia in the top ten leading beef producing
countries group are replaced by Japan and Thailand in the top ten leading poultry
meat producing countries group. Similarly, comparing Figure 1.4 with 1.5 Russia,
Philippines, and Korea in the top ten leading pork producing group are replaced by

India, Thailand and Argentina in the top ten leading poultry producing countries
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Figure 1.5: World’s Largest Poultry Meat Producing Countries, Average 1997-2006.

Source: USDA-ERS-PSD Online Database, computed by author. Accessed on
March 17, 2007.

group. However, countries such as the United States, the European Union, Brazil,
China, Mexico and Canada are leading producing countries in the three types of
meats. Therefore, if we consider the combined production of beef, pork, and poultry
meat, on average for the period 1997-2006, China produced 58.682 million MT, EU-
25 36.332 million MT, United States 34.997 million MT, Brazil 16.366 million MT,
Mexico 5.112 million MT, and Canada 3.885 million MT.
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1.2.2  Consumption

World meat consumption increased 27% from 1997 to 2006 (Table I.1). Pork has
the largest world consumption. Beef, swine and poultry meat has a world consump-
tion share of 27%, 46% and 27% respectively. From 1997 to 2006, swine consumption
experienced the largest increase, it went from 74,097,000 MT in 1997 to 98,914,000
MT in 2006 (46% increase). It is followed by poultry meat consumption, which in-
creased from 42,785,000 MT in 1997 to 58,888,000 MT in 2006 (27% increase). Beef,
with the smallest increase (26%), went from 48,275,000 MT in 1997 to 51,509,000 MT
in 2006.

The world’s largest beef consuming countries are the United States, the European
Union, Brazil, China, Russia, Argentina, Mexico, India, Japan and Canada (Figure
1.6). Together these countries account for 88% of total world beef consumption.
Compared to Figure 1.3, Australia which was the sixth largest beef producing country
is not within the ten largest consuming countries; instead, Japan joined the group.
However, the United States, EU-25, Brazil, and China has kept their leading top four
positions with all of them except the United States producing more than consuming.
Similarly, Rusia and Mexico consume more than what they produce; and Argentina,
India, and Canada produce more than what they consume.

With respect to pork consumption, the world largest consuming countries are
China, the European Union, the United States, Japan, Russia, Brazil, Mexico, Ko-
rea, Philippines, and Canada (Figure 1.7). Comparing the largest producing countries
(Figure 1.4) with the largest consuming countries (Figure 1.7), we observe the coun-
tries are the same but only China, EU-25, and the United States have kept their
leading top three positions with all of them producing more than what they consume.
Similarly, Japan, Russia, Mexico, Korea, and Philippines consume more than what
they produce; and Brazil and Canada produce more than what they consume.

Finally, the world’s largest consuming countries of poultry meat are the United
States, China, European Union, Brazil, Mexico, Japan, Russia, India, Canada, and

Argentina (Figure 1.8). Compared to Figure 1.5, Thailand which was the eighth
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Figure 1.6: World’s Largest Beef Consuming Countries, Average 1997-2006.

Source: USDA-ERS-PSD Online Database, computed by author. Accessed on
March 17, 2007.

largest poultry meat producing country is not within the ten largest consuming coun-
tries; instead, Russia joined the group. However, the United States, China, EU-25,
Brazil, and Mexico kept their top five leading positions with the United States, EU-
25, and Brazil producing more poultry meat than what they consume; and China
and Mexico consuming more than what they produce. Similarly, Japan and Canada
consume more than what they produce; and India and Argentina slightly producing
more than what they consume.

Additionally, notice that Argentina and India, who are among the top ten lead-
ing beef consuming countries (Figure 1.6), are not among the top ten leading pork
consuming countries (Figure 1.7). Similarly, Korea and Philippines, who are among
the top ten leading pork consuming countries (Figure 1.7), are not among the top
ten leading beef consuming countries (Figure 1.6). Furthermore, all countries who
are the top ten leading beef consuming countries group (Figure 1.6) are also the top
ten leading poultry meat consuming countries group (Figure 1.8). Finally, countries
such as the United States, EU-25, Brazil, China, Russia, Mexico, Japan, and Canada

are leading consuming countries in the three types of meat. Therefore, if we consider
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Figure 1.7: World’s Largest Pork Consuming Countries, Average 1997-2006.

Source: USDA-ERS-PSD Online Database, computed by author. Accessed on
March 17, 2007.

the combined consumption of beef, pork, and poultry meat, on average for the period
1997-2006, China consumed 58.464 million MT, EU-25 34.668 million MT, United
States 32.943 million MT, Brazil 13.558 million MT, Russia 6.494 million MT, Mex-
ico 5.971 million MT, Japan 5.504 million MT, and Canada 2.929 million MT.
Finally, comparing the combined production with the combined consumption of
beef, pork, and poultry meat, on average for the period 1997-2006, Mexico is a net
meat consumer with excess consumption of 0.859 million MT while Brazil, United
States, EU-25, Canada, and China are net meat producers with excess production of
2.808, 2.054, 1.664, 0.956, and 0.218 million MT respectively. Therefore, Mexico is a

very important market for all net meat producers.
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1.2.3 Imports and Exports

World meat exports increased 50% from 1997 to 2006 (Table 1.1). Beef has the
largest amount exported. Beef, swine and poultry meat has a world export share of
44%, 18%, and 38% respectively. From 1997 to 2006, swine exports experienced the
largest increase, going from 1,620,000 MT in 1997 to 3,800,000 MT in 2006 (135%
increase). It is followed by poultry meat exports, which increased from 4,059,000 MT
in 1997 to 6,470,000 MT in 2006 (59% increase). Beef, with the smallest increase
(21%), went from 5,795,000 MT in 1997 to 6,996,000 MT in 2006.

In general, world meat imports experience the same trend as exports. World meat
imports increased 29% from 1997 to 2006 (Table I.1). Beef still has the largest amount
exported. Beef, swine and poultry meat has a world export share of 39%, 27%, and
33% respectively. From 1997 to 2006, swine imports experienced the largest increase,
as they went from 2,587,000 MT in 1997 to 3,487,000 MT in 2006 (64% increase). It
is followed by poultry meat imports, which increased from 3,597,000 MT in 1997 to
5,168,000 MT in 2006 (44% increase). Beef imports in 2006 remained at almost the
same level that in 1997, 5,007,000 MT.

According to the USDA-ERS-PSD online database, the ten largest importers of
beef are the United States (28%), Japan (17%), Russia (15%), European Union (9%),
Mexico (7%), Korea (5%), Canada (5%), Egypt (4%), Philippines (2%), and Taiwan
(2%) (Figure 1.9). The largest exporters of beef are Australia (22%), Brazil (16%),
United States (14%), the European Union (9%), New Zealand (8%), Canada (8%),
Argentina (7%), India (7%), Uruguay (5%), and Ukraine (2%) (Figure 1.10). Com-
paring these last two figures, notice that countries such as the United States, EU-25,
and Canada are both among the top ten leading beef exporters and beef importers.
However, the United States is a net beef importer while EU-25 and Canada are net
beef exporters.

Analyzing pork, the ten largest importing countries are Japan (31%), Russia
(19%), United States (12%), Mexico (9%), Hong Kong (8%), Korea (5%), China (4%),
Romania (3%), Canada (3%), Australia (1%), and the European Union (1%) (Figure
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Figure 1.9: World Largest Beef Importing Countries, Average 1997-2006.

Source: USDA-ERS-PSD Online Database, computed by author. Accessed on
March 17, 2007.

1.11). The ten largest pork exporting countries are the United States (50%), Canada
(18%), Brazil (15%), China (12%), Mexico (2%), Chile (2%), Australia (2%), EU
(2%), Korea (2%), and Russia (1%) (Figure 1.12). In these last two figures, countries
such as Russia, United States, Mexico, Korea, China, Canada, Australia and EU-25
are both among the top ten leading pork importers and pork exporters. However,
the United States, Canda, and China are net pork exporters while Russia, Mexico,
Korea, Australia, and EU-25 are net pork importers.

Finally, analyzing chicken, the ten largest importing countries are Russia (27%),
Japan (16%), China (9%), Saudi Arabia (9%), European Union (9%), Mexico (6%),
Hong Kong (5%), United Arab Emirates (3%), South Africa (3%), and Ukraine (2%)
(Figure 1.13). In the exports side, these countries are Uited States (41.1%), Brazil,
(28.1%) European Union (14.5%), China (6.9%), Thailand (5.7%), Canada (1.3%),
Argentina (0.6%), United Arab Emirates (0.4%), Saudi Arabia (0.3%), and Kuwait
(0.2%) (Figure 1.14). Comparing these last two figures, countries such as China,
Saudi Arabia, EU-25, and the United Arab Emirates are both among the top ten

leading poultry meat importers and poultry meat exporters. However, EU-25 is a net
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Figure 1.10: World’s Largest Beef Exporting Countries, Average 1997-2006.

Source: USDA-ERS-PSD Online Database, computed by author. Accessed on
March 17, 2007.

poultry meat exporter while China, Saudi Arabia, and the United Arab Emirates are

net poultry meat importers.
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Figure 1.11: World’s Largest Pork Importing Countries, Average 1997-2006.

Source: USDA-ERS-PSD Online Database, computed by author. Accessed on
March 17, 2007.
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Figure 1.14: World’s Largest Poultry Meat Exporting Countries, Average 1997-2006.

Source: USDA-ERS-PSD Online Database, computed by author. Accessed on
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1.3 Analyzing Meat at the Table-Cut Level

Growing populations, rising incomes, and increased urbanization have contributed
to an increased in global demand for meat. Countries with good resources in the
production of meat such as abundant feed grains and grassland will tend to export
meat and countries with good resources in the production of other goods but scare
resources in the production of meat will import meat. However, in Section 1.2.3 we
have seen that many countries are both meat importers are exporters, this finding
points to the importance of trade in the form of cuts.

As a matter of fact, most meat trade is in the form of cuts (Dyck and Nelson, 2003).
Demand for the parts varies considerably across countries, depending on consumer
tastes and preferences, whether cuts can be substituted for one another, and other
factors. The largest meat producing companies will look across international markets
for the consumers with the highest willingness to pay. The ability to match meat cuts
with the highest paying markets will allow firms to increase the aggregate value of
each animal. Therefore, any study on meat demand should attempt to analyze meat

at the table-cut level to better understand the demand for meat.

1.4 Mexican Meat Production and Consumption

Meat is produced in Mexico in all its national territory despite the different envi-
ronmental and climatic regions of the country (Figure 1.15). In 1999, the ten largest
meat producing states in Mexico in decreasing order were Jalisco, Veracruz, Guanaju-
ato, Puebla, Sonora, México, Yucatan, Querétaro, Durango, Chiapas and Michoacan
(Table 1.2). However, in 2002 the ten largest producing states became Jalisco, Ve-
racruz, Sonora, Puebla, Guanajuato, Querétaro, Durango, México, Yucatan, Nuevo
Leén and Coahuila (Table 1.2).

Meat is produced with different technologies. The technology employed ranges
from high technology and integrated industries to very basic techniques used by lower
class farmers. For firms with high technology, meat production represents a form of

wealth accumulation for its owners. On the other hand, for people with very basic
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Figure 1.15: Geographical Distribution of Mexican Meat Production in 1999.
Source: Marin et al. (2000, p. 17).

techniques, meat production represents an activity that allows farmers for subsistence.
According to Marin et al. (2000), Mexican infrastructure of animal slaughter fa-
cilities is classified in three groups according to the technology being implemented.
The first group is formed by those facilities that have an up-to-date technology. In
this group the quality and sanitary standards are inspected by a government agency,
a Federal Type Inspection (“Tipo Inspeccion Federal, TIP”). The second group is
formed by an old-dated technology, which is the most traditional in Mexico. This
group has several types of sanitary controls and the quality and sanitary inspections
are performed by the Health Department (“Secretaria de Salud”). Finally, the last
group is composed by the few facilities that perform an ancestral type of slaugh-
ter corresponding the ancestral period. In 1999, there were a total of 87 facilities
of the Federal Type Inspection group (first group): 43 corresponding to the slaugh-
ter of cows, 31 for the slaughter of pigs, and 13 for chicken. Figure 1.16 shows the
geographical distribution of the Federal Type Inspection Group by meat.
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Figure 1.16: Geographical Distribution of the Federal Type Inspection Slaughter
Facilities in Mexico in 1999.

Source: Marin et al. (2000, p. 20).

Marin et al. (2000) explain that in the 1990s Mexican meat production was affected
by different factors. Climatic changes in the first half of the 1990s combined with
droughts lead to a deficit of forage crops. Poor feeding lead to lower quality of
slaughter cattle and affected the next generation of feeder cattle. A macroeconomic
crisis led to high interest rates, exchange rate depreciation, and high prices of inputs—
grains and forage crops. At the microeconomic level, the consumers’ purchasing power
decreased during this period.

According to Marin et al. (2000), negative factors such as natural phenomenon
(climatic changes, droughts, etc.) and economic conditions (peso devaluations, in-
terest rate changes, etc.) do not immediately affect the production of beef. This is
because of the planning process in the production of beef and the biological cycles
of the different breeds of cattle. According to Marin et al. (2000), negative factors

affecting the production of beef in Mexico will have an effect on beef production up
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to three to four years later. In the case of pork, these negative factors will have an
effect on pork production approximately one year later. In the case of chicken the
impact of negative factors is observed immediately, it could take only from two to
four months to observe the negative effect.

On the other hand, the modification of the agricultural legislation in 1992, the
beginning of NAFTA in 1994, and the implementation of the “Alianza para el Campo”
program were all oriented to motivate meat production.

The main meats produced in Mexico are beef, pork, and chicken. According to
Marin et al. (2000) during the 1970s, beef had the greatest production in Mexico.
During the first half of the 1980s, pork had the greatest production, but it was
surpass by the beef production in the second half. However, since 1997 chicken has

experienced the greatest production (Figure 1.17).

1990 1999 2002
Gout Gout Gout
1% 1%

Lamb
19

Lamb
19

Chicken
28%

Beef

42% Chicken

41% Chicken

44%

Pork Pork
28% 24%

23%

Figure 1.17: Mexican Meat Production by Type.

Source: STACON-SIAP-SAGARPA, computed by author. Accessed on March 16,
2007.
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1.5 Data

As explained in the beginning of this chapter, the general objective of this research
is to provide an understanding of the SUR procedure. Additionally, one of the specific
objectives is to provide an empirical application of a SUR model. As an empirical
application, this research will study the Mexican meat consumption. In order to study
the Mexican meat consumption, this study will employ Mexican data on household
income and expenditures. As it will be explained in Chapter IV, this data is published
in Encuesta Nacional de Ingresos y Gastos de los Hogares (ENIGH). This is nation-
wide survey published by a Mexican governmental institution.

ENIGH collects data by performing direct interviews through a stratified sam-
pling method. Two instruments are used to collect the data: a questionnaire and
a journal. The questionnaire is designed to collect the data concerning the house
infrastructure, the members and their household identification, and members’ socio-
demographic characteristics. In addition, for household members older than 12 years
old, the questionnaire will capture occupational activities and related characteristics
as well as income and expenditures. On the other hand, the journal is designed to
collect at-home and away-from-home expenditures on food, drinks, cigarettes and
public transportation. However, food expenditures are recorded for the household
unit only. ENIGH also contains information about household incomes, and quanti-
ties and prices of goods purchase. However, ENIGH data on food, drinks, cigarettes
and public transportation is recorded only when the household made a purchase.
Since interviewers collect information from households during the period of one week,
those meat cuts that a household did not buy during the week of the interview will
not be recorded. Chapter IV will describe what type of information ENIGH contains

in more detail.
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CHAPTER II
SEEMINGLY UNRELATED REGRESSIONS

Arnold Zellner (1962) derived a method of estimating parameters of a set of re-
gression equations. His method is now widely used and has been generally referred
as seemingly unrelated regressions (SUR). The terminology arises because estimat-
ing each equation separately will ignore possible relationships of the equations errors
(Griffiths et al., 1992, p. 549).

Zellner (1962) found that the regression coefficient estimators are at least asymp-
totically more efficient than the least squares equation-by-equation estimators. Ad-
ditionally, Zellner (1962) showed that a quite large gain in efficiency can be obtained
when independent variables in different equations are not highly correlated and when
error terms in different equations are highly correlated. Finally, Zellner described
and showed how to apply a test for the equality of all regression equation coefficients.
The test is referred as a test for aggregation bias. This test is used to determine
if aggregated data (macro-data) has an aggregation bias problem or if data at the

micro-level can be aggregated without suffering from aggregation bias.

2.1 Estimation Procedure

Suppose we are interested in estimating a system of M equations. Each equation
contains K; regression coefficients (parameters), for a total of K = ZEVI: K;. Addition-
ally, the data sample for the dependent and independent variables lgfl each equation
consist of T" observations.

Let the i equation be given by

where y; is a (T" x 1) vector of observations on the " dependent variable, X; is a
(T x K;) matrix of observations on the K; independent variables, 3; is a (K; x 1)

vector of regression coefficients (also called vector of parameters), and u; is a (7' x 1)
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vector of random errors (also called vector of disturbances).! We assume X is fixed
(i.e., deterministic or non-stochastic) with rank(X;) = K; (i.e., X; is of full column
rank), E(u;) = 0, and limy_o (£X]X;) = Quj, 4,5 = 1,2, ..., M where Qyj, i # j, is
a (K; x K;) matrix with finite elements, and Q;;, ¢ = j, is non-singular.? The latter
assumption means X; and X; depend on 7". That is, their sizes change as T" changes.

Writing all M equations in equation (2.1) into one model gives

Y1 X; 0 - 0 B1 u;
0 X, --- 0 u
Yo _ 2 B2 n 2 (2‘2)
| Ym _0 o .- XM_ _/BM_ | U |
or
y = X B + u (2.3)

(MTx1)  (MTxK) (Kx1) (MTx1) '
We assume the errors from different equations in the same “time period” are correlated

but the errors from two different equations in different time periods are uncorrelated.?

'We could also write equation (2.1) as

ﬂil

Bi2
v, :<Xz~ X, - X, ) ow o, i=1,2,..., M;
(T'x1) ! ? Ko ) (rxr) : (T'x1)

ﬂiKl‘

(Kix1)
or equivalently, y; = 811 X1 + BiaXio + -+ + Bi; Xix, + w4, 0 = 1,2, ..., M.

If an intercept is desired, add the (7" x 1) vector X;o = 17 whose elements are 1, to the X; matrix
and the parameter 3; to the 3, vector increasing their dimensions to (7' x (K;+1)) and ((K;+1)x 1)
respectively. Alternatively, we could treat X;; as 17 and keep in mind there are K; — 1 independent

variables in the X; matrix.
2Srivastava and Giles (1987, p. 27) explain that these last two assumptions rule out certain data

features, such as the presence of a trend variable.
3The use of t = 1,2,...,7 does not necessarily imply time series analysis. It can be applied

to cross-sectional data, time series and cross-sectional, and to regression equations in which each
equation refers to a particular classification category and the observations refer to different points

in space. See Zellner (1962) for a specific example in each of these cases.
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That is,

Oij if t=s

Elui(t)u;(s)] { 0 i 1o

For instance,

w;(1)
Ewuj] = E (> <uj(1) ui(2) - uj(T)>
w;i(T)
Eluy(Du; (1] Elus(1)u;(2)] Eluy(1)u;(T))
_ | Blu@)y(D)] - Blui(2)u;(2)] Eluy(2)u;(T)]
Eluy(T)u; (V)] Eluy(T)u;(2)] Eluy(T)u; (T)]
oij 0 0
0 Oij 0
= . = oi;lr,
0O O Oij

where Ir is the identity matrix of dimension (7" x T').
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Then, the variance-covariance matrix for the disturbance vector is:

(T 7 )
u;
’ Uz
W = var(u) = E{(u—E(u))(u—E(u))'} =FE . u, u, - ul,
L um . J
E[ulu’l] E[ulu’z] cee E[ulu’M} O'HIT O'121T s JIMIT
B E[u2u’1] E[UQUQ] cee E[UQUIAA B UglIT O'QQIT e O'QMIT
i E[uMuﬁ] E[uMu’Q] s E[uMu’M] i i UMlIT O'MQIT e UMMIT
Oin 012 -+ O1M
O' O' ... O'
- |7 T e =%, (2.4)
i OmM1 Om2 *° OMM i

where ® (called the Kronecker product) indicates that each element of ¥ is multiplied
by an identity matrix of dimension (7" x T).
Given the above variance-covariance matrix for the error term in equation (2.3),

the appropriate procedure to estimate 3 is the generalized least squares,*

B=XW'X)'XWly, (2.5)

where W™ is such that there exists a nonsingular (M7T x MT) matrix H such that
HWH' =1,,7.

4The purpose of generalized least squares estimation is to estimate 3 in the most efficient possible
manner by accounting for the information provided by the knowledge of W = Euu/] = ¥, ®
I7. The best linear unbiased parameter estimates are obtained if it is possible to transform the
original data so that the variance-covariance matrix of the transformed errors equals Ip;7. Once the
data is transformed, application of the Gauss-Markov theorem will provide the best linear unbiased
parameter estimates. Assuming that W is a positive definite matrix guarantees the existence of a
nonsingular square matrix H such that HWH’ = I,,;1. Hence, the transformation of the data is also
guaranteed. For more information about generalized least squares estimation see Aitken (1934-1935)

and Telser (1964).
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We pre-multiply both sides of equation (2.3) by matrix Hy/rxar) to obtain:
Hy = HX3 + Hu

or

y* — X*_ ﬁ _"_ u* .
(MTx1)  (MTxK) (gx1) (MTx1)

The system now satisfies the usual properties of the least squares model E[Hu| =
HE[u] = 0 and var(Hu) = E{[Hu — E(Hu)|[Hu — F(Hu)]'} = E{Huu'H'} =
HWH' = 17.

Now, the inverse of W in equation (2.4) is denoted by:

O'HIT O.IQIT . O.IMIT
. ;) O.2IIT (722IT . O.ZMIT
W™ = war (u) =
UMIIT O'M2IT s O'MMIT
ol g2 ... M
o2l g2 ... g2M B
= . _ _ RIp =% @1Ir. (2.6)
oML M2 MM
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B,
Hence, 3 = P> is given by:
(Kx1) :
[ Bu |
- - - -
Xll 0 0 UllIT UIQIT UlMIT
B 0 XIQ 0 0'211T 0'22IT O'QMIT
\ 0O O Xy oM, oM21, oMMT,.,
- TN -1 . B
X; 0 0 X, 0 0
y 0 X, 0 0 X, 0
0O O Xu ) o o --- X
UlllT 012IT UlMIT Y1
o 0211T U22IT UzMIT yo
UMlIT O.MQIT UMMIT Yu
- 1 -1
oIXIX,  o2X(Xy, oo oMXI Xy
0'21X/2X1 0'22X/2X2 tee O'2MX/2X]W
I oMIX) X, oM2X) Xy oo oMMX Xy 1 &xi)
ST -
;Ullxllyz'
ZM N
o XLy,
x 57X (2.7)
Mo
> o Xy
L =1 4 (Kx1)

and is the best linear unbiased estimator.
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Now, the variance-covariance matrix of the estimator 3 is:

var(B)

var|(X*'X*) 1 X*y*] =

lX*/E {[y* o

(X XA X var(y
E(y)lly" — E(y

*>X* (X*/X*)fl
*)]/} X*(X*/X*)—l

X*/X*) 1X*/E {[y* _ X*ﬁ] [y* o X*IB]/} X*(X*/X*)—l

X*IX* IX*IE {u* */} X* X*/X*)

(
(
( )
(X*X")”
( )
(
(

E(u)]’} X* (X*/X*)fl

XYEA{[u” — E(u)[u” —
X X)X par(u*) X (X X))~
X*X*) "' = (X'HHX) !
X/w—lx)—l
X, 0 0 oy oIy
0 X, 0 oy o*1p
0O 0 X'y oMy oMy
L L
X; 0 0
0 X, 0
0O O X
0'11X11X1 0'12XI1X2 O'lMXIIXM
oIXEX, 02X, X, o?MXL Xy,
oMIXh X, oM2X) X, oMMX! Xy

1 —_ (X*/X*)—lx*lIMT

X* (X*/X*)—l

(2.8)

(KxK)

Nonetheless, the generalized least squares estimators are impossible to use when

W is unknown. Zellner (1962) proposed to replace the unknown o;; with the estimate®

ﬁéﬁj - (Yi

- XiBi)/(YJ

X,

i)

Sij =

T—-K,

T-K;

When the system of M equations contains the same number of parameters (i.e., K

for 4,5 =1,2,..

LM, (2.9)

— Ky =

.. = Kyr), the denominator (T' — K;) is not unambiguously defined. When this is not the case,

only T can be used in the denominator and s;; will still be consistent (Griffiths et al., 1992, p. 551).
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where 3, = (X!X;)"1 X y; is the least-squares estimator.® Consequently, W = X .®Ir
in equation (2.4) and W~ = 3. '®I7 in equation (2.6) will be estimated respectively

sulr sy - sivlr S11 S12  S1Mm
A soily  solp - soyIp 591 S22 Som
W= . . =| 7 7 T | ek =S80l
syilr syl -+ symlr SM1 SmM2 c SMM
(2.10)
and
snIT 512IT . SlMIT sl g2 .. M
. 321IT 822IT . SZMIT 21§22 ... 2M B
W = . . . = . . . ® IT = Sc ®IT’
8M1IT 8M2IT . SMMIT M1 M2 (MM
(2.11)

where equation (2.11) is obtained by inversion of equation (2.10).7

Therefore, we can estimate B in equation (2.7) and var(8) in equation (2.8) re-

®Note that when i = j, the estimate s;; (also known as s?) is the same estimate of o;; (also

known as ¢02) used under least-squares estimation for equation i.
"The replacement of 3. with S. leads in the literature to one of the many feasible generalized

least squares estimators (FGLS). This particular replacement is called “restricted residuals” and it
leads in literature to seemingly unrelated restricted residuals (SURR).

Srivastava and Giles (1987, p. 13) explain another way to obtain the s;;’s. The approach is called
“unrestricted residuals” because restrictions on the coefficients of the SUR model which distinguish
it from the multivariate regression model are ignored. The unrestricted-residual approach leads in

literature to seemingly unrelated unrestricted residuals (SUUR).
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spectively by

é _ (Xlwflx)le/Wfly

- u ;
_ - -1 SliX/ .
SIXIX, sPXIX, - sTMXI Xy Xy
M .
SIXOX, s2XX, - $2MXEX )y, > s Xhyi
= . _ _ i=1 (2.12)
M1/ M2xc! ... MMy M :
L =1 - (Kx1)
and
- q-1
SHX/1X1 812X/1X2 te SIMXIIXM
2 s21 XX s2?2X! Xy - $2MXIX
var(8) = = R o . (2.13)
| SM1X/]\/[X1 SMQX/]V[XQ s SMMXI]V[XM i (RXR’)

2.1.1 Special Cases

The first special case, explained by Zellner (1962), occurs when Efuu}] = oylr =
O(rx7) for i # j. In this case, the generalized least squares estimator for the model
in equation (2.2) or (2.3) will be identical to applying least-squares to each equation.
In addition, the generalized least squares variances of the estimators will reduce to

the least-squares variances of the estimators. That is, if

oulr  oplr -+ oy onlr 0 e 0
W — onlr ol -+ ouylr _ 0 oolp - 0
i ovily onplr - ommlr | i 0 0 - ouumlr |
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and

O'HIT 0.12IT . O,lMIT O'HIT
w-1 oIy oIy - M1, 0
O’MII 0M2IT O'MMIT 0
- . -
Ir 0 0
1
_ 0 LIr 0
1
L 0 0 omm L A
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then

X, 0 -~ 0 alr 0 - 0
5 - 0 X, 0 0 I 0
(Kx1) :
/ 1
L L 0 0 X.]\/[ L 0 0 MM T
- - -1 r -
X; O 0 X’1 0 0
0 X, 0 0 X’2 0
>< .
0 0 Xy ) 0 0 X’M
# T 0 0 y:
1
8 0 lr 0 Y2
1
L 0 O OMM IT _ L yM _
- - -1 r -
O'LHXQXI 0 s 0 #X’lyl
_ 0 O_—;X/ZXQ e 0 O'LQQXIQy2
1 / 1 /
L 0 0 UIVIJVIXMXM . L UM]WXMyM .

(X3X4) "' Xl yy
(X5X0) "' X0y

| (X X)Xy |
= (X'X)" X'y =24. (2.14)

~ ~

Then, since var(8) = E{[8 — E(B)][B - E(B)]'} = E{[8 - BB - A'} and in
this case B8 = B = (X'’X)"' X'y = (X’X)"'X/(XB 4 u) = 8+ (X’X)"'X'u then
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~

B — B = (X’X)"'X'u. Therefore,

var(B) = E{[(X'X)"'X'u)[(X'X)"'X'u]'} = E{(X'X)"'X'uu'X(X'X)""}
= (X'X)"'X'E(un)X(X'X)™*
= (X'X)"'X'E{[u - E(u)][u — E(u)]}X(X'X)™!
= (X'X)"'X'WX(X'X)™

(X! X,)~'X] 0 . 0
0 (X, X)X, - 0
0 0 (X X)X,
O'HIT 0 0
0 O'QQIT 0
X
0 0 ovmlr
X (X)Xy) ! 0 0
0 Xy (X5X,) ™! 0
X
0'11(X/1X1)71 0 0
0 O'QQ(X,ZXQ)_I 0
0 0 O'MM(X/]MXM)il
var(B,) 0 0
0 var(3 e 0
= . il , , , (2.15)
0 0 <o war(Byy) 1 &xi)

where the diagonal blocks are the least-squares variances of the estimators for the

corresponding equations.
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Alternatively, we could have used equation (2.8), where

var(B) = (X'WX)™!

L - -
X, 0 -~ 0 oI 0 - 0
/ 1
- 0 X, -~ 0 0 LI - o0
1
[0 o Xy || 0 0 L1 |
_ a5 -1
X; 0 0
0 X 0
X
0O O Xup )
o1 (X)X5)™? 0 0
0 0'22(X/2X2>_1 0
0 0 O—MM(X/]\/[XM)_l
var(B,) 0 0
0 var(By) - - 0
0 0 < var(Byy) 1 &x

The second special case, explained by Zellner (1962), occurs when X; = Xy =
o=Xy=X;,t=1,2,..., M. In this case the generalized least squares estimators
will reduce again to single equation least-squares estimators even when FE [uiu;} =
oijlr # O(rxr). Similarly, the generalized least squares variances of the estimators
will also reduce to the least squares variances of the estimators but the generalized

least squares covariances of the estimators are unique to the generalized least squares
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variance-covariance matrix. That is,
,6 — (XIW71X>71X,W71Y

= X(EZ 1o)X X (S ey

- . - 47 -1

X, 0 -~ 0 X, 0 --- 0
0O XX ... 0 B 0 X, --- 0
= o | (ETe)
|0 O X | | 0 0 X; |
[ X! 0 0 |
0O X ... 0
x| . | E ey
0 0 - X
= [Ty @ X)(Z *1®1T)(1M®X)]‘1 (I © X)(B. ! @ Ip)y
= [(Ze ' o X (Iy © X)) IS ' © XiIp)y
= (B eX)(IyoX)] (B eX)y
=[BTy eXX)] (B @ X)y = (3 @ X[X) (S @ X))y
= [Ec® D7 (BT @ Xy = [BE ! @ (XXi) Xy
= [y ® (X[X) 7' X[y = [Iuly ® (X[X,)7'X]] y
= [IM® (XiXo) ™' Iy @ X))y
xx)' o . o |[x 0 . o]
0 (XXt - 0 0 X, -+ 0
= . . . Y
0 0 e (XIX) T 0 0 - Xj
= (_X’X)_lX'y:B. o _ (2.16)

Once again, since var(8) = E{[8 — E(B)][8 — E(B)]'} = E{[B - B][3 — B]'} and
also in this case 8 = B = (X’X) X'y = (X’X)'X/(XB +u) = 8 + (X'X) 'X'u

8Useful Kronecker product properties are found in Harville (1997, Chapter 16).
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then 3 — 3 = (X'X)~'X'u. Therefore,

var(B) =

= (X'X)"'X'E(un)X(X'X)™*

= (X'X)"'XE{[u— E(u)][u— E)]}X(X'X)™"

= (X'X)'X'WX(X'X)™!

(X!X,) X! 0
0 (XiX;) X
0 0
oulr ol o1l
0'211T O'QQIT UZMIT
i omilr oaplr ovmlr
X;(XiX;) ! 0
0 Xi(X;Xi)—1
0 0

Ull(XgXZ‘)il
0921 (X;XZ)_I

Ulg(X;Xi)il
UQQ(X.;-Xi)_I

o (XIX) ™ opp(XIX;) ™

var(3,)
0921 (X;XZ)fl

Ulg(ngi)_l

var(Bs)

o (XX o (XiX;) !

(XIX;) X!

X;(X/X;)"!

O'lM(X;Xi)il
UQM(X;-Xi)_l

o (X5 X))~
JlM(X;Xi)_l

O'QM(X;XZ')il

var(Byy)

E{[(X'X) X' [(X'X) "' X'} = B{(X'X)" ' Xua/'X(X'X)"}

(2.17)

where the diagonal blocks are the least-squares variances of the estimators for the

corresponding equations but the off-diagonal blocks are unique to the generalized
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least squares variance-covariance matrix.

Alternatively, if we use equation (2.8), we get

var(B) = (X'W'X)™!

P - -
X; 0 cee 0 O'llIT O-lQIT
0 X; tee 0 0'21IT 0'221T
L 0 0 cee X; O'MlIT O'MQIT
L J \_ »
X, O 0
0 X, 0
X
0O O X,
L d 7
[ SIXIX, oXIX, - o'MXIX, |
o' XX, oBX!X; - o?MX!X,
O'M1X{L~X7; O'MQX{iXi tee O'MMX;X1

(2.18)

(KxK)

This means that computing the inverse in equation (2.18) will give equation (2.17).

However, when the X;, i = 1,2,..., M, are not all the same or when E[uu]] =

oijlr # O(rxr), the generalized least squares estimators will be different from the

single-equation least squares estimators. In particular, a quite large gain in efficiency

can be obtained when independent variables in different equations are not highly

correlated and when the error terms in different equations are highly correlated.

2.2 Properties

Zellner (1962) showed the following properties:

o First, ﬁ =B+ 0,(T™).

e Second, TY2(8 — B) and T/2(3 — B) have the same asymptotic multivariate

normal distribution.
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e Third,

~
~

var(B) = (X'W'X)™ 4 0,(T)

(KxK)
- ~-1
sUXIX;  sB2X(X, - sPMXEX )y,
s21 XX s2?XL Xy o sPMXIX
- .2 1 .2 i ) .2 " +o,(T7H), (2.19)
I sMIX) Xy sM2X, Xy -ee sMMXE Xy |

where O,(T~!) denotes a quantity which is of the order 7! in probability and o,(7!)

denotes terms of higher order of smallness than 7.9
Property 1: 3 =3+ O,(T1).
Let W = (2. + Ay) ® Iy where ¥, ® I is given in equation (2.4) and A is a

matrix whose elements are the sampling errors of using the elements of S. as estimates

9Brockwell and Davis (1987, p. 192, Definition 6.1.3) define convergence in probability and order

in probability as follows:

Let {a,, n =1,2,...} be a sequence of strictly positive real numbers and let {X,,, n =1,2,...}

be a sequence of random variables all defined on the same probability space. Then,

(1)

X, converges in probability to the random variable X, written X, Fox , if and only if
X, — X = 0p(1). That is, we say that X,, — X converges in probability to zero, written
X, — X =0,(1) or X, — X 250, if for every ¢ > 0, Pr(|X,—X|>¢)—0 as n— occ.

X, = op(ay,) if and only if a,; ' X,, = 0,(1). That is, we say that f—: converges in probability
X,

n
An n An

to zero, written 2= = o,(1) or % £, 0, if for every ¢ > 0, Pr (‘

>5)—>0 as n — oo.

X, = Oplay) if and only if a,'X,, = O,(1). That is, we say that the sequence {f—;}
is bounded in probability (or tight), written X, = O,(1), if for every € > 0 there exists
d(e) € (0,00) such that Pr(‘f— > (5(5)) <e forall n.

n
n

45



of the elements of 3.. That is,

A; =S, — 3. Then,

ARl = S.@Ir—2X.1r

- W-W
suly  spelr

sorlp selp

syilr syelr

(811 - J11)

(821 - 021)

i (8M1 - UM1)

1 1
oy oy
1 1
I T
1 1
oNh O

sivlr

Sop 1y

spmIr i
(812 - 012)
(322 - 022)

(SM2 - UM2)
1
5

5(1)

2M

& IT:

1
v

(S1M - U1M)

(S2M - UQM)

(SMM - UMM)

where each 51(;) is O,(T~Y?) according to Zellner (1962).1°

Thus,

W= (. +A) '@

oulr  oplr

onlr  oxplr

ovmilr onplr

® Ip

o1mlr

oonly

ommlIr

(2.20)

Now we use a theorem from Harville (1997, p. 429, Theorem 18.2.16) for the

0Brockwell and Davis (1987, p. 193, Definition 6.1.4) define order in probability for random

vectors as follows:

Suppose that {X,,, n =1,2,...} is a sequence of random vectors, all defined on the same proba-

bility space such that X,, has k components X,,1, X;2, ...

(i) X, =op(ay) if and only if X,,; = op(an), j =1,2,... k.

(ii) X, = Op(ay) if and only if X,,; = Op(an), j=1,2,...,k.

s Xok, n=1,2,.... Then,

(iii) X,, converges in probability to the random vector X, written X, £, X, if and only if

X, —X =0,(1).

Therefore, by applying (i) to A; we conclude that Ay and consequently Aq ® Iy are O,(T~1/2).
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geometric series of a square matrix. The theorem states that for Cysxar), the infinite
series I + C 4 C? 4+ C? + ... converges if and only if lim;_.., C¥ = 0, in which case

I — C is nonsingular and

(I-C)'=) CF=I+C+C*+C*+
k=0
(where C° =1).
Let C = A~!'(—B) and suppose lim;_...(A"*B)¥ = 0. Then,

(A+B)" = [A-(-B) ' = [A@Ly - A7 (-B)]”

= [Iy—-A"! B)}_IA*
= [Ty + (A (=B)+ (A (-B))>+ (A(-B))> +...] A"
= [AT-(ATB)AT + (ATBYAT - (ATB)Y'AT 4 ]

Now, let A = Xrxar) and B = Aqprap)- In order to apply this previous result
to equation (2.20), we need to show lim_...(A™'B)¥ = 0. Using another theorem

from Harville (1997, p. 431, Theorem 18.2.19), if ||C(xn)|| < 1 then limy_., CF = 0.

Since ~ )
S11 S12 e S1M
S921 S99 e SoMm
S. =
(MxM)
SmM1 Sm2 - SMM

and A; =S, — X, then
||C|| - ||A_1B|| - ||2071A1|| - ||Zc71(sc - ZC)H = ||Ecilsc - IMH-

Griffiths et al. (1992, pp. 447-451 and p. 551) explain that Tlim Pr(|sij — o] <¢) =
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1 for any € > 0.} Consequently, 12
S. i e asT — o0;
.7'S. £, Iy asT — o0
S8 — 1y L, Onrxmy asT — o0
12 "'Se — Iy|| = Omrxny asT — oo,

where — denotes convergence in probability.

Therefore, for sufficiently large T,'3 equation (2.20) becomes

W = [ - A - (B A ST -9
= X0 — (ZAZS ) Ir+ (B A S @Iy — -

= WA+ [(E AN or— ...
Neglecting the terms of higher order of smallness,'* we have
WilaW!-A,, (2.21)

where Ay = (B, 'A1Z.7Y) @ 1.

HEquivalently, we can write
lim [1— Pr(|s;j — o] >¢)] =1;
T—o0
lim Pr(|s;; — 04| >¢€) =0;
T—o0

sij — 0 = 0p(1) or s;; — 045 .

?Harville (1997, p. 59) defines the norm ||DJ| of a matrix D,y = (d;;) as

1/2
ID|| = (D¢ D)V = [tx(D'D)]"/* = (Zdej) :

i=1j=1

13For sufficiently large T' means 3 Ty 2 V T > Ty our claim holds.

14(2671A1)2, (EcilAl)g, . L O(A/]XA[) faster than (EcilAl) L 0(M><M) as T — oo.
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That is,

- - -
ol g2 ... gIM 58) 5(1) . 58\)4
A o2l g2 ... g2M 5;) 5(1) . (5%)4
2 p—
| oMl M2 . MM 11 5](\})1 55\}[)2 5}(\}[)]\4 |
[ s 512 oM 1)
o2l 22 oM
X ® Ip
oMl GM2 . MM
L d 7
M M M 7
14 5(1) 1i 5(1) 13 (1) - -
; 00 2:231 00" - Z; 0050 ol g2 .. gIM
M M M
> 02z‘5i(11) D 021'51(21) S 021‘51(]1& o2l g2 .. g2M
= = i=1 i=1 _ _ _ ® Ir
M M M1 M2 . MM
Z O.Mi@(ll) Z O.Miéi(Ql) . Z OMz(S(l) i o o o ]
L =1 i=1
M M ) M M T
Z Z O-héij 0.]1 z Z 0.116 0.32 Z Z 0_115 O.]M
i=1j=1 i= 1; i=1j=1
M M M M
2i s(1) _j i is(1) 5
> 2.0 &;; 07! 22025 Jgi2 ... ZZJZ%.UJM
= i=1j5=1 i=1j= 1=1j=1 ® IT
NN (D) i Mis() _jo2 N8 s i
| i=17=1 i=1j= i=17=1 |
2 2 2) ]
oy o O
5(2) 5(2) . 5(2)
_ 21 2‘2 | 2.M ® Iy,
2 2 2
St Sare o+ Satu

M M
where 6 = S 3" gki6,,07 is O,(T~Y/2) according to Zellner (1962).1

i=1j=1

15Consequently, Ag is Op(Tfl/Q).

In addition, Srivastava and Giles (1987, p. 42) explain X'X = O(T'), where O(:) denotes the
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Now, the generalized least-squares estimator is

ﬁ — (Xlwflx)flx/wfly
= (X'W'X)"'X'W (X8 +u)
= (X'WIX) {(X'WIX)B8 + (X'WIX) ' X'Wu.

Thus,
B—B=XW'X)'XWu.
Substitution of equation (2.21) yields

(X' (W™ — A)X]'X/(W™ — Aj)u

i)
|
i)
Q

= {X'W X[l - (X'W X)X A X} ' X(W! - Aj)u
= {(X'WX) - (X'AX)} ' X(W! - Ay)u (2.22)
Now we use another result derived from the geometric series of a square matrix. Let
Ckxi) = Az B xi)- Then,
(A-B)™' = [AIz-A'B)] ' =(Iz —A'B) A"
= [Iz+(A7'B)+(A7'B)*+...] A"
= [AT+ATBAT +(ATBAT  (ATBPAT 4L

In order to apply this result to (2.22), let Azxz) = (X'W™'X) and Bz, z) =

order arising from mathematical convergence. Therefore, by Proposition 6.1.1 (i) and Definition
6.1.4 (ii) from Brockwell and Davis (1987, pp. 192-193), and because Az = O,(T~1/2), we have
(X' A2X) = O,(T~Y?T) = O,(T"?).
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(X'A2X).' Then,
fa_ﬁ ~{(XW'X) " 4+ (X'WTX) TN (X AX)(XW ' X) T + . X (W =Aj)u

or after deleting the terms of higher order of smallness than O, (T*3/ 2) gives!”

~

B-B~{(XW'X) " +(X'W'X) (XA X)(X'W'X) '} X' (W' — Ay)u.
(2.23)

Rearranging terms and neglecting those of higher order of smallness gives

B-B~B-B+ A (2.24)
where

Az = —(X'WIX) X' Agu + (X'W X)X A X(X'WIX) ' X'Wlu. (2.25)

16To use this result we need to show ||(X’'W~1X)~}(X’AX)|| < 1. Since Tlim IX'X = Qy

for all 4,5 = 1,2,...,M and W~ is positive definite, then Tlim EX'WIX = G, where G is

a (K x K) positive definite matrix that does not depend on 7. Hence, Tlim (%X’W_lX)_1 =
— 00

G~!, where G™! is also (K x K) positive definite. Then, le'm T (X’W‘lX)_1 = G~! and thus
(X'W™IX)™t = O,(T~1). Therefore, (X'W~'1X)"H(X'A2X) = O,(T~'T?) = 0,(T~/?) and
thus (X'W1X)"}(X'A2X) = 0,(1). Consequently, ||(X'W1X)"1(X'A>X)|| < 1 for sufficiently

large T
1"Brockwell and Davis (1987, p. 192, Proposition 6.1.1) propose:

If X, and Y,,, n =1,2,..., are random variables defined on the same probability space and a,, > 0,

b, >0, n=1,2 ... then

(i) if X, = op(ay,) and Y, = o,(b,,), we have X,.Y,, = o,(anbyn), Xpn +Y, = op(max(a,,b,)), and
| Xy | = op(al,), for r > 0;

(ii) if X,, = op(ay) and Y;, = O,(by,), we have X,,Y,, = o,(a,by,). Moreover
(iii) the statement (i) remains valid if o, is everywhere replaced by O,.
Therefore, by Proposition 6.1.1 (i) and Definition 6.1.4 (ii) from Brockwell and Davis (1987),
(X'WIX)1(X'AxX) = O,(T'TY?) = 0,(T71/?)
(XYW IX)H(XAX)] = 0T T2 = 0,(1 7).

Similarly, [(X'W~1X)~1(X'AX)]° = 0,(T~3/2), [X'W~1X)"1(X'A;X)]" = 0,(T~2), and so

on.
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According to Zellner (1962), the order of X’'Aju is equal to the order of Ag
multiplied by the order of X'u.'® Therefore, the order of X'Agu is O,(1).1 In
addition, according to Zellner (1962), the first term as a whole in the right had side
of (2.25) is O,(T71),2 and X’'W~tu is O,(T"/?). Therefore, the second term as a
whole in the right hand side of equation (2.25) is O,(T~!).?! Finally, Az is O,(T1).%

Therefore, é — B+ 0,(T™).

Property 2: Tl/z([:i — B) and Tl/Q(B — B) have the same asymptotic normal
distribution.

We use equation (2.23) and the facts that (X’'W!X)™! = 0,(T™!), X'AX =
O,(TV?), X'Aqu = O,(1), and E(u) = 0. If we drop the term (X'W~1X)™!
(X'AX) (X'WIX)™! = O,(T~%?) in equation (2.23) and then take expectation in
both sides of the equation we get

E(B-B) ~ (XW'X)EX/(W - Ayl

Q

— (XW'X) T E[(X'W ) — (X' Agu)]
= X'WIX)'X'W'E(u) — BE(X'Azu)]
= —(X'W'X)'E(X'Azu)
= O,(T'1)=0,(T™).
Similarly, we could have taken expectation in both sides of the equation (2.24) to
get
E(B—B)~ E(B - 8) + E(As),

According to Zellner (1962), B—8 is O,(T~'/?). Since Ag is O,(T"), then bias (@) =

18Srivastava and Giles (1987, p. 42) explain X'u = 0, (T'/?).

YSince Ag = 0,(T71/2) and X'u = O,(T'/?), then (X'Azu) = O,(T~1/2TY/2) = 0,(1).

20Therefore, (X'W1X)"HX'Agu) = O, (T~ 1) = O, (T~ ). Srivastava and Giles (1987, p. 43,
equation (3.7)) also explain (X'W™1X)~! = O,(T1).

A Because (X'WIX) (X' A X)(X'WIX) N (X'Wlu) = O,(T'TV2T1TV/2) = O,(T71).

22By Proposition 6.1.1 (i) from Brockwell and Davis (1987), Az = O,(max(T~1,T71)) =
O,(T71).
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E(B — B) is at most O,(T~'/2).23 Alternatively, using the result in the paragraph

~
~

above, bias (ﬁ) is as well at most O,(T'). Furthermore, since 8 — B is O,(T~1/?)
and Az is O,(T!), the asymptotic covariance matrix of B — 3 is the same as B - 3.
Finally, since under general conditions the asymptotic distribution of T/? (,B — Q) is

multivariate normal, the asymptotic distribution of 7/ 2(B — ) is the same as that

of TY2(3 — ). This is because

lim Pr HTI/Q(E’ _B) - TY(3 - 5)‘ > 5] — lim Pr[|T"2Ag] > ] =0,

T—o0
where ¢ is a very small quantity.?*

Property 3: var(8) = (X'W'X)"! 4 0,(T1).
Intuitively, this property might follow from Property 1 and equation (2.8).

2.3 Efficiency Gain

We have shown that the generalized least squares estimator, B = <B/1, B;, cee ﬁ/M> /,
is different from applying least-squares to each equation, B = (,@ll, 32, cee B;w),
As shown before, this difference occurs because the least-squares estimator assumes
Eluwuj| = 0,1 = O(rx) for © # j while the generalized least squares estimator does
not. That is, the least-squares estimator assumes errors from different equations in
the same time period are uncorrelated.

To show how the generalized least squares estimator differs from the least-squares
estimator, consider the example given by Zellner (1962, p. 354) where he supposed 2°

Uz‘j :(72 lf Z:] Lo
Oij = fori,j=1,2,...,M.

V0T p =0p if  i#]

(B~ B) = Op(max(T~V2,T-1)) = 0,(T~1/?).
24Zellner (1962) referred to the convergence theorem in Cramér (1946, p. 254).
25This example is only for illustrative purposes. For estimation purposes, 3. is estimated with

Se.

In addition, Zellner (1962, p. 360) explains p is the correlation of contemporaneous disturbances

between equations. The correlation between two contemporaneous random variables u;(t) and wu;(t),

: _ COV[u; (t),u; (1) _ Oij - — — ; ; _
is defines as p = NGTONCG O Then, 0;j = \/0ii,/05; p, t # j and =1 < p < 1.
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As it can be seen in equation (2.4), this implies that

o o?p o) 1 p
a’p o o? 1
S p Pl_a|?
(MxM) : .
| op o?p o | P b
L -
l—-p 0 -+ 0
o, 0 1-p 0
= 0o ) +p
\ 0 1—p 1—0p
= o?[(1 = p)Ly + plally],
where 1y is a (M x 1) vector whose elements are 1.
Then, X7 = [y — y1n1),] with o = %
(MxM) o*(1—p)
L . That is,?
o*(1—p) [1+ (M —1)p|
1+Mp—2p —

st =
(M xM)

o?(1=p)[1+(M—1)p]

P
21— p)L+(M—1)p]
1+Mp—2p

P p)[1+(M—1)p]

2 (A—p)[1+(M—1)7]

—p
L o2(1—p)1+(M—1)p]

-_p
2 A—p)[1+(M—1)7]

Alternatively, a simplified expression is

0 v
Ol | v
N I e

v (0—")
v —
o0 I

26n addition, observe that when multiplying 3. with 37 1:

o?(1+Mp—2p)

(M—1)0?p?

T (A=p)I+(M—1)p] ~

o2p
A=+ (M—Dp] T

ST A=) [T+ (M —T)7]
(1+Mp—2p)o°p

1, and
(M —2)52p?

T (1=p)IF(M—1)5]

(A=) [I+(M=1)5]

o4

=0.

p
p
1
11 - 1
11 1
11 1
and’y:[ op

P
21— p) 1+ (M—1)p]

A=) 1+(M—1)7]

1+Mp—2p

o2(1-p)[1+(M~-1)p] |

—y
(0—")

-




Then, the variance-covariance matrix of the estimator 3 is:

UGT(B) = X'WxH!

MKxMK

= X(EMoIn)X]™

(0 — XX, XXy - —y X)Xy
_~X'X —NX'X, .- —~A X! X
_ 7.2 1 (o v? X | v : M (226
XXy X Xe e (0= )X Xy |

~ A

Since var(3) is nonsingular, when M = 2, we can partition var(3) and solve for
the leading sub-matrix, var(3,). According to Zellner (1962) this variance-covariance

matrix is

2 —1

van(B,) [<g—v>xaxl - XXX XX (2.27)

and Zellner and Hwang (1962, p. 308) showed

(1—p*)™
K1 ‘

[1(1—p?r})

=1

o*(X1X1)™, (2.28)

where K is the number of independent variables in the first equation (K; < Kj),
r; is the i canonical correlation coefficient associated with the sets of variables in
X, and X,, and |0*(X[X;)7}| is the determinant of ¢?(X}X;)™! or the generalized
variance of the “single-equation” least squares estimator of the coefficient vector of
the first equation.?” Since 0 < 72 < 1, the generalized variance of 3; will be smaller
than the generalized variance of the “single-equation” least squares estimator of the

coefficient vector of the first equation. That is,

(1—p)™

2 -1 2 -1
var(By)| = [PXX) < [ PXX) T = |ear(By)|
= N ., =
[I(1—p*r)
i=1 , “Single-equation”
Generalized Variance of /8 1 Generalized Variance of B 1

2TSuppose we want to estimate y; = X; B; + u;. Then, var(Bl) = (X{WIX;)"t =
(X (onIk,) ' X] T = on (X X)) T =0 (X X)L
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Now, suppose X)Xy = 0 (which implies r; = 0 for all 7). Plugging r; = 0 for all 7 in
= (1—p*) 1 |o*(X}X;)7!|. Since in general X} X, # 0,
var(B,)

equation (2.28) gives ‘var(@l)

can take given o2 and p

this latter equation represents the minimum value
(as stated at the beginning of this section).

Similarly, as in the two-dimensional case, in the M-dimensional case, the gener-
alized variance of Bl will be smaller than the “single-equation” least squares gen-
eralized variance of [31. In addition, in the M-dimensional case, the generalized
variance of ,@1 is smaller than the least squares variance of Bl. The assumption
cov(u;, v;) = E{[u; — E(w)|[u; — E(w)]'} = Elu]] = 0i1r = Orxr) for i # j is
needed in order for the Gauss-Markov theorem to apply to the least squares model
8

in the M-dimensional case.?

However, when we consider the M dimensional case with X/X; = 0 for ¢ # j,

A

i, 7=1,2,..., M, as long as var((3) is nonsingular, equation (2.26) reduces to
- 4 -1
(0 —7)X1X4 0 e 0
. 0 — XXy - 0
var(B) = (o 7? 2 X
I 0 0 (0 = MXyXur |
[(0— )X Xy 0 0
_ 0 (0= 7)X5Xo] ™! 0
0 0 e o= XX |
Thus,
wr(B) = 1 (X(X) " = 1 (XiX,) !
' (0= !

(7t) - (ot om)
a?(1=p) A=)+ (M-1)7]

1— p)o? _ 1-— _
- 1£ PZ} (X1Xy) b= [1 — ,;0> ] UQ(X/1X1> !
[1+(M—-1)p] 1+p(M—1)

281f this assumption does not hold, the error variance-covariance matrix of the least-squares model

involves a special form of heteroskedasticity and autocorrelation (Griffiths et al., 1992, p. 551).
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Now, as M approaches infinity,

L—p

lim var(Bl) = . oA (X)X,
e L= i
var(By) = [1—p]o(XiXy) ™"

2.4 Test for Aggregation Bias

2.4.1 Micro-Data, Macro-Data and the Aggregation Problem

Micro-data refers to data that is not aggregated. For example, data on individuals,
such as firms or consumers (Theil, 1954, p. 2). However, as is frequently the case,
data are available only for aggregates of consumers and firms. Macro-data refers
to data that has being aggregated over individuals, commodities or time.? The
transition from micro-economics of individuals to the analysis of economic aggregates
is referred as the “aggregation problem.” As explained by Deaton and Muellbauer
(1980, p. 148), “[a]ggregation is seen as a nuisance, a temporary obstacle lying in the
way of a straightforward application of the theory to the data. In this view, the role
of aggregation theory is to provide the necessary conditions under which it is possible
to treat aggregate consumer behavior as if it were the outcome of the decision of a
[‘representative’] consumer.” 30

As explained by Theil (1954, p. 2), the relations postulated by the economic the-
ory of individual households (the micro-theory) are called micro-relations or micro-
equations. The micro-equations are composed of micro-variables and micro-parameters.
Aggregation implies that micro-variables are replaced by aggregates or macro-variables.
Similar to the micro-theory, the macro-theory postulates that macro-variables are con-
nected by macro-relations or macro-equations. The macro-equations are composed of
macro-variables and macro-parameters.

Theil (1954, p. 3) distinguishes between three types of aggregation: aggregation

over individuals, such as firms and consumers, aggregation over several sets of com-

29Tn general, aggregated data is a function of micro-data.
30In this example, the aggregate consumer behavior is the average behavior of all consumers.
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modities, and aggregation over time. Consider the following examples provided by

Theil (1954, pp. 1-4) for each of these cases.
a) Aggregation over individuals.

Consider the sugar consumption by families of some country during a certain
period. Suppose that according to economic theory each family’s demand for
sugar is a function of its income, of the price of sugar and of the number of family
members. Suppose furthermore that the empirical research worker decides to
consider total sugar consumption as a function of total personal income, the price

of sugar and the population size.
b) Aggregation over commodities.

Consider for instance, an entrepreneur who uses several factors of production.
Suppose that his demand for each of these factors depends on the level of produc-
tion and on the price of this factor. Suppose also that an econometrician wants
to combine some of these factors to a group and that he considers an input index

of this group as a function of the level of production and of an input price index.
c) Aggregation over time periods.

Suppose that an entrepreneur bases his demand for labour on the quantity of
products sold during past periods. More specifically, we assume that the de-
mand for labour during a certain month depends on the quantity sold during the
preceding four months. Suppose furthermore that only quarterly sales figures are
available. Then an obvious procedure is to aggregate monthly periods to quarterly
periods and to postulate that the demand for labour during a quarterly period
is a function of the quantity sold during the same and the preceding quarterly

periods.

2.4.2 Testing with Micro-Data

Suppose micro-data is available for y1,ys,...,yy and Xi, Xs, ..., X, In addi-

tion, suppose that each X;, i =1,2,..., M, is a (T x K) matrix containing observa-

31

tions on K independent variables.” For instance, consider a general version of the

31Thatis,K1:K2:...:KM:K.
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investment example provided by Zellner (1962, pp. 357-362). Suppose y; is a (1" x 1)
vector of observations on firm one’s current gross investment, y» is a (7" x 1) vector of
observations on firm two’s current gross investment, ..., y is a (T x 1) vector of ob-
servations on firm M’s current gross investment. Then, X is a matrix of observations
on the K independent variables affecting y;. For example, X;; is a (7" x 1) vector of
observations on firm one’s capital stock, Xj9 is a (T' X 1) vector of observations on
firm one’s outstanding shares, ..., X;x is a (T" x 1) vector of observations on firm
one’s k' independent variable affecting gross investment. Similarly, X, is a matrix of
observation on the K independent variables affecting ys. So, Xg; is a (7" x 1) vector
of observations on firm two’s capital stock, Xy is a (T x 1) vector of observations on
firm two’s outstanding shares, ..., Xox is a (7" x 1) vector of observations on firm
two’s k' independent variable affecting gross investment. Similar for X3 to X;;. You
would like to know whether you can work with aggregated data. Or equivalently, you
would like to know whether the M firms’ current gross investment react in the same
way to changes in its capital stock, outstanding shares, and so on. That is, you would
like to know if the M firms are characterized by the same regression parameters. If
they do, then you can aggregate your micro-data without suffering from aggregation

bias. Therefore, you need to test

Hy:8,=08,=...=
0:B1 =70, B (2.20)
H, : at least one 8, # B, i # j, i,j =1,2,..., M.
Or equivalently,
Iy -Ix 0 -~ 0 0 O |r 71 r 1
B 0
0 Ix —Ix - 0 0 0
0
H,: CB = ol _
(2.30)
0O o0 0 - Ix —-Ix O
Bu 0
0 0 o --- 0 Ip —Iyx | "~ . L

H, : at least one B, # B;, 1 # J, i,j = 1,2,..., M,
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where C is [(M — 1)K x M K] matrix, 3 is a (MK x 1) vector, I is a (K x K)
identity matrix, and O is a [(M — 1)K x 1] zero matrix. Therefore, there are (M —1)K
restrictions under Hy.

According to Zellner (1962), if Hy is true, there will be no aggregation bias involved

in the simple linear aggregation.®? To show this is the case, suppose we estimate 3 in
y =XB+1u, (2.31)

where y = Zf\il yi is a (T x 1) vector of observations on the dependent variable,
X =Y M X is a (T x K) matrix of observations on the K independent variables,
B is the (K x 1) vector of parameters to be estimated, and @ = Y. w; is a (T x 1)
vector of disturbances.?
The least-squares estimator of 3 is given by
B = (X'X)"'Xy.
(Kx1)

Taking expected value in both sides of the equation gives

E(B) = B[XX)'Xy]=F

= Z(X’X)‘lX’(Xﬁi). (2.32)

32Zellner (1962) followed Kloek’s (1960) matrix representation of the aggregation problem.
33We could also write equation (2.31) as

vy =( X; X, --- X ) + u .
(T};l) ( LA K ) (rxr) : (Tx1)



Thus, under Hy: B, =B, = ... = By = B,

£(3) -

That is, under Hy, the expectation of macro-estimator, ,é, will be equal to the micro-
parameter vector 3, where B =08, =8, = ... = By,

The hypotheses in (2.29) or (2.30) can be tested using the model in equation (2.3)
and employing Roy’s (1957) F-statistic!

MT — MK
Fyovr—vg = ———

q
yYW-IX(X'W-1X)"1C[C(X'W1X) 1 1C(X'W-1X) " IX'W-ly
ylW—ly _ ylW—IX(X/W—IX)—IX/W—ly '

(2.33)

Now, replacing W with W gives

~ MT - MK
F -

oMT-MK =
q

yWIX(X'WX)"IC/[C(X'WX)"IC IC(X'WIX) I X'Wly
y/w—ly _ y’W_1X(X’W_1X)_1X’W_1y

Y

(2.34)

where ¢ = (M — 1)K is the number of restrictions under Hy and W~ is given in

equation (2.11).

34Roy (1957, p. 82) derived the F-statistic without involving the likelihood-ratio approach. How-
ever, determining how the F-statistic is distributed requires the assumption that u is normally
distributed. Zellner (1962, Appendix A) showed the likelihood-ratio approach asymptotically leads
to the same test statistic. Similar to Roy (1957), Zellner (1962, Appendix A) assumed normality of
u when formulating the likelihood function for the null and alternative hypotheses of the system in

equations (2.2) or (2.3).
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Zellner (1962, Appendix B) showed that

F = Fyyvr—mw + Op((MT)1/?) (2.35)
and made use of one of Cramér’s (1946, p. 254) theorem to conclude that F has the
same asymptotic distribution as F. Therefore, we reject Hy if F > Er v (@)
with at most a100% probability of Type I error. The quantity Fyyp () is a
critical value from an F-distribution with ¢ degrees of freedom in the numerator,
(MT — MK) degrees of freedom in the denominator, and level a.3

Zellner (1962, Appendix A) also showed that —2log A = q Fj, yrr— e +Op(MT) 1),
where A is the likelihood ratio for testing Hy in (2.29).36 Then Zellner (1962) used
results from Mood (1950, p. 259) and Wilks (1943, p. 151) to conclude that —2log A,
q Fy yr—mk and qu,MT_MK are asymptotically distributed as xﬁ' Therefore, we
could also reject Hj if ’q F ‘ > XZ(Q) with level a or alternatively reject Hy if
—2log A > x2(«a) with level a.?

Zellner (1962) emphasized that for small samples we could proceed in two ways.
One way is to compute ¢ I and assume it is asymptotically distributed as Xz. Another

way is to compute £ and assume is closely distributed as F, o MT- MK

2.4.3 Testing with Macro-Data

Now, suppose only macro-data is available for ¥ and X. For example, you only
have information on the total current gross investment by the M firms and the X(TX K)
matrix of observations in the K independent aggregated variables affecting y. That

is, X is a (T x 1) vector of observations on total capital stock of the M firms, X is

BLe., a=Pry, ., (I:" > Fy (a)) .

vi,V2

38Zellner (1962, pp. 357-362) provided an example of testing for aggregation bias with micro-data
for a system of two equations (M = 2) with two independent variables (K = 2) when the sample

size is small (T" = 20). In his example, he showed how both procedures lead to the same conclusion.
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a (T x 1) vector of observations on total outstanding shares of the M firms, ..., Xk.
You would like to know whether aggregation bias is present in your aggregated data.
Hence, you are going to test the hypotheses in (2.29), but employing your macro-data.

Suppose we have a system of M equations, each with K; independent variables

and an intercept. Let’s consider the ¢ observation from each equation. That is,

n(t) = P+ Puzii(t) + Brexaz(t) + - - + Pik, Tk, (B) + ui ()

Y2(t) = Bao + Barwan(t) + Baaoz(t) + - + Bar, Tar, (1) + ua(t)

ym(t) = Buo+ Banwarn(t) + Buawara(t) + - -+ Barry Taricy, (B) + uns(t) -

Since K1 = Ky = ... = Ky, we drop the subscript and only use K. Now we
proceed to aggregate the data. That is,

(i) +y2(t) + ... +ym(t)) = (Bro+ P+ -+ Buo)
+ Bz (t) + Parar(t) + ... + Banwan(t))

+ (Braz12(t) 4 Parowaa(t) + . .. + Baraxara(t))

+ (Bix@1k (t) + Pox@or (t) + ... + Buxrmr(l))

+ (Ul(t) + Ug(t) + ...+ UM(t)) .

M=

s
Il
i

Novw leting 5(1) = 3= (), o = 32 o, 70) = 3 70), and at) = 32 () for

k=1,2,..., K and adjusting terms gives

Br1211(t) + Barxai(t) + ... + Sannxan (75)] (1)
.Tll(t)—f—ﬂigl(t)—i-—l—ﬂj]\/]l(t) !
[ B12x12(t) + Baoxaa(t) + ... + Baxasa(t)

+| J 20

xlg(t) + .%'22(75) + ...+ .%'MQ(T,)

yt) = Bo+

[ Bikr1k(t) + Baxwar () + ... + Buxrmk (1)
le(t) + l‘gK(t) + ...+ TyK

(t)} T + u(t).
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Now, we expand terms in the brackets to obtain

y(t) = fBo+ Pu Mxn(t) T1(t) + ...+ Ban AfMl(t) T1(t)
> () > wp(t)
L j=1 i | j=1 |
+ 012 ;12@) To(t) + ... + Bur2 EMQ(t) To(t)
> zp(t) > wp(t)
[ j=1 | | j=1 i
+61x Mle(t) Tr(t) + ...+ Puk AfMKw Tr(t)
> wik(t) > wix(t)
L j=1 | L j=1 |
+(t)
Now, let
wi(t) = Mx"’“(t) =12, M, k=12 .. . K.
> ()
j=1
Note that,
M-—1
wak(t) = 1= wy(t), k=12 K
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Then,

g(t) = Bo+ Puwin(t)z1(t) + ... + Bor—iwmr—11Z1(t) + Ban (1 - Z Wi
(M-1)

+B12w12 () T2(t) + ... + Bar—1)2wni—1)2Z2(t) + Barz (1 —

(M-1)
+okwik ()T (t) + ...+ Bo—ykwar—1eZx () + Buk (1 - Z wiK(t)) T(t)

+ﬂ(t)
= Bo+ (Bi1 — Ban) wi(£)z1 () + . ..
+ (Brz — Barz) wia(t)Ta(t) + ... + (ﬁ(M—l)Q — ﬁMz) wn—1)2T2(t) + BrraTa(t)

+ (5(1\/1—1)1 — 5M1) wv—1171(t) + Bann 1 (t)

+ (Bix — Bur) wik(t)Tr(t) +... + (ﬁ(Mﬂ)K — ﬁMK) w—1 Tk (t) + BurTr(t)

+a(t) (2.36)
(M-1)
= Bo+ BanZa(t) + [ Z (Bir — Ban) wi1<t>] 71 (1)
(M-1)
+BraZa(t) + [ Z (Bi2 — Burz) wiQ(t)] Zo(t)
(M-1)
+BurTr(t) + [ . (Bik — Buk) wiK<t)] Tk(t)
+u(t) (2.37)
Now, let
#(1) Z(1) [ Z.(1)
X, — @(2) Cox, - @.(2) | X — EK'(2) |
(Tx1) : (Tx1) : (T'x1)
7.(T) £a(T) | ()




[ wa(l) 0 0]
~ 0 Wik (2) : 0
e : SRS : ’

0 0 W (T)

where it =1,2,...,(M —1)and k =1,2,..., K.
Hence, if data is available on w;(t), wisa(t), ..., wig(t) for i = 1,2,..., M and

t =1,2,...,T,% it is possible to do a least-squares regression of y on wy; Xy, ...,
W(M_l)lxl, X, w2 Xo, ..., W(M_l)gxz, Xy, oo Wi XK, oo W(M_l)KXK, X for

equation (2.36) and perform K different F' tests involving equality of the coefficients
of equation (2.36). These K different F-tests are:

Hoi: (Bu = Bn) = - = (B — Bann) =0
Hgy : at least one 81 # Bj1, 1 #J, 4,7 =1,2,...,M

Hok = (Bix — Bur) = --- = (Bou—1x — Bux) =0
Hu : at least one Bix # Bjk, 1 # J, ©,7 =1,2,..., M.

Or equivalently,

Hy, : There is no Aggregation Bias in X,
H,, : There is Aggregation Bias in X

Hyk : There is no Aggregation Bias in Xk
H,x : There is Aggregation Bias in X.

If we consider the k'® F-test, notice that we are testing whether the M firms are

affected in the same way by the Xi;, X, ..., Xy independent variables. That is,

39Zellner (1962) provided the following example. Suppose you have aggregated sales of M different
firms from one particular industry at time year ¢. Consider the aggregated sales of firm one, Z; (t) =
211(t) + @21 (t) + ... + a1 (¢). Then, wi(¢t) might be firm one’s proportion of industry sales in year
t, woq(t) is firm two’s proportion of industry sales in year ¢, ..., was1(t) is firm M’s proportion of

industry sales in year t.
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we are testing if the M firms can be characterized by a common regression parameter
that corresponds to the independent variables Xy, Xo, ..., Xk. If they can, then
there is no aggregation problem but if they can not, then not all firms react in the
same way to the Xy, Xog, ..., Xy independent variables; therefore, it is incorrect
to aggregate the data.
In order to understand how we can apply one of these K F-tests, suppose we would
like to perform the first test. For simplicity and convenience, we let w17 = (11— Bum1),
- TM-1)1 — (5(M71)1 - 5M1), 1 = By, T2 = (512 - 5M2), cey T(M-1)2 —
(5(1\/{-1)2 - 5M2), Tve = Buz, Tk = (511{ - 5MK), cen MM-1)K — (5(M—1)K - ﬁMK)a

vk = Buk. Hence, we can write the first test as

H0127T11 :"':W(M—l)l =0

H, : at least one w3 #0, 1 =1,2,..., (M —1).

Then, if Hy; is false, we can rewrite equation (2.36) as: 1°
40Equation (2.36) can also be written as:
y = Bolr+muwnXi+... +ma—1iwWar—11 X1 + T Xy

+m1owW1oXo + ...+ 7T(M_1)2W(M_1)2X2 + T2 Xz

+mie Wik XK + -+ T—) kW1 k Xk + T Xk +
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4 (rx(MK+1))
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However, if Hy; is true, we rewrite this previous equation as

_ -/ _ -

[17) Bo
[Xl}/ M1
[W12X2}/ T2
[W(Mfl)QXﬂ/ T(M—1)2
_ o — / _
(T};n B [X:] a2 + (Tx1)
[WlKXK] MK
[W(Mfl)KXK}/ T(M-1)K
[XK}/ TMK ]

L J(@xKk-n)) L (MK—-M)x1)
= X()’TI'O + u.

To test the Hy;, we employ the following F-statistic from a theorem in Christensen

(2002, p. 58):1

y' (M—-M,)y

rank (M — M)
ank(M—Mo),mnk(IT—M) - vy (I —M)y '

rank (Ir — M)

where M(rxr) = X (X'X) ™" X" and Moz = Xo (Xo'Xo) ™' X'

Therefore, we reject Hy if F' > F;ja with at most o 100%

nk(M—Mo,), rankIr—M) ()

probability of Type I error. The quantity F;ia () is a critical

nk(M—-My),rankI;—M)
value from an F-dsitribution with rank(M—Mj) degrees of freedom in the numerator,

' We assume 0 ~ N(0,0%T) under H,; and Hoy;.
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rank(Ir — M) degrees of freedom in the denominator, and « level.*?
However, if data is not available on wj;(t), wi(t), ..., wik(t) fori =1,2,..., M
andt =1,2,...,T, it might be that w;;(t), wi2(t), . .., w;k (t) are functions of variables

for which data are available. For instance, suppose®?

wzl(t) = Hoﬂ + 0i121<t>7 for 1 = ]_, 2, ceey M
wlg(t) = 001‘2 + Higzg(t), for ¢ = 1, 2, ceey M

wiK(t) = 001'[( + HiKZK<t), for 1 = 1,2, ceey M.

PLe., a=Pry, ., (F>F} ,(a).
43Zellner (1962) assumed this relation is non-stochastic. That is, there is no disturbance term

at the end of each function. However, as he explained, if this relation is stochastic, say, w;(t) =
Ooir + Oix2i(t) + v(t), the approach to take is to consider a regression model in which one (or some)

of the independent variables have “measurement error.”
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Then, equation (2.37) becomes

(M—1)

y(t) = Bo+ Panzi(t) + [ Z (Bir — Bart) (Boin + 9z‘121(75))] 71 (1)

(M—1)
+Bm2Za(t) + [ Z (Biz — Bumz2) (Boiz + 91‘222(?5))] To(1)

=1

(M-1)
+0mkTK(t) + [ Z (Bix — Buk) (Boix + QiKZK(t))] Tk(t)

+u(t)

(M-1)
= G+ |:5M1 + Z (Bir — Bann) Ooir + (Bir — Baan) 91121(15)] 71(1)
i—1

(M-1)
+ | Bz + Z (Biz — Brr2) Ooiz + (Biz — Buz) 91‘222@)] To(t)
i—1

(M-1)
+ | Buk + Z (Bix — Buk) ik + (Bix — Buk) eiKZK(t)] Tk (t)

I i=1
—|—ﬂ(t)
(M-1) (M—1)
= G+ |:6M1 + Z (Bi ﬁMl)eon] T1(t) + (Bin — Ban) 11] 21 ()71 (1)

i=1 i=1

[ (M—1) 1)
+ | Buz + Z (Bi2 @M2)90i2] To(t) + [Z (Biz — Bm2) 12] 2(t) T2 (1)
i=1

=1

(M—1)

+ | Buk + Z (Bix — 6MK)601‘K:| Ti(t |: Z (Bik — Buk) K] 2K (t) Tk (t)

+a_(t). (2.38)
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Now, let

71(1) 75(1) Tr(1)
_ Z1(2 _ To(2 _ T (2
X, = 12) X, = 2(2) L Xy = K(2) ,
(Tx1) : (T'x1) : (Tx1) :
I z1(T) | I Zo(T) | I Ti(T) |
21(1) 0 0 2k (1) 0 0
_ 0 z1(2) ... 0 _ 0 2i (2 0
7, — 1(2) o T = x(2)
(TXT) : : : (TXT) : :

Now, a simple least-squares regression of y on X;, Z1X1, Xa, ZoXo, ..., Xg, and

Zx X is all that is needed to test K hypotheses of micro-parameter equality. These

K possible t-tests are:**

Hy; : (Bir — Ban) 0 =0

(M-1)
Hg e (B — Bann) 0 #0

=1

(M-1)
Hyg - Z (Bik — Buk) ik =0
(-1)
Huk : Y, (Bik — Buk) Oix # 0.

=1

44 We assume i ~ N (0, o%1).

72



Or equivalently, 4

Hy, : There is no Aggregation Bias in X,
H,, : There is Aggregation Bias in X;

Hyk : There is no Aggregation Bias in X
H,x : There is Aggregation Bias in X.

Therefore, we reject the k' null hypothesis (k = 1,2,..., K) if |t| = M _
SE(7x)
'SrEfEli ) > gy (@) with at most a 100% probability of Type I error. Where m; =
Tk

ngl_l) (Bik — Bumk), T is the least-squares estimator of 7y, S/E(frk) is the estimate

*

of the standard error of 7y, and the quantity ¢{; (@) is a critical value from a
t-distribution with (7' — K) degrees of freedom, and « level.
Now, if we consider a system of M equations, each with only one independent

variable (K = 1), equation (2.38) reduces to

(M-1)
g(t) = Bo+ BanZr(t) + | D (B — Ban) wa(t) | Za(t) + u(t) (2.39)
i=1
and equation (2.37) reduces to
(M-1)

yt) = Bo+ |Bmi+ Z (Bir — Barn) Ooir | Z1(2)
=1

(M—1)
+1 Y (Ba = Ban) O | 21 (D)7 (8) + a(t). (2.40)

=1
45Since all O, i = 1,2,..., M, are different from zero, Hyy, is true if each (8;x — Barx) equals zero,
which implies that 8;x = By for ¢ = 1,2,..., M, which then implies that 81y = fBor = ... = Bumk-
Hence, if all micro-parameters corresponding to Xy, Xog, . .., Xask are equal, there is no aggregation

bias in X, where k = 1,2, ..., K. However, if Bjk # Bmr for i, j =1,2,...,M and i # j, there is

aggregation bias in X,.
e, a= Pr(t>t;(a)).
4TThis is Zellner’s (1962, p. 357) second example.

73



In equation (2.39) we can apply one F-test as we did for equation (2.36). In
equation (2.40) we can apply one t-test on the corresponding parameter of Z;X; as
we did for equation (2.38) to test for aggregation bias in X;.

In the most simple system involving two micro-equations (M = 2), each with only

one independent variable (K = 1),%® equation (2.38) reduces to

g(t) = ﬁo + ﬁlli'l (t) + (ﬁll — ﬁm) wn(t)i'l(t) + l_L(t) (241)

and equation (2.37) reduces to

y(t) = Bo + [Bar + (Bi1 — Bo1) Oorr] T1(t) + [(B11 — Bar) O] 21 (8)T1(t) + a(t). (2.42)

In equation (2.41), if data is available on wy;(t), t = 1,2, ..., T, it is possible to do
a least-squares regression of ¥ on X; and w;X;. However, due to the simplicity of
equation (2.41), not only an F-test can be performed to test for aggregation bias in
X, as we did for equation (2.36) but also a t-test on the corresponding parameter of
w11 X

Therefore, we reject the null hypothesis if |t| =

AT || > (a
SE(7) ‘SE(%)' @)
with at most o 100% probability of Type I error. Where m = (811 — (1), 7 is the

least-squares estimator of m, S/E(fr) is the estimate of the standard error of 7, and
the quantity ¢{;_,)() is a critical value from a ¢-distribution with (7" —1) degrees of
freedom and a level.*?

If data is not available on wyq(t) but on 21(¢), t = 1,2,..., T, equation (2.42) can
be used instead of equation (2.41) to test for aggregation bias in X;. As we did for

equation (2.38), we apply one t-test for the corresponding parameter of Z;X;.

48This is Zellner’s (1962, p. 356) first example.
Yle., a=Prt>t;(a)).
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CHAPTER III
LITERATURE REVIEW

The primary objective of this chapter is to review previous research on seemingly
unrelated regressions (SUR) and relevant issues in consumer survey data that will
provide insight in the formulation and empirical application of Mexican household
meat consumption model. Section 3.1 starts with a review of censored data, which is a
frequently encountered problem in consumer survey data—the same nature of the data
used in this study. This issue is our first experience before familiarizing with a second
problem encountered in consumer survey data: adult equivalence scales. In order
to understand how other researchers have modeled and estimated adult equivalence
scales, it is good to have knowledge on the censored expenditures problem. This is
recommended because the literature reviewed in Section 3.2 implicitly assumes the
reader was familiar with censored expenditures. In addition, the models from Section
3.1 are then used in Section 3.4 as examples of parametric models of item nonresponse
on the dependent variable. Section 3.3 expands on the topic discussed in Chapter
2 by reviewing seemingly unrelated regression with unequal number of observations.
Section 3.4 provides basic concepts related to missing data and then it moves on
to explain how to deal with it. Some of the techniques learned in Section 3.4 were
intended to be used in Section 4.2, but a simpler approach was adopted. Finally,
Section 3.5 begins with an introduction to stratified sampling and finishes with a
discussion on how to estimate linear models with stratified sample data—the type of
probability sampling technique that was used to collect the data used in this study.
Finally, Section 3.6 briefly explains the bootstrap, a general bootstrap algorithm, and
different bootstrap sampling methods.

3.1 Censored Expenditures

Censored expenditures are common in consumer survey data. Generally, the cen-

soring is due to survey design and implementation or institutional constraints. Cen-
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sored expenditures occur when the value is partially known. It is partially known
because even though you do not have the actual value (it might be coded as zero or
omitted) on the variable of interest (e.g. the dependent variable); you do have infor-
mation on related variables (e.g. the independent variables). As it will be explained
in Section 3.4, this is also referred as item nonresponse on the dependent variable. In
literature, when information is missing on both dependent and independent variables,
the dependent variable is referred as truncated (Wooldridge, 2006, p. 613; Pindyck
and Rubinfeld, 1997, p. 325). Again, using Section 3.4’s terminology, when informa-
tion is missing on both dependent and independent variables and there is no more
information collected, it is also referred as unit nonresponse. A truncated regres-
sion model differs from a censored regression model in that in a truncated regression
model we do not observe any information about a certain segment of the population
(Wooldridge, 2006, p. 613). In addition, truncated regression is a special case of a
general problem known as nonrandom sample selection (Wooldridge, 2006, p. 616).
Wooldridge (2006, p. 609) explains censored data is an issue of data observ-
ability. Wooldridge (2006, p. 609) explains the use of a censored regression model
when there is missing data on the response variable (the dependent variable) but
there is information about when the variable is missing (above or below some known
threshold). For instance, consider the example provided by Wooldridge (2006, p. 610)
where we know the value of a family’s wealth up to a certain threshold. This censor-
ing problem might occur, Wooldridge (2006) explains, when respondents are asked
for their wealth, but people are allowed to respond with “more than $500,000.” Then,
we observe actual wealth for those respondents whose wealth is less than $500,000
but not for those whose wealth is greater than $500,000. In this case, the censoring
threshold is fixed for all families whose wealth is greater than $500,000. However, the
censoring threshold may also change depending on individual or family characteris-
tics. For instance, consider another example provided by Wooldridge (2006, p. 611)
where we know the time in months until an inmate is arrested after being released

from prison. By the end of the period in which you investigate if an inmate was ar-
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rested again, not all of them would have been rearrested; therefore, the observations
from the inmates not yet arrested would be censored. In other words, some felons
may never be arrested again or they may be arrested after such a long time that there
is a need to censor the number of days in order to analyze the data. In addition, in
this case, the censoring time is different for each inmate. By providing an empirical
application of the second example, Wooldridge showed that applying Ordinary Least
Squares (OLS) will result in coefficient estimates markedly different from those of a
censoring regression model where coefficients and the variance of the error term are
estimated by maximum likelihood. In his example, OLS coefficient estimates were
all shrunk toward zero. Furthermore, Wooldridge (2006, p. 613) emphasized that an
application of a censored regression model will be more reliable.

The second example provided by Wooldridge (2006, p. 611) is very similar to a
problem encountered in this study with the Mexican survey data on household income
and weekly expenditures. At the end of the period in which the interviewer recorded
all items purchased by a household, there will be items that would have not been
purchased, which the household consumes, or were purchased away from home and
the interviewer did not record them. Therefore, items not purchased during the week

of the interview, which the household consumes, will be censored.

Pindyck and Rubinfeld (1997, p. 325) explain that censoring occurs when
“the dependent variable has been constructed on the basis of an underlying continuous
variable for which there are a number of observations about which we do not have

information.” Pindyck and Rubinfeld (1997, p. 325) provide the following examples.

Suppose, for example, that we are studying the wages of women. We know the actual
wages of those women who are working, but we do not know the “reservation wage”
(the minimum wage at which an individual will work) for those who are not. The latter
group is simply recorded as not working. Or suppose that we are studying automobile
purchasing behavior using a random survey of the population. For those who happened
to buy a car, we can record their expenditure, but for those who did not we have no
measure of the maximum amount they would have been willing to pay at the time of

survey.
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Pindyck and Rubinfeld (1997, p. 325) explain ordinary least-squares estimation of
the censored regression model results in biased and inconsistent parameter estimates.
They emphasized a maximum-likelihood estimator as a preferred alternative.

Pindyck and Rubinfeld’s (1997, p. 325) examples provide insight into the data
used in this study, the Mexican survey data on household income and weekly expen-
ditures. For those households that happen to buy a particular item, their expenditure
was recorded, but for those who did not we have no measure of the maximum amount
they would have been willing to pay at the time of the survey. As it will be explained
later, the Mexican survey data on household income and weekly expenditures omit
this transaction (i.e., does not make any record of items not purchased). Hence,
expenditure on that particular item is censored because if the price goes below the
maximum price they may have been willing to pay, the household would have pur-
chased that item. Consequently, for those who did not buy an item, we have no
measure of the maximum amount they would have been willing to pay at the time of
the survey.

Some researchers more specifically point out the importance of addressing the
presence of censored food expenditures when working with weekly food expenditures.
If weekly expenditures are reported for at-home expenditures and away-from-home
expenditures, then not all households might purchased and consumed food away from
home. When this is the case, expenditures on food away from home are censored in
nature (Sabates et al., 2001; Gould and Villarreal, 2002).! For example, a household
expenditure on food away from home that is not recorded (sometimes, but not in the
dataset used in this study, expenditure on food away from home are recorded as zero
dollars) is censored because this household might have bought and consumed this
commodity a week later after the interviewer left. However, if the commodity was
not bought at all, then there is no censoring. It is worth while mentioning that Gould

and Villarreal (2002) and Sabates et al. (2001) both used data corresponding to the

I This is the same idea of the censored data problem mentioned above but this time distinguishing

between at-home expenditures and away-from-home expenditures.
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year 1996 from the Mexican survey of household income and expenditures, Encuesta
Nacional de Ingresos y Gastos de los Hogares (ENIGH), published by a Mexican
governmental institution (Instituto Nacional de Estadistica, Geografia e Informética

or INEGI). The study presented in this report uses data from the same source.

3.2 Adult Equivalence Scales

Adult equivalence scales are measures that show how much an individual house-
hold member of a given age and sex contributes to household expenditures or con-
sumption of goods relative to a standard household member. As explained by Deaton
and Muellbauer (1986) adult equivalence scales assign different weights to house-
hold members according to their age and gender; whereas a simple count of household
members, the most common practice, implicitly assumes each household member has
the same marginal impact. The purpose of scales is to capture economies of size
associated with larger households, the different impacts of children versus adults and
to permit welfare comparisons across households of different size and composition
(Lazear and Michael, 1980; Deaton and Muellbauer, 1986; Blaylock, 1991; Perali,
1993).

Deaton and Muellbauer (1986) note that equivalence scales can be determined
from nutritional and psychological studies, sociological relationships, or the use of
revealed consumption or purchase patterns. They note that the last approach appears
to be the most reasonable but there continues to be the dilemma of how to use
expenditure data to develop these scales (Brown and Deaton, 1972).

Gould and Villarreal (2002) analyzed Mexican adult equivalence scales and
weekly food expenditures for Mexican beef and pork purchases in 1996. They endoge-
nously determined adult equivalence scales and allowed marginal impact to vary by
age and gender. Their study estimated commodity-specific adult equivalence scales
using the single equation approach suggested by Tedford et al. (1986). Moreover,
their two-stage econometric model was an extension of the model implemented by

Dong et al. (1998) but first formulated by Wales and Woodland (1980). Their model
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accounted for censored meat expenditures and endogenously determined commod-
ity specific unit values and therefore product quality. Gould and Villarreal (2002)
proceeded to examine whether there are differences in the impacts of household com-
position on food expenditures and whether there are differences in equivalent profiles
across meat commodity.

Gould and Villarreal (2002) used Deaton’s (1988) suggestion of using unit values,
which are obtained by dividing expenditures by quantities purchased. They cautioned
that these values should not be interpreted as the market prices. This is because unit
values may not only reflect quantity but also quality.?

To represent the consumer maximization problem in terms of composite goods,
Gould and Villarreal (2002) used the Hicksian composite commodity theorem (Deaton,
1988; Nelson, 1991). Then they combined it with a quality indicator (Theil, 1952—
1953; Dong et al., 1998) and a measure of average quality within each commodity
group to derive an expression for composite commodity unit value and expenditures
on composite commodity. Then, Gould and Villarreal (2002) referred to Dong et al.
(1998) and Wales and Woodland (1980) to derive an expression for censored household
expenditures.

Gould and Villarreal (2002) specified an unconditional probability that a partic-

ular household will not purchase a particular commodity, the log-likelihood function

2The market price of a commodity refers to the price of such commodity in the market, assuming
this commodity is homogeneous everywhere in the market. Hence, there is only one price for the
commodity in the market. However, in practice, even if we are dealing with homogeneous commodi-
ties there are going to be differences in the price of a commodity in different locations due to different
profit margins charged by different sellers. Sellers charging higher profit margins most likely reflect
‘better’ store’s conditions. For example, even if it is the same commodity, it is very likely that a
supermarket will have a different price than a flea market. This difference in price is translated into
a quality attribute. Therefore, calculating unit values by dividing expenditure by quantity will pick
up these differences in quality. However, one could argue that market prices, which are some kind of
average of prices in the market, include differences in qualities anyways; therefore, in practice unit
values and market prices are the same thing. Nonetheless, when the difference between the two is

clear, this distinction is usually made.

80



for the entire set of households, and the expected values of conditional expenditures
and unit values. Their study combined expressions for conditional probability to ob-
tain an estimate of the expected value of unconditional expenditures and unit values.
Model parameters were obtained by maximizing the likelihood function.

Estimates were reported for the coefficients of the unit value equation, the ex-
penditure equation and the equation for the total of adult equivalence scales in each
household. Additionally, income and adult equivalent elasticities and marginal re-
gional impacts were reported. They found that household composition is an important
determinant of total household expenditures as well as product quality. They rejected
the null hypothesis that the marginal impact of an additional household member on
meat expenditures is invariant to the member’s age or gender. They found a small
but positive impact of the number of adult equivalents in the household on expendi-
tures for beef and pork. They also found a negative impact of the number of adult
equivalents in the household on endogenous unit values.

However, their study could not reject the null hypothesis that the female and
male adult equivalent profiles are the same. Even more surprising, they found that
female adult equivalence scale consistently exceeds the male adult equivalence scale in
consumption of beef for females of 40-65 years old. They attributed this result to the
high participation of males in the labor force compared to adult females. Adult males
working more time outside their home tend to purchase and consume more food away
from home than adult females who stay at home. This finding is similar to Sabates
et al. (2001) who found that adult female equivalence scales in Argentina and Brazil
were either no different or lower than adult male equivalence scales over the age of
40 years. Since the data they used in the analysis did not allow them to identify
who purchased and consumed food away from home, Gould and Villarreal (2002)
further examine this result by regressing the percentage of total food expenditures
originating from food-away-from home purchases on household income, household
size, percentage of adult males working full and part time, and percentage of adult

females working full and part time. They found insignificant male adult impacts and
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significant female adult impacts.

Sabates et al. (2001) studied weekly food expenditures in Argentina, Brazil, and
Mexico for the corresponding time periods of 1996-1997, 1995-1996, and 1996. They
analyzed the impacts of household member counts versus endogenously determined
equivalence scales at the per capita aggregated food expenditure level. They estimated
country specific expenditure functions to obtain parameter estimates and perform
several non-nested hypothesis tests. For instance, hypothesis tests were elaborated
to know whether male and female adult equivalent profiles are the same; or whether
the use of a simple count of household members provides as much information as the
use of adult equivalence scales in explaining food purchase behavior; or whether adult
equivalence scales are the same across Argentina, Brazil and Mexico. In addition, they
created interaction variables with income to calculate and report income and adult
equivalent elasticities. Finally, Sabates et al. (2001) also compared the distribution of
weekly per capita food expenditures based on the simple count of household members
with the distribution of weekly per capita food expenditures based on the number of
adult equivalence scales.

Sabates et al. (2001) made use of the model proposed by Tedford et al. (1986)
and categorized each household member as being in a developmental or transitional
period (Levinson et al., 1978). Then, cubic spline functions were used to join the de-
velopmental periods with the transitional periods (Tedford et al., 1986, pp. 323-325).
The number of adult equivalent scales was derived from the cubic spline functions
based on the gender and age-based categories (Tedford et al., 1986, pp. 325-236). In
addition, the number of adult equivalents in each household equaled the sum of adult
equivalence scales over all household members. A total food expenditure function was
specified. Log-likelihood functions for the total number of adult equivalence scales
in each household and for the simple count of household members in each household
were also specified. Parameter estimates were obtained by maximizing the above
log-likelihood functions using an iterated procedure. Each log-likelihood function re-

quired a specification for the variance and the assumption of normality for the error
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term of the total food expenditure function.

Sabates et al. (2001) found that adult male equivalent profiles are statistically
different from adult female profiles. Male household members in general placed greater
demands on household food supplies than female members. In particular, for both
Argentina and Brazil the female adult equivalent value was below the male value;
however, for Mexico, the male profile was greater than the female profile for up to
age 35. After this age, the male and female profiles followed a similar pattern. The
male profile in Mexico increased in adult equivalence scale values up to the mid-
50s and then declined. They found the oldest male age category in Mexico has an
adult equivalence scale value of 1.15 but it was not statistically different from 1. The
female profiles for Argentina and Brazil were consistently less than 1.0. Similar to
the male profile for Mexico, the male profile for Argentina and Brazil increased in
adult equivalence scale values until the mid-50s and then declined.

Sabates et al. (2001) also found that a simple count of household members does
not provide the same information as the use of equivalence scales in explaining food
purchase behavior. Age and gender information has a statistical significant effect
in food expenditures. Furthermore, Sabates et al. (2001) graphically showed and
statistically proved that the distribution of weekly per capita food expenditures based
on the simple count of household members is consistently above and statistically
different than the distribution of weekly per capita food expenditures based on the
number of adult equivalence scales. Therefore, using the former variable as a measure
of poverty will result in a significant increase in the number of households below a
defined poverty line.

Tedford et al. (1986) developed a model to calculate adult equivalence scales,
which they named after their last names as the TCH model. Their model was based on
concepts from the fields of psychology as well as child and human development. Their
conception and components of the life cycle was based upon research by Levinson et al.
(1978) and upon concepts from child and human development described by Duvall
(1977) and by Vander Zanden (1978). They presented a model where the life cycle
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was comprised of a sequence of developmental and transitional phases. Tedford et al.
(1986) also compared adult scale parameter estimates for total food expenditure from
their model with estimates from Blokland’s (1976) and Buse-Salathe’s (1978) models.
Tedford et al. (1986) used U.S. household weekly data from 1977-1978 to obtain
parameter estimates of the three models. In addition they reported estimates of the
income elasticity for food and household equivalence scale elasticity for food. They
also considered geographical regions and whether household were located in central
city or non-metropolitan area.

First, Tedford et al. (1986) presented different ways in which the life cycle can be
delineated by ages or important events. They presented the view of Levinson et al.
(1978) of the life cycle as a sequence of developmental and transitional periods and
as a sequence of eras. They also presented the view of Duvall (1977) of the life cycle
as a sequence of important events, and the National Research Council’s recommen-
dations of the different food energy allowances for males and/or females during the
life cycle. Tedford et al. (1986) primarily adopted Levinson’s et al. (1978) develop-
mental and transitional periods to specify adult scale functions. Since consumption,
expenditure, and socio-demographic information are reported only for the household
unit, Tedford et al. (1986) estimated adult scale parameters indirectly as components
of household equivalence scales. Household equivalence scales were then aggregates
of adult equivalence scales and expressed explicitly as functions of the adult scale
parameters. Tedford et al. (1986) specified household equivalence scales as functions
of weighted sum variables dependent upon the age-sex composition of the household.
An expenditure function was then estimated using a nonlinear procedure as a func-
tion of expenditure, income, education, sex, age, geographical region variables, level
of urbanization variables, seasonality variables, race variables, the household equiv-
alence scale function, and square of the household equivalence scale function. The
latter variable was introduced to account for the possible existence of economies of
size. Inclusion of socio-demographic variables reflected the recognition of heteroge-

neous tastes and preferences. Finally, households that did not report relevant income
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or socio-demographic information were excluded. Tedford et al. (1986) claimed that
sample selection bias was not going to be a problem because the frequencies for the
usable sample are quite similar to the frequencies for the overall sample.

Based on the statistical significance of some key parameter estimates and the
statistical significance from each other, Tedford et al. (1986) found that the Buse-
Salathe’s (1978) life-cycle-age-class specification was inconsistent with Blokland’s
(1976) specification. However, in the analysis of Tedford et al. (1986), despite differ-
ences in the age-class delineations and despite the fact that TCH model constitutes
a more general specification than Buse-Salathe’s (1978) model, the empirical findings
of the scale parameters based on the TCH model were similar to those based on
Buse-Salathe’s (1978) model. Additionally, Buse-Salathe’s (1978) model was also a
more general specification than Blokland’s (1976) model. Hence, the most general
specification is found in the TCH model while the simplest specification is found in
Blokland’s (1976) model.

Tedford et al. (1986) also found that food expenditure behavior for males and
females is generally different at various developmental and transitional stages of the
life cycle. The TCH model even indicated that food expenditure behavior is different
from males and females within the same developmental and transitional stages of the
life cycle. They also found differences in household food expenditures by regions,
seasons, and by population density (city or non-metropolitan location).

Based on the life cycle pattern of the three models, Tedford et al. (1986) con-
cluded that the adult equivalence scale specification by Blokland (1976) may be too
restrictive. Second, the TCH and the Buse-Salathe’s (1978) equivalence scales during
the life cycle profile were reasonably similar, although noticeably differences resulted
in the equivalence scales for females as well as for household members greater than
sixty years of age.

Summarizing, the last three articles presented models where adult equivalence
scales are determined endogenously within the model. All these models require the

specification of an expenditure function which incorporates adult equivalence scales.
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Specifically, the first two articles used the Levinson’s et al. (1978) sequence of tran-
sitional and developmental periods of the life cycle. Hence, adult equivalence scales
were estimated by linking concepts from psychology, child development, and human
development to economic concepts. Tedford et al. (1986) repeatedly remarked the ex-
plicit rationale and consistency of their TCH model with the life-cycle developmental
concepts. However, although perhaps lacking some of this rationale and consistency,
Tedford et al. (1986) also presented alternative models such as the Blokland’s (1976)
and Buse-Salathe’s (1978) models and the National Research Council’s recommenda-
tions on food energy allowances for males and/or females. Despite the model used,
it is required to use a measure of adult equivalence scale in per capita meat expen-
ditures. In addition, it is important to differentiate between males and females as it
has been statistically shown that male and female household members place differ-
ent demands on household food supplies (Gould and Villarreal, 2002; Sabates et al.,
2001; Tedford et al., 1986). It also important to notice that we cannot use estimates
of adult equivalence scales in another country for Mexico or estimates of similar com-
modities because these scales change across countries (Sabates et al., 2001) and across
commodities (Gould and Villarreal, 2002).

In addition, it can be observed that these adult equivalence scales tend to be
smaller for female household members than male household members (Sabates et al.,
2001; Tedford et al., 1986) but it might not always be the case specially when there is
high participation of males in the labor force compared to adult females (Gould and
Villarreal, 2002). In addition, these scales tend to be smaller than one for members
younger or older than the standard adults (Gould and Villarreal, 2002; Sabates et al.,
2001; Tedford et al., 1986).

3.3 Seemingly Unrelated Regressions with Unequal Number of Observations
Chapter 2 explained Zellner’s (1962) method of estimating parameters of a set
of regression equations with equal number of observations. In this section we briefly

review SUR models with unequal number of observations. The literature reviewed
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in this section will provide an idea how SUR with unequal number of observations is
handled, inform about the alternative estimators of the variance-covariance matrix of
the error term (3) and the conditions under which one estimator will perform better
than another, the main findings about the different feasible-GLS-regression-coefficient
estimators and whether or not it is relevant to use better estimates of 3, and other
relevant issues related to SUR and unequal number of observations.

In addition, in Chapter 2, it was mentioned that the SUR model was not necessar-
ily restricted to time-series data. Specifically, it was said that Zellner (1962) provides
specific examples when the data could be time series, cross sectional or both. It is
important to be clear that the SUR model with unequal number of observations is
also not restricted to time-series data.

In times-series data, the extra observations of one equation with respect to a
second equation will necessarily be missing in the second equation. That is, in terms of
Section 3.4, we have unit nonresponse because the entire observation unit is missing—
either because the observation unit did not provide any information or simply because
no information was collected from the observation unit during the time period under
consideration. In consumer surveys of cross-sectional data, the extra observations of
one equation with respect to a second equation could be missing in the second equation
for several reasons. For example, consider a consumer survey where interviewers make
journal entries of any consumption item purchased by the interviewees (households)
during the time of interview (say one week).?> During the week of the interview not all
possible consumption items will be purchased by the households; hence, it is easy to
record only those that are purchased rather than making a list of all items consumed
by the households and record those that were purchased and those that were not.
Given that interviewers record only those that were purchased during the week of
the interview, it is natural that an expenditure equation (or a demand equation) of

a consumption item will have more (or less) observations than a second expenditure

3This is the case for the data used in this study. Section 4.2 discusses how ENIGH collects

expenditure data on items purchased by households by using a weekly journal.
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equation on another item. As explained in Section 3.1, expenditure on the second
item is censored and there are several explanations why. In this example, there are
extra observations in an expenditure equation of an item compared to an equation
for another item because not all households purchase the same items. For all items
to have the same observations, households will have to buy the same items. Now, if
journals were sent by mail and households were asked to record all items purchased
during a week, there would be households that will refuse to write the journal, and
among those who participate, there would be households that may refuse to record
all items. This will also result in unequal number of observations for some equations.
Finally, we could combine time-series with cross-sectional data and give examples of
panel data.

Whether there is time-series data, cross-sectional data, or panel data, there will be
examples of equations with unequal number of observations. The literature reviewed
in this section includes both time-series data (Sharma, 1993; Baltagi et al., 1989;
Brown and Kadiyala, 1985) and cross-sectional data (Baltagi et al., 1989).

Sharma (1993) attempted to estimate two-equations using seemingly unrelated
regression models when the number of observations in each equation were unequal.
He studied two cases. In the first case, there were n; + n time series observations
for the first equation and n + n, for the second equation; the last n observations of
the first equation match in time with the first n observations of the second equation.
In the second case, there were n time-series observations for the first equation and
n1 +n + no for the second; the observations for the first equation match in time with
those for the second, starting from the (ny + 1)-th observation.

In the first case, Sharma (1993) partitioned the matrices of each regression equa-
tion strategically by the number of observations in the first equation that match in
time with the second equation. He computed the variance-covariance matrix for the
error term, and then he used generalized least-squares to estimate the vector of pa-
rameters. He showed that when the observations on both equations start from the

same point in time (n; = 0), his results reduced to those given by Schmidt (1977).
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Similarly, when the observation on both equations terminate together in time series
(ne = 0), his results were similar to those given by Schmidt (1977).

In the second case, there was only the need to partition the second equation
strategically by nq, n, and ny. Sharma (1993) again computed the variance-covariance
matrix of the error term and used generalized least-squares to estimate the vector of
parameters. When n; = 0, his results reduced once again to those of Schmidt (1977).
When ny = 0, similar results to Schmidt (1977) were obtained.

In both cases, Sharma (1993) also indicated how to proceed when the elements
of the variance-covariance matrix were unknown. In general, partition of the error
terms of each equation and the use of least-squares residuals was necessary for the
first case, but only partition of the error term of the second equation was necessary
for the second case.

Sharma (1993) explained that if first order autoregressive errors were present, his
analysis could be modified analogously to Parks (1967). He also remarked that his
results apply when the order of observations is important (e.g. time-series data) or the
order of observations is irrelevant (e.g. cross-sectional data) while Schmidt’s (1977)
results only apply to the latter situation.

Hwang (1990) studied several alternative estimators of the variance-covariance
matrix of the error term (X) in the seemingly unrelated regressions (SUR) model
when sample sizes vary for a two-equation SUR model. The purpose of his study
was threefold. First, he wanted to clarify the amount of sample information that en-
ters the generalized least squares (GLS) estimation procedure through the alternative
estimators. In particular, he wanted to emphasize that the sample information con-
tained in each estimator of X is misleading. Second, Hwang (1990) identified a sample
statistic (o) which differs among alternative estimators of ¥ presented in his study.*
His sample statistic was used to investigate the conditions under which an estimator
of 3 performs better than the other estimators. Hence, Hwang (1990) showed that

his sample statistic was a useful guide for the choice of estimator in practice. Finally,

4A sample statistic is a function of the sample.
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Hwang (1990) proposed an alternative estimator of ¥ based on the specification of
Telser (1964).

Hwang (1990) examined four of the five alternative estimators of ¥ presented by
Schmidt (1977). The first alternative was the “usual” estimator of Zellner (1962),
but instead of dividing the sum of squared OLS residuals by the difference of the
number of observations in each equation and the number of independent variables (as
originally presented in Zellner (1962)), Schmidt (1977) divided only by the number
of observations in each equation, except for the second equation where the extra
observations were ignored. The second, third and fourth alternatives were Wilks’
(1932) estimator, Srivastava-Zaatar’s (1973) estimator, and Hocking-Smith’s (1968)
estimator respectively.

As explained by Hwang (1990), the “usual” estimator ignores the extra observa-
tions on the second equation; the Wilks’ (1932) estimator uses them only in the esti-
mation of the variance of the error term in the second equation (o92); the Srivastava-
Zaatar’s (1973) estimator uses them in the estimation of the covariance of the con-
temporaneous errors of the two equations (012) and the variance of the error term
in the second equation (092) and the Hocking-Smith’s (1968) estimator fully uses the
extra observations on second equation in the estimation of all o;;.

Hwang (1990) first parameterized 3! by a set of three parameters (0, &, oa).
The first parameter is the ratio of the covariance of the contemporaneous errors of
the two equations to variance of the error term in the second equation (0 = Z—;;), the
second parameter § = o1 — 0?0499, and the third parameter is the variance of the error
term in the second equation (092). Hwang (1990) explained that his parameterization
is commonly used in multivariate statistical analysis; for example, he explained, in the
orthogonal transformation of a normal random vector, in the conditional distribution,
in the partial correlation coefficient, etc. Then Hwang (1990) presented the alternative
estimators of 3 in terms of their estimates of (6, d, 092). Hwang (1990) proceeded
to explain that differences among the alternative estimators of hinge on the value of

the sample statistic (o). Then, before turning to a sampling experiment, he proposed
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an alternative procedure for the estimation of (6, 9§, 093), the Telser-type (1964)
estimator.

In his sampling experiment, Hwang (1990) measured relative efficiencies of alter-
native estimators by the ratios of their mean square errors (MSEs) of the estimate of
the i*" equation parameter (BZ) to that of the “usual” estimator. Since MSE ratios of
individual coefficient estimates varied from one coefficient to another, Hwang (1990)
decided to compute the average of the MSE ratios of the three coefficients in each
equation.

Hwang (1990) computed the sample statistics of a, the average MSE ratios of the
alternative estimators to the usual estimator in the full sample, and the average MSE
ratios of the alternative estimator to the usual estimator in subsamples. The latter
was constructed to investigate the effects of . Hwang (1990) found that the sample
distribution of the coefficient estimators are sensitive to the values of a.

In particular, the [Hocking-Smith’s (1968)] estimator of X may yield significantly more
efficient coefficient estimates than the “usual” estimator of 3 when « is significantly

larger than one and [the contemporaneous correlation between the error terms of the

two equations (p)] is high.

In practice, p is generally unknown. Therefore, a reasonable procedure is to estimate p
from the joint observations first, and then use the [Hocking-Smith’s (1968)] estimator
if & and p are large. If j is small and/or « is smaller than one, the “usual” estimator
is the proper choice. Alternatively, when p is high, one may use the Telser estimator

of ¥, which dominates other estimators regardless of the value of «.

Then, Hwang (1990) proceeded to briefly mention and provide some results on how
to extend the model when there are more than two equations. Specifically, he consid-
ered a three-equation system for which the first two equations have N observations
and the third equation has T" observations.

Baltagi et al. (1989) used the same system of two equations of Schmidt (1977)
and Kmenta and Gilbert (1968) to replicate the Monte Carlo experiments performed
by Schmidt (1977) with the objective of providing additional support or counter-
evidence to his findings. Baltagi et al. (1989) also explored whether the performance
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of estimates of the variance-covariance matrix of the error term in the two-equation
seemingly unrelated regression model (X) leads to better estimates of the regression
coefficients. In addition, Baltagi et al. (1989) considered the re-parameterization
by Hwang (1987) in order to check whether better estimates of X' yield better
estimates of the regression coefficients. Finally, Baltagi et al. (1989) focused on the
type of additional observations available. That is, whether the results will change if
the type of additional information is time-series or cross-sectional.

Baltagi et al. (1989) examined four of the five different estimators of ¥ presented
by Schmidt (1977). All of the estimators of 3 presented by Schmidt (1977) are consis-
tent and the corresponding coefficient estimates are asymptotically efficient. Baltagi
et al. (1989) examined Wilks’ (1932) estimator, Srivastava and Zaatar’s (1973) esti-
mator and the Hocking and Smith’s (1968) estimator. The fifth estimator presented
by Schmidt (1977), the maximum likelihood estimator, was not considered. Baltagi
et al. (1989) rather focused on the true GLS estimator instead of the maximum like-
lihood estimator as a basis for comparison. In the design of their experiment, Baltagi
et al. (1989) followed Schmidt’s (1977) and Kmenta and Gilbert’s (1968) model of

two equations.

Following [Schmidt (1977)], we set the variance of [the error term of the first equation
(e1)] and [the error term of the second equation (e2)] equal to one (017 = 092 = 1)
and consider three alternative values of the correlation between €; and ez: namely
€12 = p = 0.3, 0.6, 0.925. Three different values of the extra observations are used: F
= 5, 10 and 20. All the extra observations are on the second equation. Also, three
different sample sizes are considered: T = 10, 20, and 50. For our study all possible

combinations of T, E and p are entertained.

For each experiment, (X matrix, value of p, value of T and value of E), a sample
was generated using a pseudo-random normal deviate generator and the four feasible
GLS estimators described in the previous section along with the true GLS and OLS
are performed. Each experiment is replicated 500 times and the MSE’s are obtained
for the o’s and the regression coefficients. Also, a count measure is obtained which
gives the number of times an estimator is close to the true value of the parameter than

another estimator, and whether this frequency count is significantly different from 50%.
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Wilks” (1932) estimator was dropped for comparison purposes of the various es-
timators because the estimate of ¥ was not necessarily positive definite. That is, it
frequently gives negative definite estimates of 3. Baltagi et al. (1989) reported the
mean squared error (MSE) of the remaining three feasible GLS estimators of X, the
number of times a specific estimator (additionally including the OLS estimator) of
B11 (the coefficient of one of the independent variables (X;;) in the first equation)
is closer to (11 than the true GLS estimator, and the mean-squared error (MSE)
of various estimators (the usual, Srivastava-Zaatar (SZ), Hocking-Smith (HS), and
OLS estimators) of 317 to that of true GLS. Baltagi et al. (1989) found evidence that
estimators of the variances which use the extra observations have better MSE and
better simple count performance® than those estimators that do not use the extra
observations fully. They also found that better estimates of the variances need not
imply better estimates of the regression coefficients.

With respect to Hwang’s (1987) study, Baltagi et al. (1989) explained that Hwang’s
(1987) re-parameterization of the estimation problem in terms of the elements of
37! rather than 3 was different from the original ¥ parameterization presented by
Schmidt (1977). In particular, the Hocking-Smith estimator presented by Schmidt
(1977) was shown to use extra observations in estimating all the elements of 3, while
the Hocking-Smith (1968) estimator presented by Hwang’s (1987) differed from the
usual estimator only in its estimate of f5 (one of the three re-parameterizations of the
estimation problem for the second equation).

Baltagi et al. (1989) used Hwang’s (1987) re-parameterization to examine com-
parisons of the various regression coefficient estimators according to the performance
of the corresponding estimate of #. Once again they found that “better estimate of a
certain crucial parameter of 7! (that differentiates between two feasible GLS esti-

mators) does not necessarily lead to a better estimate of the corresponding regression

5A count of the number of times that an estimator of the variance of the error term of the first
(011) or second equation (g292) or the covariance of the error term of the first equation with the error

term of the second equation (012) was close to the true variance or covariance.

93



coefficients.” In addition, Baltagi et al. (1989) results indicated that for larger p and
larger T', the MSE performance of él,HS better than that of HALSZ but that this dom-
inance does not necessarily translates into dominance of BAH, HS Over Bu,sz- Finally,
they explained their conjecture that better estimates of the variances need not imply
better estimates of regression coefficients has also been obtained in panel data studies
by Maddala and Mount (1973), Taylor (1980) and Baltagi (1981).

Finally, when the type of additional observations changes from time-series to cross-
sectional data, Baltagi et al. (1989) found that in both data sets that “[f|easible
GLS estimators that seem to ignore the extra observations in estimating 3 (but not
necessarily in estimating 37! or @) do not generally do badly relative to feasible GLS
estimators that seem to use extra observations fully.” That is, “[Schmidt’s (1977)]
results are shown to be robust to the type of additional observation available i.e.,
whether they are time series or cross-sectional in nature.”

Brown and Kadiyala (1985) also studied the estimation of missing observations
with time series data. They referred to missing observations as the difference of the
number of observations between two-equations in a seemingly-unrelated-regressions
(SUR) model with time series data. That is, the extra observations of one equation
were referred to as missing observations in the other equation. The objectives of their
study were twofold. First, they wanted to design a test statistic for the significance
of the prediction efficiency of a seemingly unrelated regression (SUR) model. Their
test statistic consisted of a likelihood ratio test for the predictive ability of the SUR
method against the single equation alternative. Second, the cumulative residual pro-
cedure described by Fama et al. (1969) was used as a special case within the class of
“missing data estimation problems” in an empirical application. In their latter ob-
jective, Brown and Kadiyala (1985) adopted a two step process for predicting missing
observations from a stock revenue series from the utilities and airline industry over
the period 1968-1977. In the first step, a portion of the returns to an asset was
deleted while in a second step of the process a cumulative average of the residuals

was computed from the single estimates of the “missing” data and the actual values.
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In general, Brown and Kadiyala (1985) found that the SUR procedure was able
to substantially reduce prediction error and that the sum of squared prediction errors
for the single equation model was over a quarter larger than the SUR model. In their
study, Brown and Kadiyala (1985) illustrated that it is possible to use a SUR model
to assess information treated as unknown.

In summary, first it is important to recognize that researchers refer to the extra
observations of one equation with respect to a second equation in a seemingly unre-
lated regressions (SUR) model as missing observations. Second, there are alternative
estimators of the variance-covariance matrix of the error term 3 in the seemingly
unrelated regressions (SUR) model. Zellner (1962) who first derived the seemingly-
unrelated-regressions (SUR) method of estimating parameters proposed one alterna-
tive to estimate 3. Schmidt (1977) then proposed another five consistent estimators
when there are unequal number of observations for each regression equation: the
“usual” estimator which was similar to the original estimator presented by Zellner
(1962), Wilks’ (1932) estimator, Srivastava and Zaatar’s (1973) estimator, the Hock-
ing and Smith’s (1968) and the maximum likelihood estimator (MLE). Then, Hwang
(1990) proposed another alternative estimator based on Telser (1964).

With so many alternative ways to estimate X, some researchers (Hwang, 1990;
Baltagi et al., 1989; Schmidt, 1977) were motivated to study under what conditions
one estimator will be better than the others. Surprising results were found. Baltagi
et al. (1989) confirmed Schmidt’s (1977) result that a feasible GLS estimator of the
regression coefficients that ignores the extra observations in estimating 3 (but not
necessarily in estimating £~* or 3) compares favorably to a feasible GLS estimator
of the regression coefficients that seem to use all extra observations. However, ac-
cording to Hwang (1990) this does not mean that it can not be shown that under
certain conditions an alternative estimator of ¥ will perform better. Hwang (1990)
showed that when the contemporaneous correlation between the error terms in a
two-equation SUR model is high, the Telser’s (1964) estimator of ¥ dominates all
the other estimators. Nonetheless, Baltagi et al. (1989), who did not used Telser’s
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(1964) estimator, showed that better estimates of ¥ or X' need not imply better
estimates of regression coefficients. This final result is supported by studies in panel
data by Maddala and Mount (1973), Taylor (1980) and Baltagi (1981). Therefore,
even though better estimates of 3 or 37! can be used, better estimates of regression
coefficients are not guaranteed.

Third, the SUR model with unequal number of observations is not restricted to
time-series data. SUR model with unequal number of observations in panel-data
studies have been studied among others by Fiebig and Kim (2000) and Baltagi et al.
(1989). Finally, compared to the literature reviewed in Section 3.1, we now find
alternative procedures to deal with censored data. However, no matter what of the
procedures presented in this chapter is used, a feasible GLS estimator of the regression
coefficients that ignores the extra observations in estimating ¥ (but not necessarily
in estimating X! or @) compares favorably to a feasible GLS estimator of the regres-
sion coefficients that seem to use all extra observations. Consequently, econometric
Software such as SAS, when estimating a SUR model with unequal number of obser-
vations, simply ignore the extra observations of one equation with respect to another

one.

3.4 Missing Data

The term missing data is generally used instead of nonresponse. When the non-
response rate is not negligible, inference based upon only the respondents may be
seriously flawed. Lohr (1999, p. 255) explains two types of nonresponse: unit non-
response and item nonresponse. Unit nonresponse occurs when when the entire
observation unit is missing. For instance, the person provides no information for the
survey. Item nonresponse occurs when some measurements are present for the
observation unit but at least one item is missing. For instance, the person does not
respond to a particular item in the questionnaire.

Lohr (1999, pp. 264-265) explains three different ways how the type of nonresponse

(unit or item nonresponse) could be missing. Lohr (1999, p. 264) uses Little and
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Rubin’s (1987) terminology of nonresponse classification.

Missing Completely at Random If [the probability that a unit ¢ is selected for
the sample and it will respond] does not depend on [the vector of known information
about the unit 7 in the sample], [the response of interest], or the survey design, the
missing data are missing completely at random (MCAR). Such a situation occurs if,
for example, someone at the laboratory drops a test tube containing the blood sample
of one of the survey participants—there is no reason to think that the dropping of the
test tube had anything to do with the white blood cell count. If data are MCAR, the

respondents are representative of the selected sample.

Missing at Random Given Covariates, or Ignorable Nonresponse If [the prob-
ability that a unit ¢ is selected for the sample and it will respond] depends on [the vector
of known information about the unit ¢ in the sample] but not on [the response of inter-
est], the data are missing at random (MAR); the nonresponse depends only on observed
variables. We can successfully model the nonresponse, since we know the values of [the
vector of known information about the unit ¢ in the sample] for all sample units. Per-
sons in the [National Crime Victimization Survey (NCVS)] would be missing at random
if the probability of responding to the survey depends on race, sex, and age-all known
quantities-but does not vary with victimization experience within each age/race/sex
class. This is sometimes termed ignorable nonresponse: Ignorable means that a
model can explain the nonresponse mechanism and that the nonresponse can be ig-
nored after the model accounts for it, [but it does not mean] that the nonresponse can

be completely ignored and complete-data methods used.

Nonignorable Nonresponse If the probability of nonresponse depends on the value
of a response variable and cannot be completely explained by values of the [vectors of
known information about the unit ¢ in the sample], then the nonresponse is nonig-
norable. This is likely the situation for the NCVS: It is suspected that a person who
has been victimized by crime is less likely to respond to the survey than a nonvictim,
even if they share the values of all known variables such as race, age, and sex. Crime
victims may be more likely to move after a victimization and thus not be included in
subsequent NCVS interviews. Models can help in this situation, because the nonre-
sponse probability may also depend on known variables but cannot completely adjust

for the nonresponse.

Lohr (1999, pp. 255-288) discusses four approaches to deal with nonresponse:

97



1. Ignoring the nonresponse. This is not recommended.

2. Preventing the nonresponse by designing a survey so that the nonresponse is

low. This is highly recommended.

3. Taking a representative subsample of the nonrespondents and use it to make

inferences about the other nonrespondents.

4. Using models to predict values for the nonrespondents. Among these models
Lohr (1999, pp. 265-288) discusses weighting methods, imputation methods,

and parametric models for nonresponse.

The main problem caused by the nonresponse is potential bias of population es-
timates. The bias results when we estimate the population mean by using only the
sample respondent mean and the population mean in the nonrespondent group differs
from the population mean in the respondent group. Lohr (1999, p. 258) shows that
the bias is small if either (1) the mean of the population nonrespondents is close to
the mean for the population respondents or (2) the proportion of the population non-
respondents to the entire population is small (i.e., there is little nonresponse). Since
it not possible to know (1), the only alternative is to reduce the nonresponse rate.

Designing the survey such that the nonresponse is low refers to carefully studying
the best way to collect the data. This includes being able to anticipate and prevent
reasons for nonresponse as much as possible. Lohr (1999, pp. 260-262) provides and
discusses a list of factors that need to be examined: survey content, time of survey,
interviewers, data-collection method, questionnaire design, respondent burden, survey
introduction, incentives and disincentives, and follow up.

Lohr (1999, p. 263) explains Hansen and Hurwitz’s (1946) procedure to subsam-
ple nonrespondents and to use two-phase sampling (also called double sampling) for
stratifying and then estimating the population mean or total. In this procedure, an
estimate of the population mean is obtained from a portion of the sample average

of the original respondents and a portion of the average of the subsampled nonre-
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spondents. These portions are the percentages of the sample that responded and not
responded respectively. Similarly, an estimate of the population total can be obtained
from a portion of the sample units in the respondent stratum and a portion of the
sampled units in the nonrespondent stratum.

Weighting methods for nonresponse refer to incorporating weights in calculating
population estimates of interest or to the use of weights to adjust for the nonresponse.
Some weighting methods are weighting-class adjustment methods, postratification
using weights, and weights that are the reciprocal of the estimated probability of
response. A discussion and further references of these weighting methods are found
in Lohr (1999, pp. 265-272). Lohr (1999, p. 272) explains weighting adjustments are
usually used for unit nonresponse, not for item nonresponse (which would require a
different weight for each item).

Imputation methods refer to alternative ways in which a nonresponse is replaced.
The word imputation refers to substituting a missing value for a replacement value.
Imputation methods are commonly used for item nonresponse. Lohr (1999, pp. 272
278) explains deductive imputation, cell mean imputation, hot-deck imputation, re-
gression imputation, cold-deck imputation, and multiple imputation. In particular,
regression imputation uses a regression of the item of interest on variables observed
for all cases to predict the missing value. However, Lohr (1999, p. 278) explains that
“[v]ariances computed using the data together with the imputed values are always
too small, partly because of the artificial increase in the sample size and partly be-
cause the imputed values are treated as though they were really obtained in the data
collection.” Lohr (1999, p. 278) refers to Rao (1996) and Fay (1996) for a discussion
on methods for estimating the variances after imputation.

Finally, parametric models for nonresponse refer to models that estimate within
the model the nonresponse by using information on both known values of the variable
of interest and missing values of the variable of interest (i.e., the nonresponse). That
is, a model for the complete data is developed and components are added to the model

to account for the proposed nonresponse mechanism. Depending on how good the
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model describes the data, the estimates of the variances that result from fitting the
model may be better or worse. Examples can be found in Wooldridge (2006, pp. 609—
613) and Pindyck and Rubinfeld (1997, pp. 325-331) who explain a censoring model
and a maximum likelihood model respectively to address item non-response on the

dependent variable.

3.5 Stratified Sampling
Lohr (1999, pp. 23-24) explains three basic types of probability samples.

e A simple random sample (SRS) is the simplest form of probability sample.
An SRS of size n is taken when every possible subset of n units in the population
has the same chance of being the sample... In taking a random sample, the
investigator is in effect mixing up the population before grabbing n units. The
investigator does not need to examine every member of the population for the
same reason that a medical technician does not need to drain you of blood to
measure your red blood cell count. Your blood is sufficiently well mixed that any

sample should be representative.

e In astratified random sample, the population is divided into subgroups called
strata. Then an SRS is selected from each stratum, and the SRSs in the strata
are selected independently. The strata are often subgroups of interest to the
investigator—for example, the strata might be different ethnic or age groups in a
survey of people, different types of terrain in an ecological survey, or sizes of firms
in a business survey. Element in the same stratum often tend to be more similar
than randomly selected elements from the whole population, so stratification

often increases precision.

e In a cluster sample, observation units in the population are aggregated into
larger sampling units, called clusters. Suppose you want to survey Lutheran
church members in Minneapolis but do not have a list of all church members in
the city, so you cannot take an SRS of church members. However, you do have
a list of all the Lutheran churches. You can then take an SRS of the churches
and then subsample all or some church members in the selected churches. In this
case, the churches form the clusters, and the church members are the observation

units.
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As it can be read, all these methods involve random selection of units to be in the
sample. The key difference among them is in the level at which the random selection
of units takes place. For instance, in an SRS, the observation units are randomly
sampled from the population of observation units; in a stratified random sample, the
strata are first selected and then the observation units within each stratum are ran-
domly sampled; in a cluster sample, the clusters are first randomly selected from the
population of all clusters and then all or some of the observation units are sampled.
To illustrate this further, Lohr (1999, p. 24) provides a very useful example. Suppose
you want to estimate the number of journal publications that professors at your uni-
versity have. In an SRS, construct a list of all professors in your sample and randomly
select n of them and ask them for the number of journal publications. In a stratified
sample, classify faculty by college (agricultural sciences and natural resources, ar-
chitecture, arts and sciences, business, education, engineering, human sciences, mass
communications, etc.) and then take an SRS of faculty in the agricultural sciences
and natural resources, another SRS of faculty in architecture, and so on. Finally, in a
cluster sample, randomly select 10 of the 50 academic departments in the university
and ask each professor in each selected department for his/her number of journal
publications.

Lohr (1999, p. 95) further explains stratified random sampling. In stratified ran-
dom sampling the strata do not overlap, and they constitute the whole population
so that each sampling unit belongs to exactly one stratum. Lohr (1999, pp. 95-96)

provides the following reasons to use stratified sampling:

1. To be protected from the possibility of obtaining a really bad sample that is

not representative of the population.

2. To obtain data of known precision for subgroups. These subgroups should be

the strata, which coincide with the domain of the study.

3. To reduce cost and increase ease of administration.
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4. To obtain more precise (having lower variance) estimates for the whole popula-

tion.

The sampling weight in stratified sampling is given by w,; = (N/ns) (Lohr,
1999, p. 103), where N = N; + Ny + ... + Ny is the total number of units in
the entire population, H is the number of “layers” (also called strata), N is the
population units in the A" stratum, and n, is number of observations randomly
sampled from the population units in stratum h. The sampling weight wy,; can be
thought of as the number of units in the population represented by the sample unit j
in stratum h or simply the sample member (h, 7).° Additionally, Lohr (1999, p. 103)
explains the probability of selecting the j* unit in the A" stratum to be in the
sample is 7;,; = ny, /Ny, which is also the sampling fraction in the A" stratum. Hence,
the sampling weight is the reciprocal of the probability of selection. That is, wy; =
1/mpj. Then, the sum of the sampling weights equals the population size. That is,
N=1 > jes, Whi, where Sy is the set of ny, units in the SRS for stratum h. “[If]
each sampled unit ‘represents’ a certain number of units in the population,... the
whole sample ‘represents’ the whole population” (Lohr, 1999, p. 103).7

It is very important that a statistician does not ignore the weights in a strati-
fied sampling. A statistician who designs a survey to be analyzed using weights has
implicitly visualized a model for the data. A sample is usually stratified and subpop-
ulations oversampled precisely because researchers believe there will be differences
among the subpopulations. Such differences also need to be included in the model.
“A data analyst who ignores stratification variables and dependence among observa-
tions is not fitting a good model to the data but is simply being lazy” (Lohr, 1999, p.
229).

Lohr (1999, p. 229) recommends incorporating weights in calculating quantities

6As it will be discussed in Section 4.2, ENIGH calls the sampling weight the “expansion factor”

(i.e., the number of households that a particular household represent nationally).
"As it will be mentioned in Section 4.2, according to ENIGH—Sintesis Metodolégica (2006), the

results obtained from ENIGH survey can be generalized to the entire Mexican population.
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such as means, medians, quantiles, totals, and ratios. One way to estimate these
quantities is by incorporating the stratification variables (Lohr, 1999, pp. 95-130).
Another way to estimate these quantities (but not their standard errors) is by con-
structing an empirical distribution for the population from the sampling weights.
“The statistics calculated using weights are much closer to the population quantities”
(Lohr, 1999, p. 234).

Lohr (1999, pp. 347-378) also explores how to do regression in complex survey
samples. She explains that even though there is debate whether the sample sampling
weights are relevant for inference in regression (Lohr, 1999, p. 363), the data structure
needs to be taken into account in either approach. She explains two things can happen
in complex surveys (Lohr, 1999, pp. 352-253):

1. Observations may have different probabilities of selection, 7;. If the probability
of selection is related to the response variable y;, then an analysis that does

not account for the different probabilities of selection may lead to biases in the

estimated regression parameters.

2. Even if the estimators of the regression parameters are approximately design
unbiased, the standard errors given by SAS or SPSS will likely be wrong if the
survey design involves clustering. Usually, with clustering, the design effect (deff)

for regression coefficients will be greater than 1.

Lohr (1999, p. 355) recommends, “[ijn practice, use professional software designed
for estimating regression parameters in complex surveys. If you do not have ac-
cess to such software, use any statistical regression package that calculates weighted
least squares estimates. If you use weights w; in weighted least squares estimation,
you will obtain the same point estimates...; however, in complex surveys, the stan-
dard errors and hypothesis tests the software provides will be incorrect and should
be ignored.” Lohr (1999, pp. 289-318) explains several methods for estimating vari-
ances of estimated totals and other statistics from complex surveys. She explains
linearization (Taylor Series) methods, random group and resampling methods (bal-

anced repeated replication, the Jacknife, and the Bootstrap) for calculating variances
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of nonlinear statistics. In addition, she also explains the calculation of generalized
variance functions and how to construct confidence intervals. For more information
on these methods refer to Lohr (1999, pp. 298-318).

Wooldridge (2002, p. 551) explains that there are a variety of selection mech-
anisms that result in nonrandom samples (also called selected samples). Some
of these are due to sample design, while others are due to the behavior of the units
being sampled, including nonresponse on survey questions and attrition from social
programs (i.e., in panel data where people leave the sample entirely and usually do
not reappear in later years). Wooldridge (2002, p. 552) explains that in some cases,
the fact that we have a nonrandom sample does not affect the way we estimate popu-
lation parameters. Wooldridge (2002, pp. 552-558) provides conditions under which
estimating the population model with linear and nonlinear models using nonrandom
sample is consistent for the population parameters. For an explanation of these con-
ditions refer to Wooldridge (2002). Wooldridge (2002, pp. 558-590) also explains
how to deal with nonrandom samples on the basis of the response variable, how to
do nonrandom sample corrections with a probit or tobit model under exogenous or
endogenous explanatory variables, and how to deal with other nonrandom sample
issues.

Wooldridge (2002, p. 590) explains stratified samples are a form of nonrandom
samples. In stratified samples different subsets of the population are sampled with
different frequencies. Stratification can be based on exogenous variables or endoge-
nous variables or a combination of these. Wooldridge (2002, p. 596) explains that
when x is exogenous (see Wooldridge 2002, p. 596 for the sense in which x must be
exogenous) and stratification is based entirely on x, the standard unweighted esti-
mator on the stratified sample is consistent and asymptotically normal. In addition,
Wooldridge (1999) shows that the usual asymptotic variance estimators are valid
when stratification is based on x and we ignore the stratification problem. In this
case the usual conditional maximum likelihood analysis holds, and in the case of re-

gression the usual heteroskedasticity robust variance matrix estimator can be used
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(Wooldridge, 1999, p. 597).

Two common kinds of stratification are discussed by Wooldridge (2002, pp. 590
591): standard stratified sampling (SS sampling) and variable probability sampling
(VP sampling).

In SS sampling, the population is first partitioned into J groups, Wi, Wa, ..., Wy,
which are assumed to be nonoverlapping and exhaustive. We let w denote the random
variable representing the population of interest... For j = 1,...,J, draw a random
sample of size N; from stratum j. For each j, denote this random sample by {w;;:
i =1,2,...,N;}. The strata samples sizes N; are nonrandom. Therefore, the total
sample size, N = Ny + ...+ Ny, is also nonrandom. A randomly drawn observation
from stratum j, w;;, has distribution D(w|w € W;). Hence, the observations within

a stratum are identically distributed but observations across strata are not.

Notice that Wooldridge’s (2002) definition of SS sampling is the same as Lohr
(1999) definition of stratified random sampling. Now, consider Wooldridge’s (2002, p.
591) explanation of variable probability sampling (VP sampling).

[In VP sampling,] an observation is drawn at random from the population. If the
observation falls into stratum j, it is kept with probability p;. Therefore, random draws
from the population are discarded with varying frequencies depending on which stratum
they fall into. This kind of sampling is appropriate when information on the variable or
variables that determine the strata is relatively easy to obtain compared with the rest of
the information. Survey data sets, including interviews to collect panel or longitudinal
data, are good examples. Suppose we want to oversample individuals from, say, lower
income classes. We can first ask an individual her or his income. If the response is
in income class j, this person is kept in the sample with probability p;, and then the
remaining information, such as education, work history, family background, and so on

can be collected; otherwise, the person is dropped without further interviewing.

It is important to notice that in VP sampling the observations within a stratum
are discarded randomly. Wooldridge (1999) discusses why VP sampling is equivalent
to the procedure in Table 3.1.

The number of observations falling into stratum j is denoted by N;, the number

of data points we actually have for estimation is Ng = N7 + No+ ...+ Ny, and N is
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Table 3.1: Variable Probability Sampling (VP Sampling)

Repeat the following steps N times

1. Draw an observation w; at random from the population.
2. If w; is in stratum j, toss (a biased) coin with probability p; of turning up heads.
Let h;; = 1 if the coin turns up heads and zero otherwise.

3. Keep observation ¢ if h;; = 1; otherwise, omit it from the sample.

Source: Wooldridge (2002, p. 591).

the number of times the population is sampled. Wooldridge (2002, p. 592) explains
that if IV is fixed, then Ny is a random variable. It is not known what each NN; would
be prior to sampling.

In VP sampling, Wooldridge (2002, p. 594) shows that in estimating the following
linear model by weighted least squares (WLS),

y=xB,+u, FExu)=0, (3.1)

where x is a (1 x K) vector of explanatory variables, y is a scalar response variable,

and v is a scalar disturbance variable; the asymptotic variance estimator is

No -1 Ny No —1
<Z pﬁlx;X,) (Z pj_fafx;xi) (Z pﬁlxgxi> , (3.2)
i=1 i=1 i=1

where u; = y; — xi,éw is the residual after WLS estimation, pj_z_1 the weight attached
to observation ¢ in the estimation, and j; the stratum for observation i. Wooldridge
(2002, p. 593) explains that in practice, the pzl are the sampling weights reported
with other variables in stratified samples. Additionally, Wooldridge (2002, p. 594)
explains that this asymptotic variance matrix estimator is simply White’s (1980)
heteroskedastic-consistent covariance matrix estimator applied to the stratified sam-
ple, where all variables for observation ¢ are weighted by p;I/ ? before performing the
regression. This estimator has also been suggested by Hausman and Wise (1981). Ad-
ditionally, Wooldridge (2002, p. 54) remarks that it is important to remember that the

asymptotic variance matrix estimator above is not due to potential heteroskedasticity
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in the underlying population model. Even if E(u?/x) = o2, the estimator in equation
(3.1) is generally needed because of the stratified sampling. Wooldridge (2002, p. 54)
explains this estimator works in the presence of heteroskedasticity of arbitrary and
unknown form in the population, and it is routinely computed by many regression
packages.

The weights in SS sampling are different from those in the VP sampling. In SS
sampling the weights are (Q);,/H;,) rather than pj_il, where j; denotes the stratum for
observation i, ); = P(w € W;) denotes the population frequency for stratum j (it is
assumed that @); are known), and H; = N, /N denotes the fraction of observations in
stratum j. Additionally, the formula for the asymptotic variance is different.

In SS sampling, Wooldridge (2001, p. 464) shows that in estimating the linear
model in equation (3.1) above, the weighted estimator is consistent for 3,. Addition-
ally, if the stratification is exogenous and E(u|x) = 0, the asymptotic variance matrix

estimator of 3, can be written as

(Z(%/Hji)xéxi) (Z(%/Haz)%?xéxi) (Z(%/Hji)xgxz‘) ;o (33)

i=1 i=1 i=1
which is again simply White’s (1980) heteroskedasticity-consistent covariance matrix
estimator applied to the stratified sample, where all variables for observation j are
weighted by (Q;,/Hj,)~/? before performing the regression.

Wooldridge (2002, pp. 595-596) comments that if the population frequencies @),
are known in VP sampling, he recommends using as weights @);/(NN;/Ny) rather than
pj-’l. His recommendation is based on his findings in Wooldridge (1999). Additionally,
Wooldridge (2002, p. 596) explains that when the sampling weights @;,/H;, or pj_i1
and the stratum are given, the weighted M-estimator under SS or VP sampling is
fairly straightforward, but it is not likely to be efficient. It is possible to do better
with conditional maximum likelihood (Imbens and Lancaster, 1996).

Summarizing, when dealing with stratified sampling, the weighted estimator is

consistent (Wooldridge, 2001, p. 464). “If [we] use weights w; in the weighted least

squares estimation, [we|] will obtain the same point estimates...; however, in com-
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plex surveys, the standard errors and hypothesis tests the software provides will be
incorrect and should be ignored” (Lohr, 1999, p. 355). Hence, we briefly mentioned
procedures that can be used to estimate standard errors and hypothesis tests. Of par-
ticular interest, Lohr (1999, pp. 298-308) points to the use of Bootstrap or Jacknife
in complex survey designs. We also provided Wooldridge’s (2002; 2001) estimators of
asymptotic variances. However, since Wooldridge’s (2001) SS sampling estimator of
asymptotic variances is not in the context of seemingly unrelated regressions (i.e., do
not deal with the estimation of a system of equations), Lohr’s (1999, pp. 306-307)
bootstrap procedure is more general and appropriate to the specific objective of this
study of providing an empirical application of a seemingly unrelated regression model.

Therefore, the bootstrap procedure will be adopted in this study.

3.6 The Bootstrap

The bootstrap was first proposed by Efron (1979). Then, further theory was pre-
sented by Singh (1981), Bickel and Freedman (1981), and Efron (1982). Efron and
Tibshirani (1993) provided a good introductory statistics treatment. Other stud-
ies, mentioned in the literature bellow, include Freedman (1984), Sitne (1990), Hall
(1992), Dixon (1993), Hjorth (1994), Brownstone and Kazimi, and Mackinnon (2002).

Cameron and Trivedi (2005, p. 355) explain that “bootstrap methods for statistical
inference... have the attraction of providing a simple way to obtain standard errors
when the formulae from asymptotic theory are complex.” There is a wide range of
bootstrap methods. Cameron and Trivedi (2005, p. 357) classify the wide range of
bootstrap method into two broad approaches. “First, the simplest bootstrap methods
can permit statistical inference when conventional methods such as standard error
computation are difficult to implement. Second, more complicated bootstraps can
have the additional advantage of providing asymptotic refinements that can lead to
a better approximation in finite samples.”

Lohr (1999, p. 306) explains the bootstrap for an simple random sample (SRS)
with replacement. When applying the bootstrap for an SRS with replacement, we
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hope that it will reproduce properties of the whole population. Lohr (1999, p. 306)
provides the following example. Suppose S is an SRS of size n. The sample S is
treated as if it were a population, and resamples from S are taken. If the sample really
is similar to the population—if the empirical probability mass function (epmf) of the
sample is similar to the probability mass function of the population—then samples
generated from the epmf should behave like samples taken from the population.

Lohr (1999, p. 307) further explains that after a total of B SRSs with replacement
are taken from S (i.e., B resamples), the bootstrap distribution of the parameter of
interest is calculated. Then, this distribution may be used to calculate a confidence
interval directly. A 95% confidence interval is calculated by finding the 2.5 percentile
and 97.5 percentile of the bootstrap distribution of the parameter of interest.

The bootstrap for an SRS can also be without replacement (Lohr, 1999, p. 307).
Gross (1980) discusses some properties of with-replacement and without-replacement
bootstrap distributions. When the original SRS is without replacement, Gross (1980)
proposes creating N/n copies of the sample to form a “pseudopopulation,” where N
denotes the population size, and then drawing B SRSs without replacement from the
pseudopopulation. When n/N is small, the with-replacement and without-replacement
bootstrap distribution should be similar (Lohr, 1999, p. 307).

Bootstrap methods for statistical inference in the context of stratified samples
have also been studied. For example, Rao and Wu (1988) explain rescaling boot-
strap methods for a stratified random sample, Sitter (1992) describes and compares
three bootstrap methods for complex surveys, and Shao and Tu (1995) summarize
theoretical results for the bootstrap in complex survey samples.

Cameron and Trivedi (2005, p. 358) summarize key bootstrap methods for an es-
timator 6 and associated statistics based on an iid sample {w1,Wa,..., W, }, where
usually w; = (y;,%;) and 0 is a smooth estimator that is v/ N consistent and asymp-

totically normally distributed.® For notational simplicity they generally presented

8Cameron and Trivedi (2005, p. 358) use N to denote the bootstrap sample size. If N denotes

the population size, and a bootstrap sample size n is desired, then replace N by n.
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results for scalar 6. For vector € in most instances the replacement of by 6;, the ;%

component of 0 is required. Statistics of interest include the usual regression output:

the estimate é; standard errors sy; t-statistic ¢ = (9;_?0)’ where 6 is the null hypoth-
6

esis value; the associated critical value or p-value for this statistic; and confidence

interval.
A general bootstrap algorithm is presented by Cameron and Trivedi (2005, p.
360):

1. Given data w1, wa,...,wy draw a bootstrap sample [of] size N using a method

*

given [below] and denote this new sample wi, w3,..., wi.

2. Calculate an appropriate statistic using the bootstrap sample. Examples include

(a) the estimate 6% of 6, (b) the standard error s4. of the estimate 6*, and (c)

(0*=0)

a t-statistic t* = centered at the original estimate 0. Here * and Sp. are

6%
calculated in the usual way but using the new bootstrap sample rather than the

original sample.

3. Repeat steps 1 and 2 B independent times, where B is a large number, obtaining

B bootstrap replications of the statistic of interest, such as é{,é;,...,ég or
t5, ..t

4. Use these B bootstrap replications to obtain a bootstrapped version of the statis-

tic.

The following bootstrap sampling methods are explained by Cameron and

Trivedi (2005, p. 360):

e Empirical distribution function (EDF) bootstrap or nonparametric

bootstrap.

The simplest bootstrapping method is to use the empirical distribution of the
data, which treats the sample as being the population. The wj,w3,..., w} are
obtained by sampling with replacement from wi,ws, ..., wy. In each bootstrap
sample so obtained, some of the original data points will appear multiple times
whereas others will not appear at all... [This method] is also called a paired
bootstrap since in single equation regression models w; = (y;,x;), so here both

y; and x; are resampled.

e Parametric bootstrap.
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Suppose the conditional distribution of the data is specified, say y|x ~ F(x, 0),
and an estimate 0 5 0, is available. Then in step 1 we can instead form a boot-

strap sample by using the original x; while generating ¥; by random draws from

F(x;,0). This corresponds to regressors fixed in repeated samples [see Cameron
and Trivedi (2005, Section 4.4.5)]. Alternatively, we may first resample x} from
X1,X2,. .., Xy and then generate y; from F(x}, 9), 1=1,2,...,N. Both... exam-

ples... can be applied in fully parametric models.
e Residual bootstrap.

For regression model with additive iid error, say y; = g(x;, 3) + u;, we can form

fitted residuals 1, tg, . . ., 4N, where 4; = y; — g(x;,3). Then in step 1 bootstrap
from these residuals to get a new draw of residuals, say (4}, 43, ..., %), leading to
a bootstrap sample (y},x1), (¥5,%2), - .., (¥, Xn), where y* = g(x;, 8)+u;. [The
residual bootstrap] uses information intermediate between the nonparametric and
parametric bootstrap. It can be applied if the error term has distribution that

does not depend on unknown parameters.

In this study, the first bootstrap sampling method is used. According to Cameron
and Trivedi (2005, p. 361), “the paired bootstrap... applifes] to a wide range of non-
linear models, and relifes| on weak distributional assumptions.” However, according
to Cameron and Trivedi (2005, p. 361), the other bootstraps generally provide better
approximations (see Horowitz, 2001, p. 3185).

Particularly, this study uses the %BOOT macro developed by SAS Online Sup-
port (Accessed July 1, 2008). “The %BOOT macro does elementary nonparametric
bootstrap analyses for simple random samples, computing approximate standard er-
rors, bias-corrected estimates, and confidence intervals assuming a normal sampling
distribution” (SAS Institute Inc., p. 1). Additionally, this study resamples obser-
vations and the %BOOT macro executes a macro loop that generates and analyzes
the resamples one at time. Moreover, with the %BOOT macro “[e]ither method of
resampling for regression models (observations or residuals) can be used regardless
of the form of the error distribution. However, residuals should be resampled only

if the errors are independent and identically distributed and if the functional form
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of the model is correct within a reasonable approximation. If these assumptions are
questionable, it is safer to resample observations” (SAS Institute Inc., p. 8). Finally,
the default size of each resample used by the %BOOT macro is equal to the size of
the input dataset from which the rample is being taken. For detailed information

about the %BOOT macro refer to SAS Online Support.
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CHAPTER IV
METHODS AND PROCEDURES

This chapter starts by explaining the Mexican database on household income and
expenditures that is used in the study. In particular, Section 4.1 explains what type
of information is contained in the database, the sampling methods used to collect
the data, how the data is collected, and the activities performed to preserve the
quality of the data. Additionally, Section 4.1 explains how the Mexican database
is divided into seven datasets. Then, Section 4.2 begins by explaining the variables
from the seven datasets that are used in the study. It continues to give details
about how new variables are created or transformed from the variables provided.
In addition, it reports the difficulties that emerge as the data is organized in the
desired manner. Further, it describes the procedure adopted to reduce the number of
missing observations and how this study stayed away from price imputations. Finally,
given the outcome of Section 4.2, Section 4.3 specifies the SUR models that will be
estimated. In particular, Section 4.3.1 provides one general model while Section 4.3.2
explains how individual models will be estimated for each urbanization level within

each Mexican region.

4.1 Data

Mexican data on household income and expenditures was obtained from FEncuesta
Nacional de Ingresos y Gastos de los Hogares (ENIGH). This nation-wide survey is
published since 1984 by Instituto Nacional de Estadistica, Geografia e Informdtica
(INEGI). Even though ENIGH is available for the years 1984, 1989, 1992, 1994, 1998,
2000, 2002, 2004 and 2006, this study only uses data for the year 2006, which was
collected between August and November 2006.

ENIGH nation-wide Mexican household survey encompasses Mexico’s 31 states
and the Federal District (a territory which belongs to all states), and contains in-

formation about house infrastructure, appliances and services as well as household
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members demographic and socio-demographic characteristics and occupational ac-
tivities. Particularly, ENIGH contains information about household incomes, and
quantities and prices of goods purchased.

According to ENIGH—Sintesis Metodoldgica, ENIGH’s sampling methods are
probabilistic, multi-staged, stratified, and conglomerated. According to Encuesta
Nacional sobre la Dindmica de las Relaciones en los Hogares (ENDIREH)— Sintesis
Methodoldgica (2006), the sampling method is probabilistic because the sampling
units have a probability of being selected, which is known and different from zero.
Additionally, the sampling method is multi-staged because the sampling units are se-
lected in multiple stages. It is stratified because the target population is divided into
groups with similar characteristics, which form the strata. Finally, it is conglomer-
ated because the sampling units (households) are made up from the observation units
(household members). However, for some data the observation unit is the household.
For example, each household contains information on its members about age, gen-
der, marital status, etc., but information on food expenditures is recorded for the
household unit only.

Results obtained from the survey can be generalized to the entire population
(ENIGH—S7ntesis Metodoldgica, 2006). ENIGH chooses households for interview
and reports information mainly for the household unit. Excluded from the analysis
are diplomatic foreign homes and homes maintained by companies for business-related
purposes. Additionally, ENIGH is based on the international recommendations of the
United Nations (UN) and the International Labour Organization (ILO). Furthermore,
it is articulated to the Mexican governmental institutions and surveys accomplished
by INEGI.

In order to collect the data, ENIGH performs direct interviews to each household
during one week, usually from August to November. The workforce is organized into
interviewers, supervisors, and state project managers. Two instruments are used to
collect the data: a questionnaire and a journal. The questionnaire is designed to

collect the data concerning the house infrastructure, the members and their house-
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hold identification, and members’ socio-demographic characteristics. In addition, for
household members older than 12 years old, the questionnaire will capture occupa-
tional activities and related characteristics as well as income and expenditures. On
the other hand, the journal is designed to collect at-home and away-from-home ex-
penditures on food, drinks, cigarettes and public transportation. During the first day
of interview, these latter expenditures are recorded in the journal by the interviewer
in order to train the interviewee. The journal remains with, and is filled by, the
interviewee for the next six days of the week (INEGI, personal contact). Hence, data
on food, drinks, cigarettes and public transportation is recorded in the Expenditure
dataset (see Table 4.1) only when the household makes a purchase.! However, the in-
terviewer will visit the household each day until the end of the week of the interview
in order to continue training the interviewee and make sure expenditures on food,
drinks, cigarettes and public transportation are correctly being recorded by the inter-
viewee in the journal (INEGI, personal contact). In the first day of interview, food
that already belonged to the household, before the interviewer arrived, is recorded
in the journal only if the food was acquired the day before the interviewer arrived
(INEGI, personal contact).

To assure the quality of the data during the collection period, the following super-
vising activities are performed: a) registering the questionnaire and journal by an id
number, which contains the year, state, stage, consecutive number and type of home;
b) controlling the number of homes in the framework; c) verifying the nonresponse; d)

observing directly the interview and supervisor; and e) applying a re-interview ques-

'In Section 3.1, this problem was referred as censored data. Additionally, although ENIGH will
not record meat cuts that the household did not buy during the week of the interview, if we consider
Section 3.4’s terminology, there will be item nonresponse in some variables (e.g. place of purchase,
price, quantity, expenditure, etc.), but we can still recover other variables (e.g. the “expansion
factor”, stratum, household size, etc.). Now, if we look at the Expenditure dataset as it is reported
by ENIGH and consider the demand of certain items as equations (i.e., quantity as a function of
prices and income), there will be equations with unequal number of observations as discussed in

Section 3.3.
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tionnaire to completed interviews. After the data is collected, it is carefully entered
into the database, which is then electronically validated. In case of omitted item
observations, incomplete observations, errors or inconsistent information, the data is
verified via phone or by returning to the collection field. When it is not possible to
have a 100% response rate, a nonreponse rate is reported. In ENIGH 2006, there was
a nonresponse rate of 10.55%.

The ENIGH database is divided into seven datasets as described in Table 4.1.
The observation unit for the Concentrated, Household, Expenditures, and Financial
Transactions datasets is the household, while the observation unit for the Members
and Incomes datasets is the household member. For the No Monetary Transactions
dataset the observation unit is the household or the household member. For more

detailed information, the reader should refer to ENIGH.
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Table 4.1: List of the Seven Datasets in ENIGH 2006 Database.

Dataset Number | General Description
of
Records
in 2006
Concentrated | 20,875 Information about the expansion factor (number of
(concen- households that a particular household represent nation-
trado.dbf) ally) and other variables that appear in the other six
datasets.
Households 20,875 Information about the household geographical location,
(hogares.dbf) household stratum, house infrastructure, utilities, home
vehicles and home appliances, etc.
Members 83,624 Information about number of household members, rela-
(pobla- tionships among household members, gender, age, city
cion.dbf) of residency, level of education, marital status, employ-
ment status, job position, if member has salary/wages,
job description, weekly number of workdays, if member
has social security contributions, etc.
Income  (in- | 79,752 Information about type of employment, current income,
gresos.dbf) income one, two, three, four, five and six months ago,
quarterly income, etc.
Expenditures | 1,348,530| Information about items purchased, place of purchase,
(gastos.dbf) day of purchase, payment option, quantity, cost, price,
expenditure, last month expenditure, quarterly expen-
diture, and frequency of purchase.
Financial 18,269 Information about bank deposits, loans, credit card pay-
Transactions ments, debt with employer, interest payment, purchase
(eroga- of local and foreign currency, purchase of jewelries, life
ciones.dbf) insurance, money inherited, purchase of houses, pur-
chase of condominiums, purchase of land, mortgage pay-
ments, others, equipment purchases, stock investment,
patent investments, etc.
No Monetary | 174,490 | Information about the type of expenditure, reason of

Transactions
(nomone-

tario.dbf)

purchase, day of purchase, quantity, price, expenditure,
and quarterly expenditure.

Source: ENIGH 2006, summarized by author.
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4.2 Procedures

As explained in Chapter I, the Mexican meat consumption will be analyzed in
this research. In the previous section, Table 4.1 listed the seven datasets in ENIGH
2006 database. However, in order to provide an empirical application of a SUR model
using ENIGH 2006 database, the variables of interest need to organized in one dataset
first. Table 4.2 list the variables, from the seven ENIGH 2006 datasets, used in this
study.

However, before putting all variables of interest together in one dataset, a new
variable (the number of adult equivalents per household) needs to be computed from
the “edad” variable in the Members dataset. As explained in Section 3.2, adult equiv-
alence scales are used to compute the number of adult equivalents per household by
taking into account how much an individual household member of a given age and sex
contributes to household expenditures or consumption of goods relative to a standard
household member. Adult equivalents are computed to be able to compare house-
hold consumption. For instance, meat consumption in different households cannot be
directly compared without computing per capita meat consumption because a big-
ger households will naturally have a tendency to consume more meat than smaller
households. Not adjusting meat consumption and expenditures by adult equivalents
presents a problem when estimating quantity consumed (quantity demand) as a func-
tion of prices and total expenditure. For example, suppose one household demands
g amount of beef and suppose a bigger household who pays a higher price demands
more beef. If we compare these two households without adjusting by adult equiva-
lents, price increases but does quantity decrease? On the other hand, adjusting by
adult equivalents (i.e., computing per capita beef consumption) in our example, price
will always increase but this time, quantity will decrease. Hence, this study used the
National Research Council’s recommendations of the different food energy allowances
for males and/or females during the life cycle as reported by Tedford et al. (1986) to
compute the number of adult equivalents.

After computing the number of adult equivalents per household, all nominal vari-
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ables? (nominal prices and nominal expenditures) are transformed into real variables®

(real prices and real expenditures). Real prices and real expenditures are computed

as follows:
nominal nominal
real __ D; mreal o m; (4 1)
DPi o ( CPI2006) ’ i o ( CP12006) ’ ’
100 100

where ¢ = A025, A026, ..., A074 and CPlye is the simple average of the consumer
price index (CPI) for the months of August, September, October, and November
2006 as reported by Banco de Mexico. The base period for the CPI of Banco de
Mexico is the second half of June 2002. Hence, the new prices of each meat cut® and
the new expenditures on each meat cut become the real price of each meat cut in
2002 Mexican pesos per kilogram and the real expenditure of each meat cut in 2002
Mexican pesos per household respectively.

Then, the meat consumption variables in kilograms per household are divided by
the number of adult equivalents to compute per capita meat consumption variables
in kilograms. Similarly, the new real expenditure variables are divided by the number
of adult equivalents to obtain per capita real expenditure variables in 2002 Mexican
pesos.

Descriptive statistics for each meat cut with the original number of observations
as reported by ENIGH 2006 are provided in Table 4.4 through 4.53. In Tables 4.4
through 4.53, p; is the real price of meat cut ¢ in 2002 Mexican pesos per kilogram,

¢; 1s the per capita consumption of meat cut 7 in kilograms, m; is the per capita real

2A nominal variable is a variable whose unit of measurement is in nominal economic value. In
economics, nominal value is the value of anything expressed in money of the day. A nominal variable

does not adjust for inflation. For example, nominal price does not adjust for inflation.
3In economics, real value is the value of anything expressed in the nominal value of that anything

in the base period. For example, real price adjusts for inflation; therefore, it is expressed in the

nominal price of the base period.
4The survey period of ENIGH 2006 was from August to November 2006. The simple average CPI

of these months was used in order to use the same months when ENIGH 2006 collected the data.
5As it can be observed from Table 4.3, sometimes a specific code, for instance A025, may refer

to more than one cut of meat. However, to facilitate the flow of the discussion in this study, a code

such as A025 will be referred as if it were only one meat cut.
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expenditure on meat cut ¢ in 2002 Mexican pesos, and ¢ = 025,026, ...,074 stands
for the corresponding meat cuts A025, A026, ..., A074 provided in Table 4.3. The
number of observations for each meat cut varies because ENIGH interviewers only
recorded a transaction when a household consumed a meat cut. Hence, the meat cuts
that are consumed most often by households are those who have the largest number of
observations. Additionally, as mentioned in Section 4.1 at-home and away-from-home
expenditure on food is collected by ENIGH 2006. In particular, expenditures on food
at home and away from home are identified by the variable “place of purchase” in
the Expenditures dataset (see Table 4.1). Even though this variable was not included
in this study, it is important to mention that the descriptive statistic in Table 4.4
through 4.53 include as different observations purchases made at different places by
the same household of the same meat cut. That is, if during the week of the interview
a household purchased the same meat cut twice but at different places, then two
transactions will be recorded appearing as two observations. However, this method
of recording transactions has no distorting effect on the descriptive statistics provided
in Table IV.4 through IV.53. Finally, the “N Miss” column reports the number of
missing observations for each of the three variables reported. Only for meat cuts A057,
A068, and A070, households failed to report both price and quantity, but yet reported
meat expenditure. Hence, the number of missing observations due to household not
reporting prices and quantities occurs very rarely. However, once again, the number
of observations in each table reflects the number of times each meat cut was reported
by all households, including more than one record per household.

Now, if we would like to put all meat cut datasets into one dataset where the
columns of this new dataset are the prices, quantities, and expenditures of each meat
cut; then, only one transaction per meat cut per household has to be allowed. To do
this, when a household purchased the same meat cut during the week of the interview
more than once but in different places, a simple average of the same meat cut is
computed, but the sum of the quantity is computed, and expenditure is computed as

price times quantity. Once again, doing this operation will only allow one transaction
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per meat cut per household. This is required in order to combine all datasets using
a one-to-one match merge by household id. Since each meat cut dataset has four
columns (household id, price, quantity, and expenditure), a one-to-one match merge
by household id will produce a dataset with 50(3)+1=151 columns. Assuming all
households purchased at least one meat cut, then the number of rows of this dataset
equals the number of households. Additionally, when a household did not consume
a particular meat cut, for instance A025, but consumed all others meat cuts, then a
missing value appears in that row for the columns corresponding to the real price of
meat cut A025 (p025), the per capita consumption of meat cut A025 (¢025), and the
per capita real expenditure on meat cut A025 (m025); but the corresponding numeric
value for all other columns. However, some households will not consume any meat
cut at all during the week of the interview and several households will only consume
few (in some cases only one) meat cut during the week of the interview. Hence, the
dataset will have a lot of missing observations for the corresponding columns of meat
cuts that are rarely consumed; but a moderate amount of missing observations for
the corresponding columns of the most frequently consumed meat cuts. Table 4.54
shows the descriptive statistics of this dataset.

Once again, Table 4.54 was generated by allowing only one transaction per meat
cut per household® and then by performing a one-to-one match merge by household
id to merge all meat cut datasets. Since we know that 20, 875 households participated
in the survey (Table 4.1), this means that 20,875 — 16,909 = 3,966 households of
the total number of households that participated in the survey did not consume any
meat cut at all during the week of the interview. In addition to this information,
Table 4.54 also shows the new number of missing observations (column “N Miss”)
of the price, quantity, and expenditure of meat cut i, ¢« = 025,026, ...,074, resulting
from the merge of all meat cut datasets. Clearly, the number of missing observations

is extremely high compared to the total number of observations, which is 16,909.

6That is, by recalculating the corresponding datasets of the descriptive statistics in Tables 4.4

through 4.53, but this time only allowing one transaction per meat cut per household.
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However, a missing quantity in Table 4.54 is simply a decision of a household of
not to purchase that particular meat cut during the week of the interview. Hence,
missing quantities in Table 4.54 are transformed to zero quantities. Finally, it is
very important to notice that the sum of weights in Table 4.54 is an estimate of the
total number of households in Mexico that consumed meat during the week of the
interview. That is, 22.1 million households eat at least one meat cut during the week
of the interview.

To reduce this high number of missing price observations, the meat cuts can be
aggregated according to the meat categories reported in Table 4.3. That is, instead
of having 50 meat cuts, only 6 meat commodities can be considered: beef, pork,
processed meat, chicken, other meat, and seafood. Beef including section (a) of Table
4.3; pork including section (b); processed meat including section (c) and (e); chicken
including section (d); including sections (g), (h), (i), (j), and (k); and other meat
including section (f). In order to aggregate the corresponding meat cuts in these six
new categories, the corresponding quantities of each new category are obtained by
summing all corresponding meat-cut quantities that belong to that category, while the
corresponding prices of each new category are computed by diving total expenditure
by total quantity of each category. Finally, total meat expenditure is computed by
Ziﬁ:l piq;, where 1 = beef, 2 = pork, 3 = processed meat, 4 = chicken, 5 = other
meat, and 6 = seafood.

Table 4.55 reports the new number of missing and non-missing observations per
stratum when six commodities are considered. Other meat category has the largest
number of missing observations. This is not surprising because only three meat cuts
are in this category (A063, A064, and A065) and mainly because these three meat
cuts represent exotic meats (lamb, goat, horses, iguana, etc.). Excluding other meat
from the analysis, notice that stratum one, two and three have in three occasions
(Dbeefs Pprocessy and Penicken) more non-missing than missing observations. However,
stratum four has only one occasion (pepicken) Where there are more non-missing than

missing observations. Additionally, the reader may be surprised at this point that
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pork has more missing than non-missing observations in all four strata given that we
are talking about Mexicans. Going back to Table 4.3, the reader will realize that
this is because several pork cuts (A048, A049, A052, and A054) are included in the
processed meat category. The total intersection of all non-missing price observations
of the meat categories in Table 4.55 (excluding pose,) is only 306 non-missing price
observations. However, if in addition we drop seafood from this total intersection
of all non-missing price observations, the number of non-missing price observations
increased to 1,008.

The number of missing observations reported in Table 4.55 can be reduced even
further by redefining the meat categories and then excluding non-relevant meat cate-
gories. Table 4.56 reports the meat categories and meat cuts used in this study. Table
4.57 reports the number of missing and nonmissing observation per stratum when this
new meat categories are used. Comparing Table 4.55 and Table 4.57, notice that pyees
and Pseqfoos Missing, non-missing and total observations, and their means remained
the same because the beef and seafood category were not modified. However, meat
cuts A048, A049, A052, and A054 were moved from the processed meat category to
the pork category; and meat cut A062 was moved from the processed meat category
to the chicken category. Consequently, Dpork, Pprocess; ad Penicken changed. Now, if we
consider the total intersection of all non-missing price observations of beef, pork and
chicken, there are 3,707 non-missing observations. Additionally, in this new dataset,
the means of Pyees, Ppork aNA Penicken are 47.9163, 44.4189, and 27.5099 pesos/kg re-
spectively. Table 4.58 reports the descriptive statistics of this new dataset obtained
by computing the total intersection of all non-missing price observations of beef, pork
and chicken reported in Table 4.57. It is worthwhile mentioning that meat expendi-
ture (m) in Table 4.58 is meat expenditure on all meats (beef, pork, processed meat,
chicken, other meat, and seafood) rather than meat expenditure on only the three
meats reported in the table (beef, pork and chicken).

In order to keep it simple, this study will work with this latter dataset, which

resulted from the total intersection of the non-missing price observations of beef,
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pork and chicken. Working with this dataset has the advantage that it avoids having
to do price imputation. An alternative procedure is to impute prices in either Table
4.55 or 4.57. The author preferred the former procedure, given the large amount of
observations that would have to be imputed if price imputation were selected.

Since the dataset corresponding to Table 4.58 has 3,707 observations, we could fur-
ther analyze the information contained in this dataset by subsetting it by region (i.e.,
Northeast, Northwest, Central-West, Central, and Southeast regions)” and urbaniza-
tion level (i.e., urban or rural).® Figure 4.1 provides a map of the Mexican states
and the Federal District. Figure 4.2 shows the Mexican geographical regions used
in this study. The Northeast region of Mexico consists of the states of Chihuahua,
Cohahuila de Zaragoza, Durango, Nuevo Ledn, and Tamaulipas. The Northwest re-
gion of Mexico consists of the states of Baja California, Sonora, Baja California Sur,
and Sinaloa. The Central-West region of Mexico consists of the states of Zacatecas,
Mayarit, Aguascalientes, San Luis Potosi, Jalisco, Guanajuato, Querétaro Arteaga,
Colima, and Michoacdn de Ocampo. The Central region of Mexico consists of the
states of Hidalgo, Estado de México, Tlaxcala, Morelos, Puebla, and Distrito Federal.
Finally, the Southeast region of Mexico consists of the states of Veracruz de Ignacio
de la Llave, Yucatan, Quintana Roo, Campeche, Tabasco, Guerrero, Oxaca, and Chi-
apas. Table 4.59 through Table 4.68 provides the descriptive statistics of Table 4.58
when the analysis is performed by region and urbanization level.

In summary, the following outline was applied in this section. First, the variables
from the seven ENIGH datasets that are used in the study were explained (Table 4.2).
Second, details about how new variables are created or transformed from the variables

provided were given. In particular, the variable adult equivalents was created, nom-

"This study used the same five-region definitions provided by SIACON-SIAP-SAGARPA (2006),
which used ENIGH 2000, 2002 and 2004 databases. Other studies or sources such as Barrera et al.

(2008), Zepeda (2007), Arroyo (2002), and Wikipedia (2008) consider eight regions.
80nce again, following STACON-SIAP-SAGARPA (2006), this study also considers stratum 1

and 2 as the urban sector, and stratum 3 and 4 as the rural sector. See Table 4.2 for the definitions

of stratum 1, 2, 3 and 4.
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inal prices and expenditures were transformed to real variables (equation 4.1), meat
consumption was transformed to per capita consumption, and real expenditure was
transformed to per capita real expenditure. Third, all meat cut datasets were merged
into one dataset (Table 4.54). Fourth, the number of missing price observations was
reduced by aggregating meat cuts into meat categories (Table 4.55). In particular,
we created new variables for prices, quantities, and total meat expenditure. Fifth,
the number of missing observations was reduced even further by redefining the meat
categories (Table 4.56) and excluding non-relevant meat categories (processed meat
and seafood in Table 4.57). Sixth, the total intersection of all non-missing price obser-
vations of the beef, pork and chicken datasets from the previous step was considered.
Consequently, in this manner price imputation was avoided. Seventh, the resulting
dataset is the dataset used in this study (Table 4.58). This dataset can be analyzed
by subsetting it by region (Figure 4.1) and urbanization level (urban = stratum 1
and 2, rural = stratum 3 and 4). In addition, in each step we reported the difficulties

that emerged as the data was being organized.
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Table 4.2: List of Variables Used in this Study from the seven ENIGH 2006 Datasets.

Dataset

Variable
Used

Variable Description

Concentrated
(concen-

trado.dbf)

hog

This is the sampling weight variable. That is, the
number of households that the interviewed household
represents nationally.

Households
(hogares.dbf)

estrato

This is the stratum variable. This variable equals “1”
if household location is within a population of 100,000
people or more, “2”7 if household location is within
a population between 15,000 and 99,999 people, “3”
if household location is within a population between
2,500 people and 14,999 people, and “4” if household
location is within a population of less than 2,500 peo-
ple.

Members
(pobla-
cion.dbf)

folio

This variable is the household id number. It is a cat-
egorical variable of 11 digits that identifies the house-
holds. From left to right digits 1 to 4 read the year,
digits 5 and 6 read the code for the Mexican state,
digit 7 reads the code of the time period in which
households were interviewed, digits 8 to 10 read the
consecutive order of household interviews. Finally,
digit 11 codifies a character variable (type of house-
hold) taking values from 0 to 9.

edad

This variable is the age of each household member in
years.

Expenditures
(gastos.dbf)

folio

This variable is the household id number.

clave

This variable takes the values of A025, A026, ...,
A074 which are codes for the different cuts or group
of cuts of meat. Refer to Table 4.3.

precio

This variable is the nominal price of “clave” in Mexi-
can pesos per kilogram (nominal pesos/kg)

cantidad

This variable is the quantity consumed of “clave” in
kilograms per household (kg).

gasto

This variable is the nominal expenditure on “clave”
in Mexican pesos per household (nominal pesos).

Source: ENIGH 2006, summarized by author.
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Table 4.3: Meat Cuts Reported by ENIGH 2006.

Code | Description
Beef, Pork Chicken and Other Meats
(a) Beef and Veal
A025 Beefsteak: boneless rump, bottom round, top round, etc.
A026 Brisket and fillet steak
A027 Milanesa
A028 Tore shank
A029 Rib cutlet
A030 Chuck, strips for grilling and sirloin steak
A031 Meat for stewing/boiling or meat cut with bone
A032 Special cuts: t-bone, roast beef, etc.
A033 Hamburger patty
A034 Ground beef
A035 Chopped loin, chopped top and bottom round
A036 Other beef cuts: head, udder, etc.
A037 Guts/innards/viscera: heart, liver, marrow, rumen/belly, etc.
(b) Pork
A038 Pork steak
A039 (Chopped) leg
A040 Chopped loin
A041 Ground pork
A042 Ribs and cutlet
A043 Shoulder blade
A044 Elbow
A045 Other pork cuts: head, ridge/backbone, belly, breast, etc.

continued on next page
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Table 4.3: continued

Code Description
A046 Guts/innards/viscera: heart, liver, kidney, etc.
(c) Processed Beef and Pork

A047 Shredded meat
A048 Pork skin/chicharron
A049 Pork sausage
A050 Smoked cutlet
A051 Crusher and dried meats
A052 Ham
A053 Bologna, embedded pork and salami
A054 Bacon
A055 Sausages
A056 Other processed meats from beef and pork: stuffing, smoked

meat/dried meat, etc.

(d) Chicken

A057 Leg, thigh and breast with bone
A058 Boneless leg, boneless thigh and boneless breast
A059 Whole chicken or in parts (except legs, thigh and breast)
A060 Guts/innards/viscera and other chicken parts: wings, head, neck, giz-

zard, liver, etc.
A061 Other poultry meat: hen/fowl, turkey, duck, etc.

(e) Processed Poultry Meat
A062 Chicken sausage, ham & nuggets, bologna, etc.
(f) Other Meats

A063 Lamb: sheep and ram

continued on next page
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Table 4.3: continued

Code Description

A064 Goat and goatling

A065 Other meats: horses, iguana, rabbit, frog, deer, etc.

Seafood

(g) Fresh Fish

A066 Whole fish, clean and not clean (catfish, carp, tilapia, etc.)
A067 Fish fillet

(h) Processed Fish

A068 Tuna

A069 Salmon and codfish

A070 Smoked fish, dried fish, fish nuggets and sardines
(i) Other Fish

A071 Young eel, manta ray, eel, fish/crustaceous eggs, etc.

(j) Shellfish

A072 Fresh shrimp

A073 Other fresh shellfish: clam, crab, oyster, octopus
(k) Processed Shellfish

A074 Processed: smoked, packaged, breaded, dried shrimp

Source: ENIGH 2006—Clasificacién de Variables, translated into English by au-
thor.
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Table 4.4: Descriptive Statistics of Meat Cut A025 (Beefsteak).

Humber of Strata 4

Humber of Observations 7395

Sum of Heights 10163161

Statistics

5td Error
Yariable H Hiss Minimum Max imum Mean of Mean
p025 1] 2.892118 790.512177 51.363693 0.203991
q025 1] 0.014388 5.056180 0.215600 0.002818
m025 0 0.745151 188.380897 10.737634 0.138807

Source: ENIGH 2006, computed by author.

Table 4.5: Descriptive Statistics of Meat Cut A026 (Beef Brisket and Fillet Steak).

Humber of Strata 4
Humber of Obszerwvations 178
Sum of Weights 219141
Statistics
S5td Error
VYariable H Hiss Minimum Max i mum Mean of Mean
p026 0 20.789716 251.488498 60.630383 2.321882
q026 0 0.040984 3.636364 0.277609 0.022701
m026 0 2.832681 304.834542 17.068915 1.758529
Source: ENIGH 2006, computed by author.
Table 4.6: Descriptive Statistics of Meat Cut A027 (Milanesa).
Humber of Strata 4
Number of Obserwvations 045
Sum of Heights BY7336
Statistics
Std Error
Variable N Miss Min i mum Max i mum Mean of Mean
p02¥ 0 10.059540 125.744249 51.627196 0.657835
qb27 0 0.028571 1.685393 0.218486 0.008534
mo27 0 1.437077 81.945690 11.0871190 0.458728

Source: ENIGH 2006, computed by author.
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Table 4.7: Descriptive Statistics of Meat Cut A028 (Beef Tore Shank).

Humber of Strata 4
Humber of Obserwvations 51
Sum of Heights L8302
Statistics
Std Error
Variable H Miss M i rv i mum Max i mum Mean of Mean
p028 1] 14.670162 186.939783 40.200860 3.776058
q028 1] 0.030211 1.752809 0.371525 0.074389
mo2g 0 3.717494 64 . 049505 12.665383 2.471559
Source: ENIGH 2006, computed by author.
Table 4.8: Descriptive Statistics of Meat Cut A029 (Beef Rib Cutlet).
Humber of Strata 4
Humber of Ob=zervations 442
Sum of Heights 547703
Statistics
Std Error
Variable N Miss Minimum Max i mum Hean of Mean
p029 1] 5.591428 652. 009079 47.302999 2.079475
q029 1] 0.016949 4.454343 0.285%171 0.040725
m029 1] 1.169714 ¥4.681068 11.164584 0.714768

Source: ENIGH 2006, computed by author.

Table 4.9: Descriptive Statistics of Meat Cut A030 (Beef Chuck, Strips for Grilling

and Sirloin Steak).

Humber of Strata 4

Humber of Observations 293

Sum of Heights 313297

Statistics

5td Error
Variable H Niss Minimum Max imum Mean of Mean
p030 1] 11174472 150. 893099 49.577944 1.046987
qo030 1] 0.032808 3.370787 0.327055 0.024669
m030 1] 1.100125 176.651617 15.626541 1.182929

Source: ENIGH 2006, computed by author.
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Table 4.10: Descriptive Statistics of Meat Cut A031 (Beef Meat for Stewing/Boiling
or Meat Cut with Bone).

Humber of Strata 4

Humber of Observations 1418

Sum of Heights 1946528

Statistics
Std Error
Yariable H Miss Min i mum Max imum Mean of Mean
p031 0 0.419147 140. 833559 37.408912 0.429271
g031 0 0.033025 8.620690 0.282494 0.007870
m031 1] 1.053134 84.771404 9.764357 0.240351
Source: ENIGH 2006, computed by author.
Table 4.11: Descriptive Statistics of Meat Cut A032 (Special Beef Cuts).

Humber of Strata 4

Humber of Observations 41

Sum of HWeights 85609

Statistics

S5td Error
Variable H Niss M in i mum Max i mum Hean of Mean
p032 0 25.14885%0 314.360622 60.941159 3.586207
qo32 0 0.042857 1.363636 0.329285 0.069094
mo32 0 2.785535 102.767345 19.237933 3.706066

Source: ENIGH 2006, computed by author.

Table 4.12: Descriptive Statistics of Meat Cut A033 (Beef Hamburger Patty).

Humber of Strata 4

Humber of Obserwvationz 64

Sum of Heights 104568

Statistics

Std Error
Variable H Miss Hinimum Max i mum Hean of Mean
p033 0 8.382950 139.718626 42 .582302 2.928313
q033 0 0.043436 1.123536 0.313114 0.034243
m033 0 1.212129 28.257135 11.162960 1.105516

Source: ENIGH 2006, computed by author.
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Table 4.13: Descriptive Statistics of Meat Cut A034 (Ground Beef).

Humber of Strata 4

Humber of Obzervations 3209

Sum of Heights 4153054

Statistics

Std Error
Variable H Hiss Minimum Max i mum Mean of Mean
p034 0 0.838295 127.420839 46. 754757 0.324936
q034 0 0.020509 51.923077 0. 188570 0.004623
m034 0 0.503985 65.933314 8.233624 0.134517

Source: ENIGH 2006, computed by author.

Table 4.14: Descriptive Statistics of Meat Cut A035 (Beef Chopped Loin, Chopped
Top & Bottom Round).

Humber of Strata 4

Humber of Obserwvations 1097

Sum of Heights 1281193

Statistics
Std Ervror
Yariable N Miss M in i mum Max i mum Mean of Mean
p035 0 2.514885 251.488498 L0.038120 0.850352
q035 0 0.019763 3.370787 0.25%1376 0.010136
m035 0 0.703268 146.937100 11.873944 0.492596
Source: ENIGH 2006, computed by author.
Table 4.15: Descriptive Statistics of Meat Cut A036 (Other Beef Cuts).

Humber of Strata 4

Humber of Obserwations 262

Sum of Heights 352053

Statistics

Std Error
Variable H Miss Minimum Max i mum Mean of Mean
p036 0 4.116028 128.971684 46 .495205 1.857550
q036 0 0.043178 3.370787 0.22435%8 0.012651
m036 0 1.679389 47 .095224 9.263533 0.519137

Source: ENIGH 2006, computed by author.
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Table 4.16: Descriptive Statistics of Meat Cut A037 (Beef Guts/Innards/Viscera).

Humber of Strata 4

Humber of Obserwvations 545

Sum of Heights 784509

Statistics
Std Error
Variable H Mizss M in i mum Max i mum Mean of Mean
p037 1] 2.791522 83.829499 23.887400 0.673344
q037 0 0.023502 9.049774 0.324463 0.019627
mO37 0 0.742160 113.795700 7.086253 0.401089
Source: ENIGH 2006, computed by author.
Table 4.17: Descriptive Statistics of Meat Cut A038 (Pork Steak).

Humber of Strata 4

Humber of Obzervations arr

Sum of Heights 1174488

Statistics
Std Error

Variable N Miss Minimum Max i mum Mean of Mean
p038 0 3.353180 104.661130 41.945047 0.484168
q038 0 0.028835 3.205128 0.204533 0.008302
m038 0 1.318318 56.514269 g.165345 0.325789

Source: ENIGH 2006, computed by author.

Table 4.18: Descriptive Statistics of Meat Cut A039 (Pork (Chopped) Leg).

Humber of Strata 4

Humber of Obszervations 742

Sum of Heights 836817

Statistics

5td Ervror
Variable H Miss M i r i mum Max< i mum Mean of Mean
p039 1] 7.335081 117.361299 37.368560 0.559719
q039 1] 0.029762 11.428571 0.238185% 0.009360
m039 1] 1.305755 153.288227 8.350581 0.266908

Source: ENIGH 2006, computed by author.
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Table 4.19: Descriptive Statistics of Meat Cut A040 (Pork Chopped Loin).

Number of Strata 4

Number of Observationz 867

Sum of Heights 897714

Statistics
5td Error
Variable H Miss Minimum Max i mum Mean of Mean
p040 0 10.478687 419.147496 41.887856 0.562904
q040 0 0.008475 2.e2vever 0.248337 0.011504
mi40 0 0.710419 114.312953 10.197952 0.565427
Source: ENIGH 2006, computed by author.
Table 4.20: Descriptive Statistics of Meat Cut A041 (Ground Pork).

Humber of Strata 4

Humber of Obzervations 382

Sum of Heights 499110

Statistics

Std Ervror
Variable H Hiss Minimum Max i mum Mean of Mean
poO41 0 2.934032 100.595399 40 . 865964 0.806886
q041 0 0.030581 1.910828 0.167421 0.008143
mi41 0 0.859790 37 .676179 6.375383 0.264291

Source: ENIGH 2006, computed by author.

Table 4.21: Descriptive Statistics of Meat Cut A042 (Pork Ribs and Cutlet).

Humber of Strata 4

Humber of Obszervations 1519

Sum of Heights 2092730

Statistics

5td Error
Variable N Mizss Minimum Max i mum Mean of Mean
p042 1] 0.335%318 335.317997 40,365124 0.430226
q042 0 0.032468 26.785714 0.259162 0.033903
mo42 1] 0.317536 111.772666 8.750041 0.311599

Source: ENIGH 2006, computed by author.
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Table 4.22: Descriptive Statistics of Meat Cut A043 (Pork Shoulder Blade).

Humber of Strata 4
Humber of Obszervations 31
Sum of Weights 36985
Statistics
5td Error
Variable N Miss Minimum Max i mum Mean of Mean
p043 0 20._957375 3912.046089 102.729298 69.429087
qo43 0 0.007160 0.454545 0.246436 0.025322
mi43 0 3.488354 28.009857 9.443449 0.842189
Source: ENIGH 2006, computed by author.
Table 4.23: Descriptive Statistics of Meat Cut A044 (Pork Elbow).
Humber of Strata 4
Humber of Ob=zervations 68
Sum of Heights 92050
Statistics
S5td Error
Variable H Miss Minimum Max i mum Mean of Mean
p044 0 6.622530 117.361299 31.875297 2.263342
q044 0 0.047170 1.685393 0.245184 0.03195%8
mi44 0 1.724493 32 .966657 6.687653 0.682873
Source: ENIGH 2006, computed by author.
Table 4.24: Descriptive Statistics of Meat Cut A045 (Other Pork Cuts).
Humber of Strata 4
Humber of Obszerwvations 487
Sum of Heights 702646
Statistics
5td Error
Variable H Miss Minimum Max i mum Mean of Mean
p045 1] 5.029770 177.718528 30.949090 0.914002
q045 1] 0.019493 5 .454545 0.280188 0.011082
m045 1] 1.116867 76.208636 7.806084 0.313442

Source: ENIGH 2006, computed by author.
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Table 4.25: Descriptive Statistics of Meat Cut A046 (Pork Guts/Innards/Viscera).

Humber of Strata 4

Humber of Obszerwvations 25

Sum of Heights 22212

Statistics
Std Error
Yariable H Hiz=s Minimum Max imum Mean of Mean
p046 0 11174472 41.914750 22.277458 2.272939
q046 0 0.038071 1.123596 0.238980 0.055009
m046 0 1.063826 32 .966657 L.229487 1.660989
Source: ENIGH 2006, computed by author.
Table 4.26: Descriptive Statistics of Meat Cut A047 (Shredded Meat).

Humber of Strata 4

Humber of Obserwvations 201

Sum of Heights 241850

Statistics

5td Error
Variable N Miss Hinimum Manx i mum MHean of Mean
p047 0 5.172280 201.190738 56.161330 2.278915
q047 1] 0.023170 1.388889 0._157676 0.013210
m047 1] 1.311544 37.912839 7.688277 0.501253

Source: ENIGH 2006, computed by author.

Table 4.27: Descriptive Statistics of Meat Cut A048 (Pork Skin/Chicharron).

Humber of Strata 4

Humber of Obserwvations 1927

Sum of Heights 2749824

Statistics

S5td Ervor
Variable H MHiss Min imum Max imum Mean of Mean
p048 0 0.838295 402 381596 L8.791968 0.695232
q048 0 0.004735 1.818182 0.104012 0.003119
m048 0 0.284168 70.642836 5.356848 0.153523

Source: ENIGH 2006, computed by author.
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Table 4.28: Descriptive Statistics of Meat Cut A049 (Pork Sausage).

Humber of Strata 4
Humber of Obszervationz 3559
Sum of Heights 4680713
Statistics
S5td Ervor
Variable H Mi=zs Minimum Maoc i mum Mean of Mean
p049 1] 0.108978 898.174403 42 .566750 0.716380
q049 1] 0.000902 11.782477 0.112814 0.003326
m049 0 0.241637 75.352359 4.076692 0.079598
Source: ENIGH 2006, computed by author.
Table 4.29: Descriptive Statistics of Meat Cut A050 (Smoked Cutlet).
Humber of Strata 4
Humber of Ob=zervations 389
Sum of Heights L50048
Statistics
Std Error
Variable H Niss M in i mum Max i mum Mean of Mean
p050 0 4.191475 382.430175 45.445364 1.387205
q050 1] 0.018685 1.984127 0.216055 0.020258
md50 0 0.751834 56.318182 8.393312 0.549958

Source: ENIGH 2006, computed by author.

Table 4.30: Descriptive Statistics of Meat Cut A051 (Crushed and Dried Meats).

Humber of Strata 4

Humber of Obserwations 178

Sum of Heights 210450

Statistics

Std Error
Variable H Miss Minimum Maoe i mum Mean of Mean
p0&1 0 16.765900 1341 .271987 133.167069 11.330517
g051 0 0.003077 2.727273 0.131095 0.045281
m051 0 1.053513 457 .251814 16.914164 7.596779

Source: ENIGH 2006, computed by author.
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Table 4.31: Descriptive Statistics of Meat Cut A052 (Ham).

Humber of Strata 4

Humber of Obserwvations 4549

Sum of Heights 6325606

Statistics

Std Error
Variable H Miss Minimum Max i mum Mean of Mean
p052 1] 2.791522 871.826791 42 . 140284 0.353458
q052 1] 0.001859 1.685393 0.104221 0.002557
m052 0 0.109295 56.514269 4.19377¢7 0.098111

Source: ENIGH 2006, computed by author.

Table 4.32: Descriptive Statistics of Meat Cut A053 (Bologna, Embedded Pork and

Salami).

Humber of Strata 4

Humber of Obserwvations 422

Sum of Heights La98vav

Statistics
Std Ervor
Variable N Hiss Minimum Max< i mum Mean of Mean
p05s3 1] 5.029770 394 .836941 32.949710 1.335%646
q053 1] 0.011765 0.909091 0.117336 0.005908
mO53 1] 0.408261 45. 725181 3.312677 0.171724
Source: ENIGH 2006, computed by author.
Table 4.33: Descriptive Statistics of Meat Cut A054 (Bacon).

Humber of Strata 4

Humber of Observations 380

Sum of Heights L3675

Statistics
Std Error

Yariable H Miss M inimum Max i mum Mean of Mean
p054 0 8.382950 131.612314 52 .476894 1.534118
q054 0 0.006748 0.727273 0.088734 0.007521
m054 1] 0.33931 33.150756 4.171160 0.310386

Source: ENIGH 2006, computed by author.



Table 4.34: Descriptive Statistics of Meat Cut A055 (Sausages).

Humber of Strata 4
Humber of Observations 2670
Sum of Heights 3624571

Statistics

S5td Error
Variable H Hiss Minimum Max i mum Hean of Mean
p055 0 0.838295 251.488498 26.232814 0.416556
g055 0 0.006042 3.333333 0.161268 0. 004446
m055 0 0.117244 48.979033 3.705498 0.103433

Source: ENIGH 2006, computed by author.

Table 4.35: Descriptive Statistics of Meat Cut A056 (Other Processed Meats).

Humber of Strata 4

Number of Obzervations 671

Sum of Heights 822094

Statistics

Std Error
Variable H Mizss M in i mum Max i mum Mean of Mean
p056 0 3.462158 153.684621 L2.256246 1.401715
q056 0 0.006519 1.376147 0.166977 0.006797
m0S6 0 0.218591 103.825527 7.871881 0.357426

Source: ENIGH 2006, computed by author.

Table 4.36: Descriptive Statistics of Meat Cut A057 (Chicken Leg, Thigh and Breast

with Bone).

Humber of Strata 4

Humber of Observations 5214

Sum of Heights 8166414

Statistics

Std Error
Variable H Miss M in i mum Max imum Mean of Mean
p057 1 1.399953 217.956698 27.728852 0.199535
q057 1 0.018416 22.471910 0.307679 0.004576
m057 1] 0.273357 84.250753 7.716511 0.099213

Source: ENIGH 2006, computed by author.
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Table 4.37: Descriptive Statistics of Meat Cut A058 (Chicken Boneless Leg, Thigh

and Breast).

Humber of Strata 4
Humber of Obserwations 1534
Sum of Heights 2519080
Statistics
Std Error
Variable H Miss Minimum Max i mum Mean of Mean
p058 0 1.131698 385.615696 35.323948 0.468309
qo058 0 0.013587 5.909091 0.281889 0.006010
m058 0 1.076709 117.738061 9.441513 0.228653
Source: ENIGH 2006, computed by author.
Table 4.38: Descriptive Statistics of Meat Cut A059 (Whole Chicken).
Humber of Strata 4
Humber of Observations 7497
Sum of Heights 8ai1vivrz
Statistics
5td Error
Variable H Miss Minimum Max i mum Mean of Mean
p059 1] 0.838295 301.786197 23.840577 0.203954
q059 0 0.017301 11.23595% 0.347922 0.004773
md59 0 0.231939 121.687983 7.587128 0.099681

Source: ENIGH 2006, computed by author.

Table 4.39: Descriptive Statistics of Meat Cut A060 (Chicken Guts/Innards/Viscera).

Number of Strata 4

Number of Obserwvations 920

Sum of Heights 1491449

Statistics

Std Error
Variable H Miss Min imum Max i mum Mean of Mean
p0b60 1] 0.838295 356.275372 17.878599 0.653485
q0b60 1] 0.004695 L.617978 0.372337 0.038521
mQb0 1] 0.210099 33.908561 4.,370160 0.179723

Source: ENIGH 2006, computed by author.
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Table 4.40: Descriptive Statistics of Meat Cut A061 (Other Poultry Meat).

Humber of Strata 4

Humber of Observations 138

Sum of Heights 167852

Statistics

S5td Error
Variable H Hiss Minimum Max i mum Mean of Mean
p0G1 0 4.1931475 167.658998 37.160563 3.667566
q061 0 0.030035 4.494382 0.642142 0.064259
mOG1 1] 1.194375 131.866628 15.650652 1.397909

Source: ENIGH 2006, computed by author.

Table 4.41: Descriptive Statistics of Meat Cut A062 (Chicken Sausage, Ham &

Nuggets, Bologna, etc.).

Humber of Strata 4
Humber of Obserwvations 3190
Sum of Heights 4002486
Statistics
Std Ervor
Variable N Hiss Minimum Mao< i mum Mean of Mean
p062 1] 0.368850 352.083897 39.072679 0.427191
qo62 1] 0.003964 8.532423 0.161968 0.004351
mOG2 1] 0.257146 132.431771 L .G6B960OTY 0.149021
Source: ENIGH 2006, computed by author.
Table 4.42: Descriptive Statistics of Meat Cut A063 (Lamb).
Humber of Strata 4
Humber of Observations 12
Sum of Heights 15380
Statistics
Std Error
Yariable H His=s Minimumn Max imum Mean of Mean
p063 0 31.016915% 100.595399 £2.515396 1.489917
063 1] 0.057870 2.352941 0.754580 0.094510
m0b62 0 2.636148 94 .190449 34.988288 4.109889

Source: ENIGH 2006, computed by author.
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Table 4.43: Descriptive Statistics of Meat Cut A064 (Goat and Goatling).

Humber of Strata 4
Number of Obszervations 12
Sum of Height=s 12056
Statistics
Std Error
Yariable H Miss Minimum Max i mum Mean of Mean
p064 1] 16.765900 117.361299 45,.751943 11.246870
q064 0 0.083963 0.807754 0.403425 0.102407
m064 1] L.425858 28.418200 13.168530 1.560181
Source: ENIGH 2006, computed by author.
Table 4.44: Descriptive Statistics of Meat Cut A065 (Other Meats).
Humber of Strata 4
Humber of Obserwvations 17
Sum of Height=s 22697
Statistics
Std Error
Variable H Miss M in i mum Max i mum Hean of Mean
pOBS 1] 13.974378 75.446549 55.240181 6.187467
q065 1] 0.031726 1.123596 0.365664 0.083044
mQ0b65 1] 2.127652 L2.393437 21.541523 ¥.270937
Source: ENIGH 2006, computed by author.
Table 4.45: Descriptive Statistics of Meat Cut A066 (Whole Fish).
Humber of Strata 4
Humber of Obszervations 1447
Sum of Heights 2100444
Statistics
Std Error
Yariable H Mis=s Minimum Max i mum Mean of Mean
pO6E 1] 2.095737 251.488498 31.710482 o.711140
q066 1] 0.023866 4.494382 0.342140 0.010288
mO66 1] 0.781263 176.607091 9.879821 0.477757

Source: ENIGH 2006, computed by author.
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Table 4.46: Descriptive Statistics of Meat Cut A067 (Fish Fillet).

Number of Strata 4

Humber of Obserwvations 736

Sum of Height= 1066212

Statistics
5td Error
Variable H Hiss Minimum Max imum Mean of Mean
p06T 1] 3.35%3180 733.508118 £9.725915 1.383307
q067 0 0.013441 2.247191 0.273767 0.011414
mO6T 1] 0.901392 122.447583 15. 043534 0.703100
Source: ENIGH 2006, computed by author.
Table 4.47: Descriptive Statistics of Meat Cut A068 (Tuna).

Humber of Strata 4

Humber of Ob=zervations 2104

Sum of Heights 2807024

Statistics

S5td Ervor
VYariable H Mi=ss Minimum Mas< imum Mean of Mean
p0G8 5 0.058681 528.125845 39.957431 0.482137
q068 5 0.011225 52.959502 0. 137917 0.004624
m0G68 0 0.290067 67.817123 4.945517 0.15%4679

Source: ENIGH 2006, computed by author.

Table 4.48: Descriptive Statistics of Meat Cut A069

(Salmon and Codfish).

Humber of Strata 4

Humber of Obserwvations 20

Sum of Heights 21157

Statistics

S5td Error
Variable N Miss Minimum Max i mum Mean of Mean
p0G69 1] 16.514411 188.616373 75.987109 11.228395
q069 1] 0.010627 1.123596 0.234317 0.066629
m069 1] 0.534513 169.542807 20.614232 L.967604

Source: ENIGH 2006, computed by author.
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Table 4.49: Descriptive Statistics of Meat Cut A070 (Smoked Fish, Dried Fish, Fish

Nuggets and Sardines).

Humber of Strata 4
Humber of Ob=zervations L16
Sum of Heights 626056
Statistics
Std Error
Yariable H Miss Minimum Max i mum Mean of Mean
p0v0 i 3.353180 356.275372 35.435446 1.783908
q07o Fa 0.004545 1.471910 0.141836 0. 009455
mo70 1] 0.280366 114.312953 4.151982 0.306336
Source: ENIGH 2006, computed by author.
Table 4.50: Descriptive Statistics of Meat Cut A071 (Other Fish).
Humber of Strata 3
Humber of Obszerwvations 11
Sum of Heights 12971
Statistics
5td Error
Variable H Miss Minimum Max i mum Mean of Mean
p071 1] 25.148850 117.361299 53.251194 11.726920
qov1 1] 0.135747 1.23595%5 0.411442 0.104901
mO71 1] 3.929508 53.346045 21.220646 6.232627
Source: ENIGH 2006, computed by author.
Table 4.51: Descriptive Statistics of Meat Cut A072 (Fresh Shrimp).
Humber of Strata 4
Humber of Obserwvations 590
Sum of Heights 745439
Statistics
Std Error
Variable H Hiss Minimum Maoc i mum Mean of Mean
po072 1] 4.191475 251.4588498 b6.756215 1.837216
q0?2 1] 0.007541 3.370787 0.265041 0.016811
mO72 1] 0.632198 121.933817 15.399127 0.749834

Source: ENIGH 2006, computed by author.
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Table 4.52: Descriptive Statistics of Meat Cut A073 (Other Fresh Shellfish).

Humber of Strata 4

Humber of Obserwvations 91

Sum of Heights 108832

Statistics

Std Error
Variable H Miss M inimum Max i mum Mean of Mean
p073 0 1.131698 393.353159 40.204032 4.908225
q073 0 0.028235 4.938272 0.304055 0.044016
mo73 0 1.123971 62.165696 g8.049098 0.958040

Source: ENIGH 2006, computed by author.

Table 4.53: Descriptive Statistics of Meat Cut A074 (Processed Shellfish).

Humber of Strata 4

Humber of Obserwvations 149

Sum of Heights 206475

Statistics

Std Error
Variable H His=s Minimum Max< i mum Mean of Mean
p0v4 0 12.574425 279.428870 80.977790 L.185283
qoOv4 1] 0.009251 0.909091 0.088319 0.007782
mO74 1] 0.370381 76.208636 5.831758 0.529116

Source: ENIGH 2006, computed by author.
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Table 4.54: Descriptive Statistics of all Meat Cuts in one

Dataset

Humber of Strata 4

Humber of Observations 16909

Sum of Heights 22106253

Statistics

S5td Error
Variable H Miss Minimum Max i mum Mean of Mean
p025 10936 2.892118 790.512177 51.451538 0.224300
q025 10936 0.014388 5.056180 0.265041 0.004033
m025 10936 0.745151 188.362059 13.256654 0.202384
p0Z6 16738 20.789716 251.488498 60.816440 2.400531
q026 16738 0.040984 3.636364 0.291295 0.024390
m0Z6 16738 2.832681 304 834542 17.932886 1.858759
p027 16396 10.0595%40 100.595399 51.506331 0.671051
q027 16396 0.028571 1.685393 0.234351 0.009527
m027 16396 1.437077 81.945690 11.941097 0.519943
p028 16860 14.670162 186.939783 40.097447 3.834719
q028 16860 0.030211 1.752809 0.378031 0.075376
m0Z8 16860 3.717309 64 .049882 12.896655 2.508630
p029 16488 5.591428 652 .009079 47 . M2777 2.177495
q023 16488 0.016949 4.454343 0.299046 0.042560
m029 16488 1.169714 74.681068 11.694980 0.743196
p030 16634 11.174472 150.893099 49.922814 1.092015
q030 16634 0.032808 3.370787 0.351865 0.027616
m030 16634 1.100125 176.651617 16.799607 1.325401
p031 15548 3.478924 140._833559 37.483699 0.438344
q03l 15548 0.033025 13.505747 0.291544 0.008762
m021 15548 1.281470 84.771404 10.090048 0.262159
p032 16869 25.148850 314 .360622 61.282144 3.67V9203
qo032 16869 0.042857 1.363636 0.337307 0.070861
m032 168639 2.785415 102.767345 19.706563 3.795864
p033 16848 9.640392 139.718626 43.532503 3.035658
q033 16848 0.043436 1.935%484 0.336642 0. 049957
m033 16848 1.212170 40.019108 12.001753 1.201876
p034 14011 0.838295 127 .420839 46.723015 0.340698
q034 14011 0.020509 51.923077 0.203759 0.005099
m034 14011 0.503985 96.777578 8.915496 0.153208
p035 15913 2.514885 251.488498 50.049617 0.908143
q035 15919 0.019763 3.370787 0.272338 0.011790
m035 15919 0.703268 146.937100 12.952992 0.600089
p036 16668 4.116028 128.971684 45.941418 1.955225
q036 16668 0.043178 3.370787 0.244480 0.016317
m036 16668 1.679389 50.297700 10.120805 0.719266
p037 16394 4.191475 83.829499 24 . 165265 0.710731

continued on next page
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Table 4.54: continued

Std Error
Variable N Miss Minimum Max i mum Mean of Mean
q037 16394 0.023502 9.049774 0.345978 0.021366
m037 16394 0.742256 113.795700 7.564246 0.431791
p038 16017 3.353180 104.661130 42.192289 0.506573
q038 16017 0.028835 3.205128 0.223072 0.009455
m038 16017 1.450337 56.508618 8.921678 0.368936
p039 16247 7.335081 117.361299 37.554367 0.607190
Q039 16247 0.033113 11.428571 0.264794 0.010969
m039 16247 1.305755 153.288227 9.298677 0.319133
p040 16112 10.478687 419. 147496 42.031636 0.584433
q040 16112 0.016129 2.2v72727 0.261178 0.012641
m040 16112 1.566321 114.312953 10.737146 0.623890
p041 16543 2.934032 100.595399 40.773894 0.812119
q041 16543 0.030581 1.910828 0.175451 0.008958
m041 16543 0.859790 45211415 6.681044 0.302124
p042 15486 0.335318 335.317997 40.456257 0.438093
q042 15486 0.032468 26.785714 0.274093 0.035867
m042 15486 0.317536 111.772666 9.284232 0.335517
p043 16880 20.957375 3912.046089 106.018114 72.463914
q043 16880 0.007160 0.590551 0.256348 0.026089
m043 16880 3.488354 28.009877 9.823237 0.844241
p044 16842 6.622530 117.361299 31.981647 2.280368
q044 16842 0.047170 1.685393 0.247573 0.032339
m044 16842 1.724186 32.961947 6.752669 0.688960
p045 16436 5.029770 177.718538 30.948206 0.928518
q045 16436 0.019493 5.454545 0.285814 0.011503
m045 16436 1.116764 76.223877 7.964579 0.326662
p046 16884 11.174472 41.914750 22.277458 2.272939
q046 16884 0.038071 1.123596 0.238980 0.055009
m046 16884 1.063720 32.966657 5.229489 1.660987
p047 16714 5.172280 201.190798 56.447267 2.325552
q047 16714 0.023170 1.388889 0.161947 0.013656
mo47 16714 1.311544 37.912839 7.888930 0.515825
p048 15096 0.838295 402.381596 58.962812 0.711739
q048 15096 0.005252 5.454545 0.111308 0.003550
m048 15096 0.284168 70.642836 5.766887 0.169085
p049 13734 0.108978 898.174403 42 .574408 0.760507
q049 13734 0.001357 11.782477 0.126517 0.003822
m049 13734 0.241637 170775845 4_625379 0.098248
p050 16529 4.191475 382.430175 45.565037 1.408615
q050 16529 0.018685 1.984127 0.219913 0.020662
m050 16529 0.751834 56.318182 8.541251 0.560397
p051 16749 16.765900 1341.271987 136.437581 12.649351
Q051 16749 0.003077 2.727273 0.148293 0.051024
m051 16749 1.053513 457.251814 19.132329 8.563130
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Table 4.54: continued

Std Error
Variable N Miss Minimum Max i mum Mean of Mean
p052 13202 2.791522 g71._826791 42 .544479 0.3893r0
o052 13202 0.003326 1.685393 0.127683 0.003153
m052 13202 0.109295 66.633709 L.170259 0.123763
p053 16515 L.023770 394 . 836941 33.156370 1.426445
q053 16515 0.011765 0.909091 0.126304 0.006473
mo53 16515 0.408261 45.725181 3.570693 0.188994
p054 16542 8.382950 131.612314 52.608900 1.546463
q054 16542 0.006748 0.727273 0.090407 0. 007656
m054 16542 0.339391 33.150756 4.251843 0.315814
p055 14525 0.838295 251.488498 26.211777 0.446549
g055 14525 0.006042 3.333333 0.178694 0.004971
m055 14525 0.117244 48.979033 4.129285 0.117187
p056 16284 3.462158 153.684621 51.997221 1.4565%35
q056 16284 0.006519 1.376147 0.174716 0.007205
m056 16284 0.218591 103.825527 8.245754 0.383986
p057 12907 1.492165 217.956698 27 .770706 0.230699
q057 12906 0 22.471910 0.405444 0.007246
mO57 12907 0.441872 141.100522 10.278208 0.181287
p058 15529 1.131698 385.615696 35.444036 0.494315
q058 15529 0.013587 5.909091 0.314146 0.007675
m058 15529 1.076540 117.738061 10.522074 0.279984
p059 11193 0.83829%5 301.786137 23.973716 0.2410593
059 11193 0.018625 11.423221 0.447971 0.007264
m059 11193 0.240127 166.000462 9.850781 0.153683
p0G0 16149 0.838295 356.275372 18.804748 0.750220
gq060 16149 0.004695 6.532663 0.471931 0.056344
mOG0 16149 0.363423 80.019067 5.758415 0.374949
p061 16780 4.191475 167 .658998 38.431811 3.840393
q061 16780 0.030035 5.617978 0.678946 0.094135
mOG1 16780 1.194085 131.866628 16.621514 1.606761
p0G2 14316 0.368850 243.105548 39.184385 0.467858
q062 14316 0.005298 8.532423 0.196946 0. 005644
mQG2 14316 0.309334 132.441190 6.990777 0.197870
p0G63 16898 31.016915 100.595399 £3.747958 1.688555
q063 16898 0.057870 2.352941 0.842317 0.104632
m0G63 16898 2.636148 94.195158 39. 056752 4.287618
p064 16897 16.7659300 117.361293 45.751943 11.246870
q064 16897 0.083963 0.807754 0.403425 0.102407
m064 16897 5.425858 28.418200 13.168584 1.560188
p065 16892 13.974378 75.446549 55.240181 6.187467
gq065 16892 0.031726 1.123596 0.365664 0.083044
m065 16892 2.127652 52.393437 21.541737 7.270924
p0G6 15648 2.095737 251.488498 32.772028 0.756936
q066 15648 0.023866 4.494382 0.405146 0.015770

continued on next page

149



Table 4.54: continued

S5td Error
Variable H Hiss Minimum Max i mum Hean of Mean
mO66 15648 1.408110 176.607091 11.728725 0.583385
p06Y 16216 3.353180 733.508118 60.270314 1.424405
q067 16216 0.013441 2.808989 0.287611 0.012696
md67 16216 0.901392 122.447583 15.819073 0.756468
p0G8 14957 0.058681 528.125845 39.980417 0.506410
qo0G68 14953 0 L2.959502 0.146413 0.005929
mOG8 14957 0.364476 103.603277 5.276339 0.196456
p0E9 16890 16.514411 188.616373 75.109529 11.342438
q069 16890 0.010627 2.2471191 0.237062 0.070597
] 16890 0.534513 339.085615 20.855725 6.788215
p070 16440 3.353180 356.275372 35.675779 1.784772
q0vo 16433 0 2.943820 0.148417 0.012307
mO70 16440 0.485499 114.312953 4.431164 0.355217
p071 16898 25.148850 117.361299 53.251194 11.726920
q071 16898 0.135747 1.235955 0.411442 0.104901
mO71 16898 3.929508 53.346045 21.220618 6.232634
pov2 16372 G.287v212 251.488498 68.473365 1.833052
qov2 16372 0.007541 3.370787 0.295148 0.019597
mov2 16372 0.632198 121.933817 17.196783 0.828532
p0v¥3 16821 1.131698 393.353159 38.628169 4.534343
qov3 16821 0.030211 4.938272 0.311640 0.045721
mov73 16821 1.123971 87.639931 8.331223 1.234919
p0v4 16766 12.574425 279.428870 84.023077 5.056411
qo74 16766 0.009251 0.909091 0.093814 0.010950
mo74 16766 0.370381 76.208636 6.200018 0.545316

Source: ENIGH 2006, computed by author.
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Table 4.55: Missing and Non-missing Observations per Stratum with Six Meat Cat-
egories (Meat Categories Not Modified).

Number Number Total Mean

Missing Non-missing Observations (pesos/kg)

Dbeef strl 2,471 4,814 7,285 48.7186
str2 1,524 2,418 3,942 46.8417

str3 766 808 1,574 45.0591

str4 2,373 1,735 4,108 44.9205
Total 7,134 9,775 16,909 47.4047

Dpork strl 5,382 1,603 7,285 40.2338
str2 2,891 1,051 3,942 39.8023

str3 1,161 413 1,574 38.3144

str4 3,195 913 4,108 36.8476
Total 12,929 3,980 16,909 39.2397
Pprocess  Strl 2,378 4,907 7,285 42.8529
str2 1,482 2,460 3,942 40.4771

str3 756 818 1,574 41.0264

strd 2,168 1,940 4,108 40.9420
Total 6,784 10,125 16,909 41.9739
Dehicken  StTl 2,807 4,478 7,285 27.3432
str2 1,512 2,430 3,942 25.8124

str3 575 999 1,574 24.3402

str4 1,667 2,441 4,108 25.8664
Total 6,561 10,348 16,909 26.4170
Dother  Strl 7.274 11 7285 51.2946
str2 3,930 12 3,942 41.6323

str3 1,570 4 1,574 89.6085

str4 4,095 13 4,108 45.4641
Total 16,869 40 16,909 52.4595
Dseafood  Strl 5,351 1,934 7,285 47.6885
str2 2,893 1,049 3,942 45.2982

str3 1,167 407 1,574 36.0679

str4 3,124 984 4,108 36.4365
Total 12,535 4,374 16,909 43.5943

Source: ENIGH 2006 Database, computed by author.
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Table 4.56: Meat Categories and Cuts Used in this Study.

Code | Description

(1) Beef

A025 Beefsteak: boneless rump, bottom round, top round, etc.

A026 Brisket and fillet steak

A027 Milanesa

A028 Tore shank

A029 Rib cutlet

A030 Chuck, strips for grilling and sirloin steak

A031 Meat for stewing/boiling or meat cut with bone

A032 Special cuts: t-bone, roast beef, etc.

A033 Hamburger patty

A034 Ground beef

A035 Chopped loin, chopped top and bottom round

A036 Other beef cuts: head, udder, etc.

A037 Guts/innards/viscera: heart, liver, marrow, rumen/belly, etc.

(2) Pork

A038 Pork steak

A039 (Chopped) leg

A040 Chopped loin

A041 Ground pork

A042 Ribs and cutlet

A043 Shoulder blade

A044 Elbow

A045 Other pork cuts: head, ridge/backbone, belly, breast, etc.

A046 Guts/innards/viscera: heart, liver, kidney, etc.

continued on next page
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Table 4.56: continued

Code Description
A048 Pork skin/chicharron
A049 Pork sausage
A052 Ham
A054 Bacon
(3) Processed Meat
A047 Shredded meat
A050 Smoked cutlet
A051 Crusher and dried meats
A053 Bologna, embedded pork and salami
A055 Sausages
A056 Other processed meats from beef and pork: stuffing, smoked
meat/dried meat, etc.

(4) Chicken
A057 Leg, thigh and breast with bone
A058 Boneless leg, boneless thigh and boneless breast
A059 Whole chicken or in parts (except legs, thigh and breast)
A060 Guts/innards/viscera and other chicken parts: wings, head, neck, giz-

zard, liver, etc.

A061 Other poultry meat: hen/fowl, turkey, duck, etc.
A062 Chicken sausage, ham & nuggets, bologna, etc.

(5) Seafood
A066 Whole fish, clean and not clean (catfish, carp, tilapia, etc.)
A067 Fish fillet
A068 Tuna

continued on next page
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Table 4.56: continued

Code Description

A069 Salmon and codfish

A070 Smoked fish, dried fish, fish nuggets and sardines
A071 Young eel, manta ray, eel, fish/crustaceous eggs, etc.
A072 Fresh shrimp

A073 Other fresh shellfish: clam, crab, oyster, octopus
A074 Processed: smoked, packaged, breaded, dried shrimp

Source: ENIGH 2006, modified by author.
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Table 4.57: Missing and Non-missing Observations per Stratum with Five Meat Cat-
egories (Meat Categories Modified).

Number Number Total Mean

Missing Non-missing Observations (pesos/kg)

Dhees  strl 2,471 4814 7,285 48.7186
str2 1,524 2,418 3,942 46.8417

str3 766 808 1,574 45.0591

str4 2,373 1,735 4,108 44.9205
Total 7,134 9,775 16,909 47.4047
Dyors_strl 3,015 4,270 7,285 44.9448
str2 1,656 2,986 3,942 41.7445

str3 726 848 1,574 40.4010

str4 2,213 1,895 4,108 41.7353
Total 7,610 9,299 16,909 43.3079
Dprocess  Strl 0,451 1,834 7,285 36.6032
str2 3,039 903 3,942 37.9575

str3 1,273 301 1,574 40.0850

strd 3,410 698 4,108 36.2209
Total 13,173 3,736 16,909 37.1217
Dehicken  Strl 2,279 5,006 7,285 29.0105
str2 1,232 2,710 3,942 27.0900

str3 521 1,053 1,574 24.8532

str4 1,487 2,621 4,108 26.5907
5,519 11,390 16,909 27.7195

Dseafood  Strl 5,351 1,934 7,285 47.6885
str2 2,893 1,049 3,942 45.2982

str3 1,167 407 1,674 36.0679

strd 3,124 984 4,108 36.4365
Total 12,535 4,374 16,909 43.5943

Source: ENIGH 2006 Database, computed by author.
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Table 4.58: Descriptive Statistics of the Beef, Pork and Chicken Dataset.

Humber of Strata 4
Humber of Observations rov
Sum of Heights 5303145

Statistics

5td Error
Variable H Mizss Minimum Max i mum Mean of Mean
q_beef 1] 0.015453 13.793103 0.333149 0.006350
p_beef 1] 2.514885 251.488498 47 .916307 0.299430
q_pork 1] 0.004751 27.250000 0.249981 0.014406
p_pork 1] 0.402382 871.826791 44 418884 0.402417
q_chicken 1] 0. 004695 22.471910 0.469278 0.009166
p_chicken 1] 1.601143 301.786197 27.509891 0.274583
m 0 L.380127 759.582445 41.412522 0.743238

Source: ENIGH 2006, computed by author.
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Figure 4.1: Map of Mexican States and the Federal District.

Note: 1 = Aguascalientes, 2 = Baja California, 3 = Baja California Sur, 4 = Campeche, 5 =
Coahuila de Zaragoza, 6 = Colima, 7 = Chiapas, 8 = Chihuahua, 9 = Distrito Federal, 10 =
Durango, 11 = Guanajuato, 12 = Guerrero, 13 = Hidalgo, 14 = Jalisco, 15 = Estado de México,
16 = Michoacén de Ocampo, 17 = Morelos, 18 = Mayarit, 19 = Nuevo Leén, 20 = Oaxaca, 21 =
Puebla, 22 = Querétaro Arteaga, 23 = Quintana Roo, 24 = San Luis Potosi, 25 = Sinaloa, 26 =
Sonora, 27 = Tabasco, 28 = Tamaulipas, 29 = Tlaxcala, 30 = Veracruz de Ignacio de la Llave, 31

= Yucatan, and 32 = Zacatecas.
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Figure 4.2: Map of Mexican Geographical Regions.

Note: Northeast = Chihuahua, Cohahuila de Zaragoza, Durango, Nuevo Leén, and Tamaulipas.
Northwest = Baja California, Sonora, Baja California Sur, and Sinaloa. Central-West = Zacatecas,
Mayarit, Aguascalientes, San Luis Potosi, Jalisco, Guanajuato, Querétaro Arteaga, Colima, and
Michoacdn de Ocampo. Central = Hidalgo, Estado de México, Distrito Federal, Tlaxcala, Morelos,
and Puebla. Southeast = Veracruz de Ignacio de la Llave, Yucatdn, Quintana Roo, Campeche,
Tabasco, Guerrero, Oxaca, and Chiapas.
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Table 4.59: Descriptive Statistics of the Beef, Pork and Chicken Dataset for the Urban
Sector in the Northeast Region.

Humber of Strata 2

Humber of Observations 216

Sum of Heights 241965

Statistics

S5td Error
Variable H Miss MHinimum Max i mum Mean of Mean
q_beef 0 0.040453 2.307692 0.434873 0.029777
p_beef 1] 7.963802 125.744249 42 .388387 1.301243
q_pork 1] 0.019646 1.404494 0.235748 0.017951
p_pork 0 4.694452 203 .588322 28.456993 1.394091
gq_chicken 1] 0.034325 2.178571 0.533158 0.028488
p_chicken 1] 6.614147 70.617970 24 .483795 0. 856890
m 1] 8.988155 171.359995 43.043123 1.954828

Source: ENIGH 2006, computed by author.

Table 4.60: Descriptive Statistics of the Beef, Pork and Chicken Dataset for the Rural
Sector in the Northeast Region.

Humber of Strata 2

Humber of Observations 65

Sum of Heights L8040

Statistics

S5td Error
Variable H Miss Minimum Max i mum Mean of Mean
q_beef 0 0.066489 2.247191 0.504193 0.089653
p_beef 0 8.299120 83.829499 41.992341 2.455289
q_pork 0 0.014970 2.247191 0.194747 0.042939
p_pork 0 13.412720 176.041948 39.5287r8 3.835294
gq_chicken 0 0. 045704 3.181818 0.344178 0.034316
p_chicken 0 7.963802 61.45%4148 25.417032 1.831553
m 0 11.8004396 196.229559 36.810314 3.572397

Source: ENIGH 2006, computed by author.
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Table 4.61: Descriptive Statistics of the Beef, Pork and Chicken Dataset for the Urban
Sector in the Northwest Region.

Humber of Strata 2

Humber of Observations 291

Sum of Heights 465235

Statistics

5td Error
Variable H Miss M in imum Mao< i mum Mean of Mean
q_beef 0 0.026652 2.673797 0.399094 0.028154
p_beef 0 10.478687 134 .646942 45. 785982 1.241914
q_pork 0 0.009732 2.133758 0.197364 0.012922
p_pork 0 6.506170 335.317997 43.276487 1.855863
q_chicken 0 0.022727 3.630705 0.484834 0.035887
p_chicken 0 1.628687 89.261651 25.274177 0.952588
m 0 6.276350 148.125077 38.403223 1.588092

Source: ENIGH 2006, computed by author.

Table 4.62: Descriptive Statistics of the Beef, Pork and Chicken Dataset for the Rural
Sector in the Northwest Region.

Humber of Strata Fi
Humber of Observations L0
Sum of Heights 42828

Statistics

Std Error
Variable H Hiss M inimum Max i mum Hean of Mean
q_beef 1] 0.071327 2.247191 0.387049 0.084827
p_beef 1] 2.514885 67.063599 43.395455 3.069425
q_pork 1] 0.015198 1.060329 0.196513 0.035038
p_pork 1] 16.765900 83.829499 42 .847101 2.788116
g_chicken 0 0.051653 1.534722 0.473641 0.051745
p_chicken 1] 4.191475 75.446549 24.012358 2.432507
m 0 10.090588 277.390871 36.050006 L.583017

Source: ENIGH 2006, computed by author.
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Table 4.63: Descriptive Statistics of the Beef, Pork and Chicken Dataset for the Urban
Sector in the Central-West Region.

Humber of Strata 2

Humber of Obserwvations 887

Sum of Heights 834796

Statistics

Std Error
Variable M Hiss M inimum Max i mum Mean of Mean
q_beef 1] 0.015453 3.491828 0.320296 0.012393
_beef 1] 6.161468 149. 694337 48 . 722820 0.55%4751
q_pork 1] 0.011468 3.130909 0.234097 0.015674
p_pork 0 L.591428 125. 744249 42.237818 0.783150
g_chicken 1] 0.020877 7.000000 0.382793 0.020677
p_chicken 1] 5.029770 150. 893099 29.829943 0.632413
m 1] L.380127 759.582445 41.789481 3.341870

Source: ENIGH 2006, computed by author.

Table 4.64: Descriptive Statistics of the Beef, Pork and Chicken Dataset for the Rural
Sector in the Central-West Region.

Humber of Strata 2

Number of Observations 207

Sum of Heights 291773

Statistics

5td Error
Variable H Hiss M inimum HMax i mum Mean of Mean
q_beef 0 0.060120 2.500000 0.313575 0.048642
p_beef 0 12.574425 130.774019 46.134734 1.671735
q_pork Q 0.004751 1.5909019 0.209230 0.017858
p_pork 1] 2.514885 125.744249 42 923778 2.488597
g_chicken 0 0.045372 3.409091 0.388502 0.037971
p_chicken 1] 6.982997 85.673748 26.690409 0.835188
m 1] 7.478797 192.174512 35.223067 3.432218

Source: ENIGH 2006, computed by author.
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Table 4.65: Descriptive Statistics of the Beef, Pork and Chicken Dataset for the Urban
Sector in the Central Region.

Number of Strata 2

Number of Observations 918

Sum of Heights 1986442

Statistics

Std Error
Variable H Miss M in imum Max i mum Mean of Mean
q_beef 1] 0.029308 2.380952 0.327425 0.008719
p_beef Q 10.776881 107.301754 49.803026 0.4545592
q_pork 1] 0.012300 2.506775 0.234028 0.007958
p_pork 1] 6.9829397 167.658998 46.571016 0.579932
g_chicken 0 0.004695 22.471910 0.486468 0.013799
_chicken 1] 1.601143 301.786197 28.143422 0.503197
m 0 8.483432 274.35%4137 43.017748 0.85%9889

Source: ENIGH 2006, computed by author.

Table 4.66: Descriptive Statistics of the Beef, Pork and Chicken Dataset for the Rural
Sector in the Central Region.

Humber of Strata 2

Humber of Obserwvations 198

Sum of Heights 415894

Statistics

5td Error
Variable H Miss M inimum Max i mum Hean of Mean
q_beef 0 0.033040 1.395349 0.264592 0.022585
p_beef 0 5.029770 69.075507 48.114006 1.332501
q_pork 0 0.030303 11.346633 0.223122 0.017448
p_pork 0 1.234412 113.869800 42890489 1.876761
g_chicken 0 0.039157 4.015296 0.378698 0.031364
p_chicken 0 4.189080 67.063599 24 .747150 0.991913
m 0 6.674627 124.822605 33.145215 1.962880

Source: ENIGH 2006, computed by author.
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Table 4.67: Descriptive Statistics of the Beef, Pork and Chicken Dataset for the Urban
Sector in the Southeast Region.

Humber of Strata 2

Humber of Obserwvations 617

Sum of Height= LB1798

Statistics

Std Error
Variable H Miss Min imum Max i mum Mean of Mean
q_beef 1] 0.027322 13.793103 0.343734 0.015892
p_beef 0 5.365088 201.190798 47.315252 0.753877
q_pork Q 0.014085 6. 944444 0.287443 0.020173
p_pork 1] 0.402382 871.826791 46.468578 1.143165
q_chicken 1] 0.019920 6.320225 0.569104 0.024261
p_chicken 0 2.011908 206.782226 27 .344251 0.597392
m 0 8.541119 268.588144 46. 380264 1.439442

Source: ENIGH 2006, computed by author.

Table 4.68: Descriptive Statistics of the Beef, Pork and Chicken Dataset for the Rural
Sector in the Southeast Region.

Humber of Strata 2

Humber of Observations 258

Sum of Height= 384374

Statistics

Std Error
Variable H Miss Minimum Max i mum Mean of Mean
q_beef 0 0.035613 3.636364 0.287976 0.019878
p_beef 0 14 .670162 251.488498 45.918342 1.284695
q_pork 0 0.016949 27.250000 0.457167 0.185706
p_pork 0 0.988826 99.002639 43.769053 1.230471
q_chicken 0 0.022936 11.423221 0.535858 0.055118
p_chicken 0 7.980568 83.8294199 28.3r75812 1.037268
mn 0 8.709558 367 .342749 42 .330653 3.072649

Source: ENIGH 2006, computed by author.
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4.3 Model Specification
4.3.1 Estimation of One General SUR Model
In order to provide an empirical application of a SUR model, this study considers
the Mexican per capita meat consumption of beef, pork and chicken. Consequently,
we would like to estimate a system of three equations, where i = 1, 2, 3 = beef, pork,
chicken. Each equation will contain K; = 10 regression coefficients and a data sample
of T'= 3,707 observations for each equation.

The " equation is given by

where q; is a (3707 x 1) vector of observations on the dependent variable of the i"
equation, X; is a (3707 x 10) matrix containing a column of 1s and 9 columns of
observations on independent variables, and 3; is a (10 x 1) vector of parameters, and
u; is a (3707 x 1) vector of disturbances.

Using the variables of interest for this study, equation (4.2) can be written as

(37(§l7i><1) - (1i1 P2 Pis Pu m; NE; NW;; CWyi Gy urbangg ) (3707x10)
B
«| P2 + ow o, i=1,2,3
: (3707x1)
Bito

(10x1)
= [Biula + BioPi2 + - - - + Biourban; + u;, 1=1,2,3.

However, in this study X; = X5 = X3.? Therefore, the subscripts of the vectors

9In Section 2.1.1 it was shown that in this case SUR will reduce to single equation least-squares.
However, for the purpose of providing an empirical application of a SUR model, we will carry on
with the system of three equations even though single equation least squares will provide the same

parameter estimates and parameter variances.
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of the X; matrix can be omitted. This implies,

(37(?7i><1) = ( 1 Poeef Ppork Pchicken 1M NE NW CW C wurban >(3707><10)
Bi
«| P2 row o, i=1,2,3
: (3707x1)
Bito (10xD)
= Bl + BioPsees + BisPpork + BiaPehicken + Bism + BisNE + 5;;NW
+06;sCW + 3,0C + B;1ourban + u;, 1=1,2,3, (4.3)

where qi, g2, q3 equal Qpeef, Yporks Aehicken are (3707 x 1) vectors of observations on
the per capita consumption in kilograms (kg) of beef, pork and chicken respectively;
Poeefs Ppork a1d Denicken are (3707 x 1) vectors of observations on the real price in 2002
Mexican pesos per kilogram (real pesos/kg) of beef, pork and chicken respectively;
m is the (3707 x 1) vector of observations on the per capita real expenditure on all
meats (beef, pork, processed meat, chicken, other meat, and seafood) in 2002 Mexican
pesos (real pesos); NE, NW, CW, C, and SE are (3707 x 1) vectors formed by
“dummy” (or zero-one) variables taking the value of “1” if the observation belongs
to the Northeast, Northwest, Central-West, Central or Southeast region respectively,
“0” otherwise; and urban and rural are (3707 x 1) vectors formed by “dummy”
variables taking the value of “1” if the observation belong to the urban or rural
sector respectively, “0” otherwise. In equation (4.3) above, notice that the baseline
is the rural population of the Southeast region. In other words, we omitted the
SE and rural (3707 x 1) vectors formed by “dummy” variables to avoid perfect
multicollinearity. That is, the SE and rural vectors formed by “dummy” variables
are omitted in order to avoid a perfect linear relation between the vectors NE, NW,
CW, C, SE and the vector 13797 corresponding to the intercept. Similarly, the vector
rural is omitted in order to avoid a perfect linear relation between vectors urban,
rural and the vector 13797 corresponding to the intercept. Table 4.69 provides a

description of the dependent and independent variables used in the estimation of the
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general SUR model.

The use of dummy variables in equation (4.3) actually estimates a different inter-
cept for each observed region and urbanization level combination, while maintaining
the same slope parameters for each of the other independent variables in the model
(Dbeefs Pporks Dehicken, and m). For this reason, the dummy variables in models like the
former are often called “intercept shifters”.

For example, the following sub-models can be obtained from equation (4.3).

e Consumption of the i** commodity by the urban population in the Northeast

region of Mexico:

di = (Bi1 + Bie + Bi10)1 + BioPoees + BisPpork + BiaPehicken + Bism + 1, i = 1,2, 3.
(4.4)

e Consumption of the i*" commodity by the rural population in the Northeast

region of Mexico:
q; = (le + 6@6)1 + ﬁiQpbeef—i_ ﬁinpm‘k + ﬁi4pchicken + ﬁi5m + u;, 1= 17 27 3. (4’5)

e Consumption of the i commodity by the urban population in the Northwest

region of Mexico:

di = (Bi1 + Bir + Bi10)1 + BioPuees + BisPpork + BiaPehicken + Bism + 1, i = 1,2, 3.
(4.6)

e Consumption of the i"* commodity by the rural population in the Northwest

region of Mexico:
q; = (ﬁzl + ﬁﬂ)l + Binbeef—i_ 6@'3ppo7‘k + 6i4pchicken + ﬁii’)m + u;, 1= 17 27 3. (47)

e Consumption of the i** commodity by the urban population in the Central-West

region of Mexico:

di = (Bi1 + Bis + Bi10)1 + BioPoees + BisPpork + BiaPehicken + Bism + 1, i = 1,2, 3.
(4.8)
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Table 4.69: List of Variables Used in the Mexican Meat Consumption Empirical
Application.

’ Variable \ Description

Qbeef Per capita beef consumption in kilograms (kg)

Qpork Per capita pork consumption in kilograms (kg)

Qehicken Per capita chicken consumption in kilograms (kg)

Dbeef Real price of beef in 2002 Mexican pesos per kilogram (real pesos/kg)

Dpork Real price of pork in 2002 Mexican pesos per kilogram (real pe-
sos/kg)

Dehicken Real price of chicken in 2002 Mexican pesos per kilogram (real pe-
sos/kg)

m Per capita real expenditure on all meats (beef, pork, processed meat,
chicken, other meat, and seafood) in 2002 Mexican pesos (real pesos)

NE Dummy variable for the Northeast region of Mexico. This variable

equals “1” if the observation belongs to the Northeast region, “0”
otherwise. This region consists of the states of Chihuahua, Cohahuila
de Zaragoza, Durango, Nuevo Ledn, and Tamaulipas.

NW Dummy variable for the Northwest region of Mexico. This vari-
able equals “1” if the observation belongs to the Northwest region,
“0” otherwise. This region consists of the states of Baja California,
Sonora, Baja California Sur, and Sinaloa.

cw Dummy variable for the Central-West region of Mexico. This vari-
able equals “1” if the observation belongs to the Central-West re-
gion, “0” otherwise. This region consists of the states of Zacate-
cas, Mayarit, Aguascalientes, San Luis Potosi, Jalisco, Guanajuato,
Querétaro Arteaga, Colima, and Michoacan de Ocampo.

C Dummy variable for the Central region of Mexico. This variable
equals “1” if the observation belongs to the Central region, “0” oth-
erwise. This region consists of the states of Hidalgo, Estado de
México, Tlaxcala, Morelos, Puebla, and Distrito Federal.

SE Dummy variable for the Southeast region of Mexico. This variable
equals “17 if the observation belongs to the Southeast region, “0”
otherwise. This region consists of the states of Veracruz de Ignacio
de la Llave, Yucatan, Quintana Roo, Campeche, Tabasco, Guerrero,
Oxaca, and Chiapas.

urban Dummy variable for the urban population. This variable equals “1”
if household location is within a population of 15,000 people or more,
“0” otherwise.

rural Dummy variable for the rural population. This variable equals “1”
if household location is within a population of 14,999 people or less,
“0” otherwise.
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Consumption of the i** commodity by the rural population in the Central-West

region of Mexico:
qi = (Bi1 + Bis) 1 + BioPovees + BisPpork + BiaPehicken + Bism+ 1, 1 = 1,2,3. (4.9)

Consumption of the i** commodity by the urban population in the Central

region of Mexico:

qi = (B + Bio + Biro) 1 + BiaPoeer + BisPpork + BiaPehicken + Bism +1;, i = 1,2, 3.
(4.10)

Consumption of the 7' commodity by the rural population in the Central region

of Mexico:
qi = (Bi1 + Bio) 1+ BioPovees + BisPpork + BiaPehicken + Bism+1;, i = 1,2,3. (4.11)

Consumption of the i commodity by the urban population in the Southeast

region of Mexico:
di = (Bi1+Bi10) 1+ BiaPrees+ BisPpork + BiaPehicken+ Sism+1;, i = 1,2,3. (4.12)

Consumption of the i commodity by the rural population in the Southeast

region of Mexico:
qi = (Bi1)1 + BioPuees + BisPpork + BiaPehicken + Bism +u;, i =1,2,3.  (4.13)

Therefore, a model like the one provided in equation (4.3) assumes that regional

or urbanization factors shift the consumption of the i** commodity in a parallel fash-

ion as shown in equations (4.4) through (4.13). Hence, the underlying assumption

of the model in equation (4.3) is that regional and urbanization-level differences in

consumption of the i commodity can be appropriately modeled by parallel shifting

the sub-models.
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Now, writing all 3 equations in equation (4.2) into one model gives

qi Xy 0 O B u
Q@ |=| 0 X, 0 Bz | | w (4.14)
a3 0 0 X3 Bs us
or
¢ = X B + u (4.15)

(3(3707)x1)  (3(3707)x30) (30x1) (3(3707)x1)

As we explained in Section 3.5, since we are dealing with a stratified sample (see
Section 4.1), before estimating the parameters of the model in equations (4.14) or
(4.15) by equation (2.12), we need to weight all the observations by the weight variable
(see Table 4.2) as it is done in weighted least squares.!® In fact, the weighted estimator
is consistent for 3 (Wooldridge, 2001, p. 464).1' SAS software allows to estimate the
system of equations in equation (4.14) using Seemingly Unrelated Regressions as well
as weighting each observation by a specified weight. However, as it was explained in
Section 3.5, “[if we] use weights w; in the weighted least squares estimation, [we] will
obtain the same point estimates...; however, in complex surveys, the standard errors
and hypothesis tests the software provides will be incorrect and should be ignored”
(Lohr, 1999, p. 355). Hence, to calculate better estimates of the standard errors and
hypothesis tests for the parameter estimates, this study applies the bootstrap by using
SAS software. As explained in Section 3.5, the Bootstrap is a resampling method
that can be used to estimate standard errors where other estimation methods are
inappropriate. Shao and Tu (1995) summarize theoretical results for the bootstrap in

complex survey samples. Wooldridge (2001, p. 464) provides an alternative procedure

0Weighted least squares is a special case of generalized least squares. Assuming var{u;(t)] =

o?w;(t), where w;(t) is the weight of observation ¢ in the i

wi() ) _ ;2
Vwi(t) '

I An estimator is consistent if the probability that the estimator and the true parameter differ by

th commodity equation, then

var

any arbitrary small positive number approaches zero as the sample size approaches infinity. That

Bir — Bik

is, Tlim Pr( > 5) = 0 for any € > 0. Or equivalently, Bik — Bik = 0p(1) or Bik £, Bik-
— 00
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to the bootstrap to calculate asymptotic variances of the parameter estimates when

we use one equation instead of a system of equations (see equation (3.3)).

4.3.2 Estimation of Individual SUR Models

The SUR model in equation (4.15) will also be estimated without the vectors
NE, NW, CW, C, and urban in equation (4.3) for each corresponding dataset of
Table 4.59 through Table 4.68. That is, subsets of the dataset containing all regions
and urbanization levels (dataset corresponding to Table 4.58) are obtained for each
urbanization level within each region (datasets corresponding to Table 4.59 through
4.68); and then the model in equation (4.15) is estimated without the vectors NE,
NW, CW, C, and urban in equation (4.3). In simple words, individual SUR mod-
els will be estimated for the urban and rural sectors within each region. In stratified
sampling the elements of the same stratum often tend to be more similar than ran-
domly selected elements from the whole population; therefore, individual models will
also be estimated. Individual models are not comparable to those obtained from
equations (4.4) through (4.13). If comparisons between the individual models and
sub-models obtained from equation (4.3) are desired, in addition to the dummy vari-
ables in equation (4.3) interaction of dummy variable with the real price variables and
real expenditure variable need to be included in equation (4.3). That is, twenty more
(3707 x 1) vectors (7 —2 = 5 dummy variables times 4 regular price and expenditure

variables) will have to be included in equation (4.3).
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CHAPTER V
RESULTS

In this chapter results and findings from the estimation of SUR models are pre-
sented. Section 5.1 focuses on the results of the general model for the Mexican meat
consumption presented in Section 4.3.1. In particular, it discusses the results of the
parameter estimates corresponding to the price variables, the parameter estimates
corresponding to the regional dummy variables, and the parameter estimate for the
urban dummy variable. Additionally, this section also explains how to interpret the
parameter estimates. Section 5.2 reports our findings when the individual SUR mod-
els presented in Section 4.3.2 are estimated for the urban and rural sector within each
region. In stratified sampling the elements of the same stratum often tend to be more
similar than randomly selected elements from the whole population; therefore, sev-
eral individual models that analyze tastes and preferences of consumers at different

urbanization levels within five Mexican regions are considered.

5.1 One General SUR Model

The results of the model in equation (4.14) or equation (4.15) are shown in Table
5.1. The sum of weights reported in Table 5.1 is the number of households that our
results represent nationally. That is, the 3,707 households, who reported consumption
of at lest one meat cut of beef, pork and chicken (see Table 4.56), represent 5.3 million
households nationally. A total of 22.1 million households (see Table 4.54) consumed
at least one meat cut during the week of the interview nationally. The number of
bootstrap resamples is the number of resamples that were taken in order to estimate
the standard errors and 95% confidence intervals of the estimated parameters.! An
R-square (also called coefficient of determination) is reported for each equation. An

R-square equal to 0.3641 means that 36.41% of the total variation in the dependent

IThe size of each resample was set to the size of the input data set (i.e., the number of observa-

tions).
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variable (¢;) is explained by the model (Pindyck and Rubinfeld, 1997, p. 89). The
R-square of the pork equation was lower than the R-square of the beef and chicken
equation. In Section 5.2, the R-square of the individual models for the urban and
rural sectors within each region are reported. As explained in Section 4.3.2 the R-
square of the individual models is not comparable to the R-square of the general
model.

The model in equation (4.14) or equation (4.15) has three equations and thirty
parameters. In Table 5.1, fifteen parameters were insignificant at the 0.05 level and
twelve parameters were insignificant at the 0.1 level. Of the twelve insignificant
parameters at the 0.1 level, 6 parameters correspond to price variables, 3 correspond to
regional dummy variables, and 3 correspond to urbanization-level variables. However,
all “own price” parameter estimates (i.e., the corresponding parameter estimates of
the price of beef in the beef equation, the price of pork in the pork equation, and
the price of chicken in the chicken equation) came with the correct negative sign and
were statistically different from zero at the 0.05 significance level. This means that an
increase in the own price of beef, pork or chicken will decrease the consumption of beef,
pork or chicken, respectively. For example, increasing the price of beef by 1 real peso
(i.e., 1 Mexican peso expressed in the nominal value of 2002 Mexican pesos),? holding
all other factors affecting beef consumption constant, will decrease the average weekly
per capita consumption of beef by 0.006180 kg (or 0.013624 1bs).? Since the average
household has approximately 4 adult equivalents (which is approximately 4.14 people
on average in Mexico), the average household of 4 adult equivalents (or 4.14 people)
will decrease the average weekly consumption of beef by 0.02472 kg (or 0.0545 1bs).

However, an increase in the price of beef by 5 real pesos (holding all other factors

2The exchange rate for the second half of June 2002 is US $1 = Mexican $9.78906. This is the
exchange rate reported by Banco de Mexico and used to calculate the amount of Mexican pesos that
must be used to pay debts in U.S. dollars within Mexico (“Para Pagos”). The exchange rate for the
second half of June 2002 is reported to be consistent with the base period for the CPI of Banco de

Mexico.
31 kg ~ 2.2046 1bs.
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affecting beef consumption constant) will decrease the average weekly per capita
consumption of beef by 0.0309 kg (or 0.068122 lbs), and the average household of 4
adult equivalents (or 4.14 people) will decrease their average weekly consumption of
beef by 0.1236 kg (or 0.2724 lbs). Similarly, increasing the price of pork by 1 real
peso (holding other factors affecting the consumption of pork constant) will decrease
the average weekly per capita consumption of pork by 0.00475 kg. Finally, increasing
the price of chicken by 1 real peso (holding other factors affecting the consumption of
chicken constant) will decrease the average weekly per capita consumption of chicken
by 0.009840 kg.

All the own price parameter estimates are the only price parameter estimates
that are statistically different from zero at both the 0.05 and 0.1 significant levels.
All other price parameter estimates in Table 5.1 were insignificant at the 0.1 level.
That is, there is not enough statistical evidence to conclude that changes in the price
of pork or chicken have an effect on the consumption of beef. In general, we would
expect that changes in the prices of pork or chicken (holding other factors affecting
the consumption of beef constant) will change the average consumption of beef. For
example, if the parameter corresponding to the variable pp;cken Were statistically
significant in the beef equation (see Table 5.1), then increasing the price of chicken
by 1 real peso (holding other factors affecting the consumption of beef constant) will
increase the average weekly consumption of beef by 0.000736 kg. On the other hand,
income designated to meat expenditures is statistically different from zero at the
0.05 significant level in all three equations. Hence, increasing the household income
designated to meat expenditures by 1 real peso, increases the average weekly per
capita consumption of beef by 0.005389 kg, the average weekly per capita consumption
of pork by 0.005158 kg, and the average weekly per capita consumption of chicken by
0.007507 kg while holding the price of beef, pork and chicken constant.

The parameter estimates corresponding to the regional dummy variables for the
Northeast and Northwest regions are statistically different from zero at the 0.05 or 0.1

level in all three equations (see Table 5.1). Hence, the per capita consumption of beef
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in the Northeast and Northwest regions are higher than the per capita consumption of
beef (first equation or beef section in Table 5.1) in the Southeast region (the excluded
dummy variable) regardless of the values taken by all other variables (beef price, pork
price, chicken price and expenditures on meat). Similarly, the per capita consumption
of pork (second equation or pork section in Table5.1) or chicken (third equation or
chicken section in Table 5.1) in the Northeast and Northwest regions is lower than
the per capita consumption of pork or chicken in the Southeast region. Now consider
the parameter estimates corresponding to the dummy variable C'W. There is not
enough statistical evidence to conclude that there is a difference between the per
capita consumption of beef or pork in the Central-West region and the Southeast
region. On the contrary, there is enough statistical evidence at the 0.05 significance
level to conclude that the per capita consumption of chicken is lower in the Central-
West region than in the Southeast region. The next parameter estimates corresponds
to the dummy variable C'. In this case, there is not enough statistical evidence at
the 0.1 significance level to conclude that the per capita consumption of pork in
the Central region and the Southeast region are different. However, there is enough
statistical evidence at the 0.05 and 0.1 significant levels that per capita consumption
of beef and chicken are statistically different in those regions. Finally, consider the
parameter estimates corresponding to the urban dummy variable urban. There is not
enough statistical evidence at the 0.1 significance level to conclude that the urban
and rural sectors have different per capita consumption of beef, pork or chicken.
The estimate of the sub-models in equations (4.4) through (4.13) can be obtained
by replacing the true parameters in equations (4.4) through (4.13) by the correspond-
ing parameter estimates of the " commodity (i = 1, 2, 3 = beef, pork, chicken)
in Table 5.1. However, the underlying assumption of the model in equation (4.3) is
that regional or urbanization factors shift the consumption of the i** commodity in
a parallel fashion. If this assumption is true, then there would be no need to have a
model for the urban and rural sectors because the parameter estimates correspond-

ing to the urban dummy variables are statistically insignificant at the 0.1 level in all
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three equations. For the same reason, there would be no need to distinguish between
consumption of beef or pork in the Central-West and Southeast regions (estimate
of parameter ;5 or estimate of parameter fag respectively), and the consumption
of pork in the Central and Southeast regions (estimate of parameter (a9). There-
fore, if the above assumption is true, instead of having thirty sub-models (ten for
each commodity—see equations (4.4) through (4.13)), there would only be twelve sub-
models (four sub-models for beef, three sub-model for pork, and five sub-models for
chicken). However, if the above assumption is false, the estimates of the parameters
B1g, Br10, Bog, P29, Bo10 and (319 may be statistically insignificant simply because the
parallel shifts do not reflect the real situation for each urban or rural sector within
each region.

In section 5.2, an individual model is estimated for the urban and rural sector
within each region. In stratified sampling elements of the same stratum often tend to
be more similar than randomly selected elements from the whole population; there-

fore, several individual models rather than one general model are considered.
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Table 5.1: SUR Parameter Estimates, All Strata.

Number of Observations 3707

Sum of Weights 5303145

Number of Bootstrap Resamples 1000

Beef-Equation R-square 0.3641

Pork-Equation R-square 0.0841

Chicken-Equation R-square 0.3208
Approx. Approx. Approx. Approx.
Parameter Bootstr. Bootstr. Bootstr. Bootstr.
Par. Variable Estimate Std. Err. 95% LCL 95% UCL  p-value

Beef
B Intercept  0.346868** 0.03858 0.27724 0.42846 < 0.00001
Biz  Doeet -0.006180** 0.00068 -0.00737 -0.00470 < 0.00001
Bis  Ppork -0.000090 0.00028 -0.00059 0.00051 0.88031
B1a Dehicken 0.000736 0.00061 -0.00027 0.00213 0.12984
Bis m 0.005389** 0.00146 0.00206 0.00777 0.00075
Bie NE 0.114659** 0.02601 0.06388 0.16584 0.00001
B NW 0.103198** 0.02593 0.05430 0.15209 0.00009
Pis cw 0.027630 0.02309 -0.02295 0.06756 0.33404
Bio C 0.028585* 0.01459 -0.00174 0.05545 0.06567
Bi10 urban 0.010061 0.01483 -0.01786 0.04025 0.45014
Pork
Ba1 Intercept  0.389742** 0.12727 0.13817 0.63708 0.00232
Ba2  Phees 0.000121 0.00056 -0.00095 0.00125 0.78708
Bas  Ppork -0.004750%* 0.00188 -0.00828 -0.00091 0.01457
Bos Dehicken -0.000750 0.00081 -0.00238 0.00080 0.32874
Bos m 0.005158** 0.00064 0.00378 0.00630 < 0.00001
Bag NE -0.133980* 0.07282 -0.27600 0.00944 0.06720
Bar NW -0.117400** 0.05978 -0.23586 -0.00152 0.04710
B cw -0.108500 0.07319 -0.25365 0.03326 0.13218
Bag C -0.089910 0.06291 -0.21515 0.03147 0.14435
Ba10  urban -0.057790 0.05116 -0.15761 0.04293 0.26233
Chicken

B31 Intercept  0.480953** 0.05131 0.38113 0.58227 < 0.00001
B32  Dbeef 0.000157 0.00065 -0.00103 0.00154 0.69602
B33 Ppork -0.000240 0.00038 -0.00097 0.00510 0.54208
B34 Dehicken -0.009840** 0.00145 -0.01234 -0.00668 < 0.00001
B35 m 0.007507** 0.00123 0.00472 0.00956 < 0.00001
P36 NE -0.073920** 0.02643 -0.12630 -0.02270 0.00482
P37 NW -0.056650* 0.03209 -0.12100 0.00477 0.07011
s cw -0.128570** 0.02552 -0.18322 -0.08317 < 0.00001
B39 C -0.070190** 0.02095 -0.11242 -0.03028 0.00066
Bs10  urban 0.025974 0.01974 -0.01074 0.06665 0.15683

Note: Bootstrap significance levels of 0.05 and 0.1 are indicated by ** and * respectively.
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5.2 Individual SUR Models

Individual SUR models were estimated for the urban and rural sectors within each
region. That is, the SUR model in equation (4.15) was estimated without the vectors
NE, NW, CW, C, and urban in equation (4.3) for each corresponding dataset
of Table 4.59 through Table 4.68. Tables 5.2 through 5.11 report the parameter
estimates as well as their standard errors and 95% confidence intervals. In addtion,
the number of observations in the sample, the sum of weights, the number of bootstrap
resamples, and a R-square for each equation was reported. The sum of weights is the
total number of households that the number of households in the sample (the number
of observations) represent in the corresponding sector and region. The number of
bootsrap resamples considered was 1,000.

The SUR models estimated in Tables 5.2 through 5.11 have three equations and
fifteen parameters. Out of the total fifteen parameters estimated, there are usually
seven or six insignificant parameter estimates in each table at the 0.05 or 0.1 level
respectively. The parameter estimates corresponding to own prices are all with the
correct sign. Similarly, they are all statistically different from zero at both 0.05 and
0.10 significance levels except for the own price of chicken in Table 5.9 and the own
price of pork in Tables 5.3, 5.10 and 5.11. In the beef equation, the price of pork
is always insignificant at the 0.1 level, and the price of chicken is in three occasions
significant at the 0.05 or 0.1 level (one occasion positive and significant in Table 5.8,
two occasions negative and significant in Tables 5.2 and 5.8). In the pork equation,
the price of beef is only in one occasion significant at the 0.1 level (negative and
significant in Table 5.5), and the price of chicken is in four occasions significant at
the 0.05 or 0.1 level (four occasions negative and significant in Tables 5.2, 5.3, 5.4,
and 5.8). In the chicken equation, the price of beef is in two occasions significant at
the 0.05 level (two occasions negative and significant in Tables 5.5 and 5.9), the price
of pork is in two occasions significant at the 0.05 or 0.1 level (one occasion positive
and significant in Table 5.5 and one occasion negative and significant in Table 5.10).

Therefore, in the pork and chicken equations, when the price of beef is significant, it
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is negative. Only in the pork equation, when the price of chicken is significant, it is
negative.

Furthermore, income designated to meat expenditures is always significant and
positive in Tables 5.2 through Table 5.11. When significant, price parameter estimates
can be interpreted in the same fashion that they were interpreted in Section 5.1. For
example, if the parameter estimate of the price of the j* commodity is positive in
the " equation; then, an increase (decrease) of one real peso in the price of the
4" commodity will increase (decrease) the average weekly per capita consumption
of the i*" commodity by the value of the parameter estimate, holding other factors
affecting the per capita consumption of the i"® commodity constant. Similarly, if the
parameter estimate of the price of the j* commodity is negative in the 7*" equation;
then, an increase (decrease) of one real peso in the price of the j commodity will
decrease (increase) the average weekly per capita consumption of the i commodity
by the absolute value of the parameter estimate, holding other factors affecting the
per capita consumption of the i** commodity constant.

Finally, parameter estimates from individual models are not comparable to those
obtained from the general model. If comparisons between the individual models and
sub-models obtained from the general model (equation (4.3)) are desired, in addition
to the dummy variables in equation (4.3) interaction of dummy variable with the real
price variables and real expenditure variable need to be included in equation (4.3).
That is, twenty four more (3707 x 1) vectors (6 dummy variables times 4 regular price

and expenditure variables) will have to be included in the general model (equation

(4.3)).
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Table 5.2: SUR Parameter Estimates, Urban Sector in Northeast Region.

Number of Observations 216

Sum of Weights 241965

Number of Bootstrap Resamples 1000

Beef-Equation R-square 0.5315

Pork-Equation R-square 0.4305

Chicken-Equation R-square 0.3903
Approx. Approx. Approx. Approx.
Parameter Bootstr. Bootstr. Bootstr. Bootstr.
Par. Variable Estimate Std. Err. 95% LCL 95% UCL  p-value

Beef
B Intercept  0.512882** 0.11038 0.28550 0.71816 < 0.00001
Biz DPoeet -0.008370** 0.00124 -0.01082 -0.00595 < 0.00001
Bis  Ppork -0.000310 0.00229 -0.00437 0.00461 0.95896
B14a Dehicken -0.005170** 0.00200 -0.00924 -0.00139 0.00792
Bis m 0.009649** 0.00125 0.00720 0.01208 < 0.00001
Pork
Ba1 Intercept  0.245647** 0.05330 0.13848 0.34741 < 0.00001
B2 Dbeef 0.000095 0.00093 -0.00166 0.00197 0.86806
Bas  Ppork -0.004650** 0.00083 -0.00618 -0.00293 < 0.00001
Boa Dehicken -0.002190** 0.00111 -0.00446 -0.00011 0.03967
Bos m 0.005080** 0.00094 0.00323 0.00690 < 0.00001
Chicken

B31 Intercept  0.448229** 0.09204 0.25850 0.61928 < 0.00001
B32  Dbeef -0.000210 0.00139 -0.00294 0.00252 0.87795
B33 Ppork -0.000300 0.00173 -0.00339 0.00339 0.99997
B34 Dehicken -0.010660** 0.00196 -0.01459 -0.00889 < 0.00001
B35 m 0.008506** 0.00108 0.00640 0.01062 < 0.00001

Note: Bootstrap significance levels of 0.05 and 0.1 are indicated by ** and * respectively.
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Table 5.3: SUR Parameter Estimates, Rural Sector in Northeast Region.

Number of Observations 65

Sum of Weights 58040

Number of Bootstrap Resamples 1000

Beef-Equation R-square 0.6279

Pork-Equation R-square 0.5093

Chicken-Equation R-square 0.1802
Approx. Approx. Approx. Approx.
Parameter Bootstr. Bootstr. Bootstr. Bootstr.
Par. Variable Estimate Std. Err. 95% LCL 95% UCL  p-value

Beef
B Intercept  0.595225%* 0.22702 0.19903 1.08895 0.00456
Biz DPoeet -0.015500** 0.00505 -0.02690 -0.00710 0.00077
Bis  Ppork 0.002124 0.00313 -0.00409 0.00818 0.51345
B4 Dehicken 0.001613 0.00520 -0.00744 0.01293 0.59759
Bis m 0.011809** 0.00373 0.00454 0.01918 0.00150
Pork
Ba1 Intercept ~ 0.080998 0.12934 -0.21300 0.29402 0.75414
B2 Dbeef 0.000739 0.00198 -0.00286 0.00491 0.60544
Bas  Ppork -0.001740 0.00171 -0.00465 0.00207 0.45221
Boa Dehicken -0.005700* 0.00363 -0.01368 0.00056 0.07112
Bos m 0.008047** 0.00452 0.00040 0.01812 0.04054
Chicken

B31 Intercept  0.409135%* 0.16600 0.11247 0.76318 0.00835
B32  Dbeet 0.001362 0.00261 -0.00416 0.00607 0.71373
B33 Ppork 0.000478 0.00218 -0.00409 0.00444 0.93420
B34 Dehicken -0.009780* 0.00346 -0.01546 -0.00192 0.01193
B35 m 0.002919 0.00300 -0.00393 0.00784 0.51499

Note: Bootstrap significance levels of 0.05 and 0.1 are indicated by ** and * respectively.
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Table 5.4: SUR Parameter Estimates, Urban Sector in Northwest Region.

Number of Observations 291

Sum of Weights 465235

Number of Bootstrap Resamples 1000

Beef-Equation R-square 0.5469

Pork-Equation R-square 0.3233

Chicken-Equation R-square 0.2641
Approx. Approx. Approx. Approx.
Parameter Bootstr. Bootstr. Bootstr. Bootstr.
Par. Variable Estimate Std. Err. 95% LCL 95% UCL  p-value

Beef
B Intercept  0.292169** 0.08414 0.13098 0.46079 0.00044
Biz DPoeet -0.007570%* 0.00189 -0.01146 -0.00405 0.00004
Bis  Ppork -0.000570 0.00051 -0.00154 0.00046 0.28679
B14a Dehicken 0.001200 0.00109 -0.00089 0.00339 0.25193
Bis m 0.011655%* 0.00141 0.00900 0.01451 < 0.00001
Pork
Ba1 Intercept  0.190671** 0.03600 0.11440 0.25552 < 0.00001
B2 Dbeef -0.000970 0.00079 -0.00249 0.00062 0.23815
Bas  Ppork -0.002000** 0.00054 -0.00289 -0.00078 0.00067
Boa Dehicken -0.001680** 0.00077 -0.00321 -0.00018 0.02850
Bos m 0.004692** 0.00079 0.00307 0.00617 < 0.00001
Chicken

B31 Intercept  0.507386** 0.10979 0.27019 0.70057 < 0.00001
B32  Dbeef 0.001055 0.00255 -0.00348 0.00649 0.55455
B33 Ppork -0.000006 0.00076 -0.00141 0.00156 0.91877
B34 Dehicken -0.014430** 0.00407 -0.02243 -0.00649 0.00038
B35 m 0.007658** 0.00134 0.00507 0.01034 < 0.00001

Note: Bootstrap significance levels of 0.05 and 0.1 are indicated by ** and * respectively.
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Table 5.5: SUR Parameter Estimates, Rural Sector in Northwest Region.

Number of Observations 50

Sum of Weights 42828

Number of Bootstrap Resamples 1000

Beef-Equation R-square 0.5962

Pork-Equation R-square 0.4337

Chicken-Equation R-square 0.5057
Approx. Approx. Approx. Approx.
Parameter Bootstr. Bootstr. Bootstr. Bootstr.
Par. Variable Estimate Std. Err. 95% LCL 95% UCL  p-value

Beef
B Intercept  0.740964** 0.34910 0.23082 1.59929 0.00876
Biz DPoeet -0.017030** 0.00822 -0.03585 -0.00363 0.01633
Bis  Ppork 0.003104 0.00334 -0.00306 0.01003 0.29674
B14a Dehicken 0.001602 0.00381 -0.00535 0.00959 0.57780
Bis m 0.005925 0.00455 -0.00545 0.01239 0.44581
Pork
Ba1 Intercept  0.481360** 0.19212 0.18076 0.93387 0.00372
B2 Dbeef -0.004260* 0.00257 -0.00996 0.00013 0.05612
Bas  DPpork -0.004100** 0.00172 -0.00740 -0.00066 0.01908
Boa Dehicken -0.000990 0.00162 -0.00437 0.00198 0.46243
Bos m 0.002762 0.00276 -0.00402 0.00678 0.61637
Chicken

B31 Intercept  0.615571%* 0.22320 0.20155 1.07648 0.00420
B32  Dbeet -0.007100** 0.00356 -0.01457 -0.00063 0.03256
B33 Ppork 0.004984* 0.00286 -0.00038 0.01082 0.06779
B34 Dehicken -0.009340** 0.00337 -0.01528 -0.00206 0.01010
B35 m 0.004909 0.00260 -0.00135 0.00884 0.15951

Note: Bootstrap significance levels of 0.05 and 0.1 are indicated by ** and * respectively.
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Table 5.6: SUR Parameter Estimates, Urban Sector in Central-West Region.

Number of Observations 887

Sum of Weights 834796

Number of Bootstrap Resamples 1000

Beef-Equation R-square 0.3265

Pork-Equation R-square 0.7230

Chicken-Equation R-square 0.4600
Approx. Approx. Approx. Approx.
Parameter Bootstr. Bootstr. Bootstr. Bootstr.
Par. Variable Estimate Std. Err. 95% LCL 95% UCL  p-value

Beef
B Intercept  0.416511°** 0.092523 0.24890 0.61159 < 0.00001
Biz DPoeet -0.004720%* 0.001492 -0.00733 -0.00148 0.00316
Bis  Ppork 0.000746 0.000975 -0.00077 0.00305 0.24346
B14a Dehicken -0.000350 0.000784 -0.00170 0.00137 0.83511
Bis m 0.002697 0.002286 -0.00314 0.00582 0.55702
Pork
Ba1 Intercept  0.225220** 0.035018 0.15767 0.29494 < 0.00001
B2 Dbeef -0.000480 0.000462 -0.00134 0.00048 0.35301
Bas  Ppork -0.003240** 0.000431 -0.00398 -0.00229 < 0.00001
Boa Dehicken -0.000410 0.000618 -0.00160 0.00082 0.52992
Bas m 0.004338** 0.000434 0.00327 0.00497 < 0.00001
Chicken

B31 Intercept ~ 0.381302** 0.060955 0.27297 0.51191 < 0.00001
B32  Dbeef 0.000270 0.001057 -0.00166 0.00249 0.69386
B33 Ppork 0.000773 0.000881 -0.00077 0.00296 0.27612
B34 Dehicken -0.008480** 0.001427 -0.01114 -0.00555 < 0.00001
B35 m 0.004991** 0.001484 0.00129 0.00710 0.00471

Note: Bootstrap significance levels of 0.05 and 0.1 are indicated by ** and * respectively.
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Table 5.7: SUR Parameter Estimates, Rural Sector in Central-West Region.

Number of Observations 207

Sum of Weights 291773

Number of Bootstrap Resamples 1000

Beef-Equation R-square 0.7501

Pork-Equation R-square 0.3197

Chicken-Equation R-square 0.3562
Approx. Approx. Approx. Approx.
Parameter Bootstr. Bootstr. Bootstr. Bootstr.
Par. Variable Estimate Std. Err. 95% LCL 95% UCL  p-value

Beef
B Intercept  0.202539 0.11252 -0.05452 0.38656 0.14010
Biz  Dbeef -0.004740** 0.00182 -0.00803 -0.00091 0.01396
Bis  Ppork -0.001520 0.00102 -0.00365 0.00033 0.10250
014 Pehicken 0.000317 0.00265 -0.00479 0.00558 0.88015
P15 m 0.010974** 0.00258 0.00694 0.01707 < 0.00001
Pork
Ba1 Intercept  0.235395%* 0.08941 0.06927 0.41976 0.00624
B2z Phees 0.000317 0.00124 -0.00197 0.00290 0.70979
Bas  Ppork -0.002560** 0.00061 -0.00358 -0.00120 0.00009
Bos Dehicken -0.002030 0.00146 -0.00499 0.00074 0.14533
Bas m 0.003496 0.00169 -0.00056 0.00608 0.10329
Chicken

B31 Intercept  0.465114** 0.14459 0.22630 0.79309 0.00042
B32  Dbeef 0.000017 0.00239 -0.00499 0.00436 0.89514
B33 DPpork -0.000280 0.00132 -0.00299 0.00220 0.76639
B34 Dehicken -0.011510%** 0.00321 -0.01799 -0.00542 0.00026
B35 m 0.006863** 0000191 0.00250 0.00999 0.00109

Note: Bootstrap significance levels of 0.05 and 0.1 are indicated by ** and * respectively.

Source: Computed by author.
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Table 5.8: SUR Parameter Estimates, Urban Sector in Central Region.

Number of Observations 918

Sum of Weights 1986442

Number of Bootstrap Resamples 1000

Beef-Equation R-square 0.4607

Pork-Equation R-square 0.3615

Chicken-Equation R-square 0.2195
Approx. Approx. Approx. Approx.
Parameter Bootstr. Bootstr. Bootstr. Bootstr.
Par. Variable Estimate Std. Err. 95% LCL 95% UCL  p-value

Beef
B Intercept  0.343246** 0.043271 0.25653 0.42615 < 0.00001
Biz DPoeet -0.006400** 0.000702 -0.00783 -0.00508 < 0.00001
Bis  Ppork -0.000090 0.000398 -0.00087 0.00069 0.81362
B4 Dehicken 0.001221* 0.000804 -0.00005 0.00310 0.05769
Bis m 0.006343** 0.000691 0.00490 0.00761 < 0.00001
Pork
Ba1 Intercept  0.273154** 0.035296 0.20320 0.34156 < 0.00001
B2 Dbeef -0.000640 0.000543 -0.00167 0.00046 0.26182
Bas  Ppork -0.003830** 0.000365 -0.00456 -0.00313 < 0.00001
Boa Dehicken -0.001710** 0.000496 -0.00269 -0.00075 0.00053
Bos m 0.005097** 0.000720 0.00370 0.00652 < 0.00001
Chicken

Ba1 Intercept  0.461323** 0.091832 0.26132 0.62129 < 0.00001
B32  Dbeef -0.000920 0.001207 -0.00343 0.00130 0.37813
B33 Ppork -0.001410 0.000956 -0.00332 0.00043 0.13027
B34 Dehicken -0.009430** 0.002945 -0.01406 -0.00252 0.00487
B35 m 0.009350* 0.001532 -0.00628 0.01228 < 0.00001

Note: Bootstrap significance levels of 0.05 and 0.1 are indicated by ** and * respectively.

184



Table 5.9: SUR Parameter Estimates, Rural Sector in Central Region.

Number of Observations 198

Sum of Weights 4415894

Number of Bootstrap Resamples 1000

Beef-Equation R-square 0.5087

Pork-Equation R-square 0.1908

Chicken-Equation R-square 0.3560
Approx. Approx. Approx. Approx.
Parameter Bootstr. Bootstr. Bootstr. Bootstr.
Par. Variable Estimate Std. Err. 95% LCL 95% UCL  p-value

Beef
B Intercept  0.295745%* 0.07597 0.14328 0.44106 0.00012
Biz DPoeet -0.003700** 0.00137 -0.00626 -0.00089 0.00916
Bis  Ppork -0.000660 0.00097 -0.00268 0.00113 0.42396
B14a Dehicken -0.003510** 0.00140 -0.00631 -0.00081 0.01124
Bis m 0.007911%* 0.00103 0.00603 0.01007 < 0.00001
Pork
Ba1 Intercept  0.223519** 0.09089 0.04675 0.40305 0.01335
B2 Dbeef 0.000245 0.00123 -0.00226 0.00255 0.90524
Bas  Ppork -0.003440** 0.00074 -0.00485 -0.00194 < 0.00001
Boa Dehicken -0.000900 0.00147 -0.00361 0.00217 0.62465
Bos m 0.004756** 0.00101 0.00267 0.00662 < 0.00001
Chicken

B31 Intercept  0.503726** 0.19494 0.12359 0.88775 0.00949
B32  Dbeet -0.007220** 0.00288 -0.01288 -0.00160 0.01190
B33 Ppork 0.001672 0.00148 -0.00107 0.00475 0.21458
B34 Dehicken -0.006060 0.00385 -0.01333 0.00177 0.13347
B35 m 0.009075%* 0.00208 0.00452 0.01268 0.00003

Note: Bootstrap significance levels of 0.05 and 0.1 are indicated by ** and * respectively.
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Table 5.10: SUR Parameter Estimates, Urban Sector in Southeast Region.

Number of Observations 617

Sum of Weights 581798

Number of Bootstrap Resamples 1000

Beef-Equation R-square 0.2720

Pork-Equation R-square 0.1656

Chicken-Equation R-square 0.4628
Approx. Approx. Approx. Approx.
Parameter Bootstr. Bootstr. Bootstr. Bootstr.
Par. Variable Estimate Std. Err. 95% LCL 95% UCL  p-value

Beef
B Intercept  0.404887** 0.07822 0.25235 0.55897 < 0.00001
Biz DPoeet -0.008170** 0.00219 -0.01226 -0.00369 0.00026
Bis  Ppork 0.000025 0.00051 -0.00114 0.00085 0.77230
B14a Dehicken -0.000500 0.00071 -0.00190 0.00088 0.47064
Bis m 0.007282** 0.00127 0.00476 0.00976 < 0.00001
Pork
Ba1 Intercept  0.201835 0.10365 -0.04589 0.36042 0.12922
B2 Dbeef 0.000015 0.00122 -0.00248 0.00229 0.94012
Bas  Ppork -0.002890 0.00271 -0.00709 0.00353 0.51072
Boa Dehicken -0.000570 0.00092 -0.00241 0.00120 0.51205
Bos m 0.005065** 0.00060 0.00391 0.00625 < 0.00001
Chicken

B31 Intercept  0.335855%* 0.09966 0.13096 0.52160 0.00106
B32  Dbeet 0.007250 0.00139 -0.00205 0.00342 0.62404
B33 Ppork -0.001120* 0.00069 -0.00267 0.00002 0.05406
B34 Dehicken -0.009470** 0.00265 -0.01394 -0.00353 0.00100
B35 m 0.011001** 0.00151 0.00809 0.01400 < 0.00001

Note: Bootstrap significance levels of 0.05 and 0.1 are indicated by ** and * respectively.
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Table 5.11: SUR Parameter Estimates, Rural Sector in Southeast Region.

Number of Observations 258

Sum of Weights 384374

Number of Bootstrap Resamples 1000

Beef-Equation R-square 0.5910

Pork-Equation R-square 0.1170

Chicken-Equation R-square 0.6817
Approx. Approx. Approx. Approx.
Parameter Bootstr. Bootstr. Bootstr. Bootstr.
Par. Variable Estimate Std. Err. 95% LCL 95% UCL  p-value

Beef
B Intercept  0.263960** 0.07682 0.11503 0.41615 0.00054
Biz DPoeet -0.006110** 0.00128 -0.00859 -0.00356 < 0.00001
Bis  Ppork 0.000726 0.00092 -0.00111 0.00248 0.45500
B14a Dehicken 0.000167 0.00157 -0.00277 0.00399 0.84323
Bis m 0.006337** 0.00084 0.00453 0.00781 < 0.00001
Pork
Ba1 Intercept  1.393350 1.08052 -0.66362 3.57192 0.17837
B2 Dbeef 0.005656 0.00786 -0.00960 0.02121 0.46039
Bas  Ppork -0.049240 0.03940 -0.12808 0.02636 0.19672
Boa Dehicken 0.016849 0.01744 -0.01664 0.05172 0.31448
Bos m 0.011363* 0.00578 -0.00013 0.02253 0.05269
Chicken

B31 Intercept  0.277109** 0.12304 0.01834 0.50067 0.03494
B32  Dbeet 0.001718 0.00177 -0.00176 0.00518 0.33525
B33 Ppork 0.002516 0.00178 -0.00080 0.00619 0.13118
B34 Dehicken -0.016720** 0.00286 -0.02242 -0.01122 < 0.00001
B35 m 0.018520** 0.00182 0.00966 0.01678 < 0.00001

Note: Bootstrap significance levels of 0.05 and 0.1 are indicated by ** and * respectively.
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CHAPTER VI
CONCLUSION

The general objective of this research was to provide an understanding of the SUR
procedure and to explain some of its current trends. To understand SUR this study
dedicated Chapter II to explain the estimation procedure, some properties of the SUR
estimator, the efficiency gained by the SUR estimator, and how to test for aggregation
bias using SUR. With respect to the efficiency gained by the SUR estimator, Zellner
(1962) found that the regression coefficient estimators are at least asymptotically
more efficient than the least squares equation-by-equation estimators. Specifically, a
quite large gain in efficiency can be obtained when independent variables in different
equations are not highly correlated and when error terms in different equations are
highly correlated. The test for aggregation bias consists of a test for the equality
of all regression equation coefficients. Particularly, Zellner’s (1962) test can be used
to determine if aggregated data (macro-data) has an aggregation bias problem or if
disaggregated data (micro-data) can be aggregated without suffering from aggregation
bias.

Additional literature of the SUR procedure discussed in this study include SUR
with unequal number of observations, the different alternative estimators of the
variance-covariance matrix of the error term (X), the conditions under which one
estimator of 3 will perform better than another, and whether it is relevant to use
better estimates of 3. SUR with unequal number of observations (i.e., the case where
one or more equations have missing observations) focuses on how to handle a set of
regression equations when the data is time-series, cross-sectional or panel data. With
respect to whether it is relevant to use better estimates of 3, it has been found that
better estimates of 3 or 37! need not imply better estimates of regression coefficients.
Furthermore, a feasible GLS estimator of the regression coefficients that ignores the
extra observations in estimating 3 (but not necessarily in estimating X' or 3) com-

pares favorably to a feasible GLS estimator of the regression coefficients that seem to
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use all extra observations.

Specific objectives of this research were to provide an empirical application of
a SUR model, and to explain the relevant findings from this empirical application.
The Mexican household meat consumption was selected as the empirical application
in this research. To familiarize with the world and Mexican meat markets before
estimating SUR models, a discussion of the role meat plays in the agricultural sector
was presented in Section 1.1, a review of the meat world market was provided in
Section 1.2, and an analysis of Mexican meat production and consumption in Section
1.4. In particular, from Section 1.2, we saw that the United States, the EU-25,
Brazil, China, Mexico, and Canada were leading producing and consuming countries
of beef, pork, and chicken. Additionally, when we considered the combined production
and consumption of beef, pork, and chicken, on average for the period 1997-2006,
Mexico was a net meat consumer with excess consumption of 0.859 million MT while
Brazil, United States, EU-25, Canada, and China were net meat producers with
excess production of 2.808, 2.054, 1.664, 0.956, and 0.218 million MT respectively.
Therefore, Mexico is a very important market for all net meat producers.

To analyze the Mexican meat consumption, this study used a nation-wide Mexican
survey on household income and weekly expenditures (Encuesta Nacional de Ingresos
y Gastos de los Hogares (ENIGH)) that is published by a Mexican governmental
institution (Instituto Nacional de Estadisitca, Geogria e Informatica or INEGI). The
data used from ENIGH corresponded to the year 2006 and it was collected between
August and November 2006. ENIGH’s sampling methods are probabilistic, multi-
staged, stratified, and conglomerated. The sampling method is probabilistic because
the sampling units have a probability of being selected, which is known and different
from zero. Additionally, the sampling method is multi-staged because the sampling
units are selected in multiple stages. It is stratified because the target population
is divided into groups with similar characteristics, which form the strata. Finally,
it is conglomerated because the sampling units (households) are made up from the

observation units (household members).
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Variables of interest were selected from ENIGH database. To organize the data,
this study created and modified new variables. Particularly, the variable adult equiv-
alents was created in order to calculate per capita meat consumption and per capita
real expenditure. Not adjusting household meat consumption and expenditures by
adult equivalents presents a problem when estimating quantity consumed (quantity
demand) as a function of prices and total meat expenditure. For example, suppose
one household demands ¢ amount of beef and suppose a bigger household who pays
a higher price demands more beef. If we compare these two households without
adjusting by adult equivalents, price increases but does quantity decrease? On the
other hand, adjusting by adult equivalents (i.e., computing per capita beef consump-
tion) in our example, price will always increase but this time quantity will decrease.
In addition, nominal variables were transformed to real variables. Then, meat cuts
were aggregated into meat categories (Table 4.6) to reduce the excessive number of
missing observations resulting from the nature of the survey. To avoid doing price
imputations, the number of missing observations was reduced even further by exclud-
ing non-relevant meat categories (processed meat and seafood in Table 4.57) from
the analysis and considering the total intersection of the non-missing prices in the
remaining categories (beef, pork and chicken in Table 4.57). Hence, the results from
this study can only be generalized to those households who consumed at least one
meat cut of beef, pork and chicken during week of the interview. Since we are dealing
with a stratified sample, we know the beef, pork and chicken dataset, which consists
of 3,707 households, represents 5.3 million households nationally of the total of 22.1
million households (Table 4.54) who consumed at least one meat cut during the week
of the interview.

Since ENIGH is a stratified sample, any descriptive statistic or regression model es-
timated in this study incorporated the stratification variables (weight and strata). “A
data analyst who ignores stratification variables and dependence among observations
is not fitting a good model to the data but is simply being lazy” (Lohr, 1999, p. 229).
Particularly, this study weighted all the observations by the sampling weight variable
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as it is done in weighted least squares when estimating the SUR models. In fact, the
weighted estimator is consistent (Wooldridge, 2001, p. 464). Specifically, this study
used the SAS software to estimate the system of equations using Seemingly Unre-
lated Regressions as well as the sampling weight of each observation. When “[we] use
weights w; in the weighted least squares estimation, [we] will obtain the same point
estimates...; however, in complex surveys, the standard errors and hypothesis tests
the software provides will be incorrect and should be ignored” (Lohr, 1999, p. 355).
Hence, to calculate better estimates of the standard errors and hypothesis tests for the
parameter estimates, this study applied the bootstrap by using SAS software. The
Bootstrap is a resampling method that can be used to estimate standard errors where
other estimation methods are inappropriate. This approach was prefered over the al-
ternative formulae provided by Wooldridge (2001, p. 464) to calculate asymptotic
variances of the parameter estimates because SUR deals with a system of equations
instead of one equation.

SUR models were estimated for one general model and for individual models. The
general model assumes that regional or urbanization factors shift the consumption
of the i commodity in a parallel fashion. That is, regional and urbanization-level
differences in consumption of the i commodity can be appropriately modeled by
parallel shifting sub-models. If this assumption is false and there are differences in
consumption of the i"* commodity among Mexican regions and urbanization level,
the individual SUR models provide more precise parameter estimates for each case.
Additionally, in stratified sampling elements of the same stratum often tend to be
more similar than randomly selected elements from the whole population; therefore,
individuals models were considered.

The results of the SUR general model were reported in Table 5.1. All “own price”
parameter estimates (i.e., the corresponding parameter estimates of the price of beef
in the beef equation, the price of pork in the pork equation, and the price of chicken
in the chicken equation) came with the correct negative sign and statistically different

from zero at the 0.05 significance level. Our results indicate that increasing the price
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of beef by 1 real peso (i.e., 1 Mexican peso expressed in the nominal value of 2002
Mexican pesos), holding all other factors affecting beef consumption constant, will
decrease the weekly per capita consumption of beef by 0.006180 kg (or 0.013624 lbs).
Similarly, increasing the price of pork by 1 real peso (holding other factors affecting
the consumption of pork constant) will decrease the weekly per capita consumption
of pork by 0.00475 kg. Finally, increasing the price of chicken by 1 real peso (holding
other factors affecting the consumption of chicken constant) will decrease the weekly
per capita consumption of chicken by 0.009840 kg. All other price parameter esti-
mates in Table 5.1 resulted insignificant at the 0.1 level. That is, there is not enough
statistical evidence to conclude that changes in the price of pork or chicken have an
effect on the consumption of beef. In addition, our results indicate that income des-
ignated to meat expenditures is statistically different from zero at the 0.05 significant
level in all three equations. Hence, increasing the household income designated to
meat expenditures by 1 real peso, increases the average weekly per capita consump-
tion of beef by 0.005389 kg, the average weekly per capita consumption of pork by
0.005158 kg, and the average weekly per capita consumption of chicken by 0.007507
kg while holding the price of beef, pork and chicken constant. The estimate of the
regional dummy variables and urbanization level dummy variable indicate that there
is not enough statistical evidence at the 0.1 significance level to conclude that there
are differences between consumption of beef or pork in the Central-West and South-
east regions, the consumption of pork in the Central and Southeast regions, and the
urban and rural sectors.

The results of the SUR individual models are reported in Tables 5.2 through 5.11.
The parameter estimates corresponding to own prices are all with the correct sign.
Similarly, they are all statistically different from zero except for the own price of
chicken in Table 5.9 and the own price of pork in Tables 5.10 and 5.11. In the beef
equation, the price of pork is always insignificant at the 0.1 level, and the price of
chicken is in three occasions significant at the 0.05 or 0.1 level (one occasion positive

and significant in Table 5.8, two occasions negative and significant in Tables 5.2 and
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5.8). In the pork equation, the price of beef is only in one occasion significant at the
0.1 level (negative and significant in Table 5.5), and the price of chicken is in four
occasions significant at the 0.05 or 0.1 level (four occasions negative and significant
in Tables 5.2, 5.3, 5.4, and 5.8). In the chicken equation, the price of beef is in two
occasions significant at the 0.05 level (two occasions negative and significant in Tables
5.5 and 5.9), the price of pork is in two occasions significant at the 0.05 or 0.1 level
(one occasion positive and significant in Table 5.5 and one occasion negative and
significant in Table 5.10). Therefore, in the pork and chicken equations, when the
price of beef is significant, it is negative. Only in the pork equation, when the price of
chicken is significant, it is negative. When significant, price parameter estimates can
be interpreted in the same fashion that they were interpreted for the general SUR

model.
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