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ABSTRACT

This report provides an understanding of Zellner’s (1962) seemingly unrelated
regressions (SUR) procedure, a discussion of some of SUR current issues, and an
application of SUR in stratified sampling. A survey of Mexican household meat con-
sumption and expenditures was used in the empirical application. One general model
and several individual models were estimated by the SUR procedure incorporating
sampling weights. Parameter estimates are reported and its standard errors are ap-
proximated by using the bootstrap.
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CHAPTER I

INTRODUCTION

In 1962, Arnold Zellner presented a method of estimating parameters of a set of

regression equations. Zellner (1962) called his method seemingly unrelated regressions

(SUR) to reflect the fact that each equation is related to one another, even though

they seem to be unrelated. The regression equations seem to be unrelated because

unlike a simultaneous equations model where one or more of the independent variables

in one or more of the equations is itself a dependent variable, in seemingly unrelated

regression none of the variables in the system is simultaneously both independent

variable and dependent variable (Srivastava and Giles, 1987, p. 1). Therefore, even

though none of the variables in the system is simultaneously both independent vari-

able and dependent variable, “[t]here may still be interaction between the individual

equations if the random disturbances associated with at least some of the different

equations are correlated with each other” (Srivastava and Giles, 1987, p. 1). In simple

words, the terminology arises because estimating each equation separately will ignore

possible relationships of the equation errors (Griffiths et al., 1992, p. 549) whereas

estimating each equation into one model will consider possible relationships of the

equation errors even though the equations seem to be unrelated.

Zellner (1962) found that the regression coefficient estimators are at least asymp-

totically more efficient than the least squares equation-by-equation estimators. In

particular, a quite large gain in efficiency can be obtained when independent vari-

ables in different equations are not highly correlated and when error terms in different

equations are highly correlated. Additionally, Zellner (1962) explained a test for the

equality of all regression equation coefficients (also called test for aggregation bias).

His test can be used to determine if aggregated data (macro-data) has an aggrega-

tion bias problem or if disaggregated data (micro-data) can be aggregated without

1



suffering from aggregation bias.1

Zellner (1962) provided an empirical example to illustrate his SUR method of esti-

mating parameters. This example was later further discussed by Kmenta (1971, pp. 527–

528) and Theil (1971, pp. 295–302). Since Zellner (1962) presented his SUR model,

substantial literature has emerged. For example, let’s consider only the literature

on SUR studied by Zellner. Zellner and Hwang (1962) discuss further properties of

efficient estimators for SUR equations. Zellner (1963) discusses finite sample proper-

ties in estimators for SUR equations. Zellner (1971, pp. 244-246) restudies the error

correlations of the regression equations from a Bayesian point of view. Zellner (1969),

and Zellner and Montmarquette (1971) revisit the aggregation problem.

Literature dealing with SUR with unequal number of observations has also devel-

oped. This topic expands on the main topic discussed in this research. Studies in

this topic have illustrated how to handle a set of regression equations when the data

is time-series, cross-sectional or panel data. In cross-sectional data, there seems to be

more examples of cases when observations from one equation with respect to another

equation are missing. For instance, we can encounter the typical nonresponse due to

participants refusing to answer or we can encounter missing observations due to the

nature of the survey. In the latter case, there might be observations missing because

they were censored2 or because people collecting information were time constrained3

or some kind of combination of both.4

1In general, aggregated data is a function of disaggregated data. Aggregation is the process of

going from disaggregated data to aggregated data. Hence, aggregation bias occurs when noise is

gained during the process of aggregation in such a way that any inference made from aggregated

data is biased. Section 2.4.1 provides several examples on how data can be aggregated.
2For instance, Wooldridge’s (2006, p. 610) example presented in Section 3.1 where we know the

value of a family’s wealth up to a certain threshold.
3For example, the design of the ENIGH 2006 survey, which was mentioned in Section 3.3, where

during the week of the interview not all possible consumption items will be purchased by the house-

holds.
4Consider again the case when not all consumption items will be purchased by households. Some

items are not purchased because they are too expensive and the households choose not to buy them,

2



Other studies dealing with SUR with unequal number of observations discuss

alternative estimators of the variance-covariance matrix of the error term (Σ), the

conditions under which one estimator of Σ will perform better than another, and

whether it is relevant to use better estimates of Σ. In the latter case, it has been

found that better estimates of Σ or Σ−1 need not imply better estimates of regression

coefficients. In addition, as it will be discussed in Section 3.3, a feasible GLS estima-

tor of the regression coefficients that ignores the extra observations in estimating Σ

(but not necessarily in estimating Σ−1 or β) compares favorably to a feasible GLS

estimator of the regression coefficients that seem to use all extra observations.

Given that SUR have been widely accepted and implemented, and the abundant

literature that has emerged, the general objective of this research is to provide an

understanding of the SUR procedure and to explain some of its current trends. The

specific objectives of this study are:

• explain Zellner’s (1962) SUR procedure and why it is preferred over the least

squares equation-by-equation,

• explain Zellner’s (1962) test for equality of regression coefficients (also called

test for aggregation bias),

• provide an empirical application of a SUR model, and

• explain the relevant findings from this empirical application.

The Mexican household meat consumption was selected as the empirical applica-

tion in this research. In order to familiarize with meat and its world market, Section

1.1 discusses the role meat plays in the agricultural sector, Section 1.2 talks about

the meat world market, and Section 1.3 explains the importance of analyzing meat

but some items are not purchased because households did not have the chance to buy them during

the week of the interview. In the former case, we do not have a measure of the maximum amount

households would have been willing to pay as explained by Pindyck and Rubinfeld (1997, p. 325) in

Section 3.1. In the latter case, the item was simply not recorded because of time constraints.

3



at the table-cut level. Then, Section 1.4 will expand on understanding Mexican meat

production and consumption. Finally, Section 1.5 will briefly talk about the data

that will be employed in the study.

1.1 Meat and the Agricultural Sector

The importance of agriculture in an economy varies significantly by country. For

example, in 2006, the nominal gross domestic product of the agriculture, forestry,

fishing and hunting sector of the United States was $122 billion (Northeast-Midwest

Institute, based on data from U.S. Department of Commerce, Bureau of Economic

Analysis). However, the total nominal gross domestic product in 2006 was $13.1947

trillion (International Monetary Fund–World Economic Outlook Database). There-

fore, during 2006, in the United States, the agriculture, forestry, fishing and hunting

sector contributed only about 1% of the total nominal gross domestic product (Figure

1.1). On the other hand, in 2005, the total nominal gross domestic product of Mexico

in 2005 was $0.76769 trillion (International Monetary Fund–World Economic Outlook

Database). However, during 2005, in Mexico, the agribusiness sector contributed 5%

of the total nominal gross domestic produduct (The World Bank and International

Monetary Fund, November, 2006) (Figure 1.2).

Meat plays an important role in world trade. According to Dyck and Nelson

(2003), global meat trade is over 24 million tons with a value over $43 billion in 2000,

which is about 10% of total agricultural trade. Additionally, global meat trade is

growing rapidly. From 1990 to 2000, global meat trade grew by aout 6% per year

(Dyck and Nelson, 2003).

Additionally, it is important to mention that globalization has lead to dependence

of one country’s meat consumption on another country’s meat production. For in-

stance, East Asia–defined as Japan, South Korea, and Taiwan—is usually the world’s

largest meat-importing region because the region is densely populated, with moun-

tains and forests that limit the land available for agriculture, making large-scale feed

production relatively expensive (Dyck and Nelson, 2003). Furthermore, the region

4



Figure 1.1: U.S. Nominal GDP Contribution by Sector in 2006.
Note: All major sectors are from the North American Industry Classification System. Since data reported by the
Northeast-Midwest Institute excluded the mining and construction sector, the U.S. total nominal GDP reported by
the World Economic Outlook Database of the International Monetary Fund was used instead. Hence, the nominal
GDP share of the mining and construction sectors together is about 7%.

Source: Northeast-Midwest Institute who based its calculations on data from U.S.
Department of Commerce, Bureau of Economic Analysis. URL
http://www.nemw.org/gdp1.htm (Accessed on May 12, 2008). Pie chart computed
by author.

has also relatively high labor costs, and locating large-scale farms and processing

plants is sometimes difficult because of pollution concerns and land costs (Dyck and

Nelson, 2003). On the other hand, the United States, for example, has abundant

grains, meals, grass, forage, a large domestic market, and access to several large

foreign markets (Dyck and Nelson, 2003).
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Figure 1.2: Mexican Nominal GDP Contribution by Sector in 2005.

Source: The World Bank and International Monetary Fund—Mexico: Financial
Assessment Program Update—Technical Note—Financing of the Private Sector,
November 2006, p. 21. URL
http://www.imf.org/external/pubs/ft/scr/2007/cr07170.pdf (Accessed on May 12,
2008). Pie chart computed by author.
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1.2 Mexico in the World Market

This section starts explaining how a country can have a competitive advantage

in producing meat (Section 1.2.1.1). In particular, it briefly discusses key production

inputs such as feed input costs, labor costs and capital costs, and the importance of

capital investments. Then, Section 1.2.1.2 through Section 1.2.3 explain the world

market trends, the relative importance of each meat in the world market and the major

players in the world with respect to production, consumption, imports and exports.

The discussion of Section 1.2.1.2 through Section 1.2.3 was based on the online data

provided by the Production, Supply and Distribution (PSD) of the Economic Research

Service (ERS) of the United States Department of Agriculture (USDA). All the charts

and tables reported in those sections were computed by the author by using such

database. The world total amounts reported by the USDA-ERS-PSD database does

not include all countries in the real world but rather a list of countries which represents

over 90% of real world total amounts. Furthermore, in order for the USDA-ERS-PSD

list of countries to appropriately represent the major players, the list is updated

periodically. The list of countries in the USDA-ERS-PSD database is an efficient

forecasting basis for identifying world trends. Beef and pork quantities are reported

in metric tons (MT) and in carcass weight equivalent (CWE). CWE is the weight of an

animal after slaughter and removal of most internal organs, head, and skin. Poultry

meat quantities are reported in metric tons (MT) and ready to cook equivalent. In

Section 1.2.1.2 through Section 1.2.3, beef includes beef and veal meat while poultry

meat only includes broiler meat (it does not include turkey meat).

Additionally, the reader will notice that the author refers to a world region as

a country. For instance, the European Union (25 countries) will be referred to as

one country. This was done to facilitate the flow of the discussion. It should be

noticed that during the period under consideration (1997-2006) not all 25 European

Union countries were part of the European Union (EU). For example, according

to the Microsoft Encarta Online Encyclopedia (2008), in 1995 Australia, Finland

and Sweden joined the European Union bringing the total number of nations to 15.
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Therefore, starting in 1996 the EU was known as EU-15. However, in may 2004, 10

more countries (Cyprus, Czech Republic, Estonia, Hungary, Latvia, Lithuania, Malta,

Poland, Slovakia, and Slovenia) were added, bringing the total number of nations to

25. Then, in January 2007 two more countries were added (Romania and Bulgaria),

bringing the total number of nation to 27. For the period under consideration in

Section 1.2.1.2 through 1.2.3, this study assumed that the EU consisted of 25 countries

since 1996. This implies that those countries that were added to the EU in 2004, if

they appeared in the USDA-ERS-PSD database, were added to the total EU-15 to

compute a new total EU-25.

1.2.1 Production

Before starting any discussion about the leading meat producing countries, it is

more appropriate to explain why some countries may produce more meat than other

countries based on reasons other than the country’s size. Therefore, as explained be-

fore, this section will first discuss meat production competitiveness and then continue

to explain meat production in the world market context. Even though production

competitiveness may be one of the reasons why a country will be a leading exporter,

it should be kept in mind that there are other reason such as consumer preferences

for meat cuts that will also make a leading exporter be a leading importer.

1.2.1.1 Production Competitiveness

The competitive advantage of producing meat in a country depends on its costs

of production. In the world supply chain, the key inputs in producing meat are

feed, labor, and capital. These key inputs have an effect on the production of meat.

Additionally, they are all negatively related with the production of meat. That is, an

increase in any of these costs will negatively impact the production of meat.

For a livestock farmer the cost of feed input depends on the cost of growing,

processing, transporting and storing the feeds. The closer the livestock farmer is to

the feed input, the lower the transportation costs. Countries that have abundant

8



grassland and feedgrains such as corn, sorghum and oilseed meals such as soymeal

will have lower feed input costs and transportation costs. Lower feed input costs and

transportation costs will benefit the production of meats and depending on demand

conditions they might influence the price of meat to go down and exports to go up.

Lower labor costs either through low wages or economies of scale benefit the pro-

duction of meats. Labor costs are incurred in different phases: farming, slaughtering,

processing and distribution. Labor costs vary across countries depending on the de-

mand of labor and the availability of the workers with the required skills. For example,

a country with a relatively small agricultural sector and high unemployment will tend

to have very low wages in farming and in the livestock industry. Depending on meat

demand conditions, lower labor costs might influence the price of meat to decrease

and exports to increase.

Finally, similar to lower input costs and labor costs, lower capital costs benefit

the production of meat. Capital costs vary in different stages of the production cycle:

livestock farming, meat slaughtering, processing meat, and distributing meat. Capi-

tal costs might also vary within a production stage. For instance, livestock farming

requires financing in different activities: housing, efficient feeding and cleaning sys-

tems, environmental controls, and monitoring systems. Other production stages such

as meat slaughter, processing and distribution require even larger capital investments.

As important as having relatively low capital costs, is having access to financing.

For example, the United States has low feed input costs, relatively high labor costs,

and abundant capital investments. Then, the low U.S. input costs and economies of

scales significantly offset the U.S. relatively high labor costs. Mexico, on the other

hand, has higher feed input costs, low labor costs, but less capital investments than

the United States. As a consequence, the United States is among the leading meat

exporting nations while Mexico is among the leading meat importers.
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1.2.1.2 World Market

World meat production increased 28% from 1997 to 2006 (see Table 1.1). Swine

has the largest world production with an average share of 46%. It is followed by poul-

try meat with an average share of 27% and beef with 28%. Swine production is ex-

periencing an increasing tendency. It went from 74,361,000 MT in 1997 to 99,776,000

MT in 2006, which is a 34% increase. For the period 1997-1999 beef production was

greater than poultry meat; however, since 2000 poultry meat production has been

greater than beef. Nonetheless, both meats have an increasing tendency. Poultry

meat production went from 43,216,000 MT in 1997 to 60,090,000 MT in 2006, which

is a 39% increase. Beef went from 49,237,000 MT in 1996 to 53,511,000 MT in 2006,

which is a 9% increase.

The world’s largest beef producing countries are the United States, the European

Union, Brazil, China, Argentina, Australia, Mexico, India, Russia, and Canada (Fig-

ure 1.3). Together these ten countries produce 89% of the total world beef production.

Figure 1.3: World’s Largest Beef Producing Countries, Average 1997-2006.

Source: USDA-ERS-PSD Online Database, computed by author. Accessed on
March 17, 2007.

The world’s largest pork producing countries are Republic of China, the European

Union, the United States, Brazil, Canada, Russia, Japan, Mexico, Philippines, and

10



Republic of Korea (Figure 1.4). Together these ten countries account for 95% of the

total world pork production.

Figure 1.4: World’s Largest Pork Producing Countries, Average 1997-2006.

Source: USDA-ERS-PSD Online Database, computed by author. Accessed on
March 17, 2007.

In the world market of poultry meat, the ten largest producing countries are

the United States, Republic of China, the European Union, Brazil, Mexico, Russia,

Japan, Thailand, Canada, and Argentina (Figure 1.5). Together these ten countries

account for 87% of world total poultry meat production.

Notice that Argentina, Australia, and India, who are among the top ten leading

beef producing countries (Figure 1.3), are not among the top ten leading pork produc-

ing countries (Figure 1.4). Similarly, Japan, Philippines, and Korea, who are among

the top ten leading pork producing countries, are not among the top ten leading beef

producing countries (Figure 1.3). Furthermore, comparing Figure 1.3 with Figure

1.5, it can be seen that Australia and Russia in the top ten leading beef producing

countries group are replaced by Japan and Thailand in the top ten leading poultry

meat producing countries group. Similarly, comparing Figure 1.4 with 1.5 Russia,

Philippines, and Korea in the top ten leading pork producing group are replaced by

India, Thailand and Argentina in the top ten leading poultry producing countries

11



Figure 1.5: World’s Largest Poultry Meat Producing Countries, Average 1997-2006.

Source: USDA-ERS-PSD Online Database, computed by author. Accessed on
March 17, 2007.

group. However, countries such as the United States, the European Union, Brazil,

China, Mexico and Canada are leading producing countries in the three types of

meats. Therefore, if we consider the combined production of beef, pork, and poultry

meat, on average for the period 1997-2006, China produced 58.682 million MT, EU-

25 36.332 million MT, United States 34.997 million MT, Brazil 16.366 million MT,

Mexico 5.112 million MT, and Canada 3.885 million MT.
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1.2.2 Consumption

World meat consumption increased 27% from 1997 to 2006 (Table I.1). Pork has

the largest world consumption. Beef, swine and poultry meat has a world consump-

tion share of 27%, 46% and 27% respectively. From 1997 to 2006, swine consumption

experienced the largest increase, it went from 74,097,000 MT in 1997 to 98,914,000

MT in 2006 (46% increase). It is followed by poultry meat consumption, which in-

creased from 42,785,000 MT in 1997 to 58,888,000 MT in 2006 (27% increase). Beef,

with the smallest increase (26%), went from 48,275,000 MT in 1997 to 51,509,000 MT

in 2006.

The world’s largest beef consuming countries are the United States, the European

Union, Brazil, China, Russia, Argentina, Mexico, India, Japan and Canada (Figure

1.6). Together these countries account for 88% of total world beef consumption.

Compared to Figure 1.3, Australia which was the sixth largest beef producing country

is not within the ten largest consuming countries; instead, Japan joined the group.

However, the United States, EU-25, Brazil, and China has kept their leading top four

positions with all of them except the United States producing more than consuming.

Similarly, Rusia and Mexico consume more than what they produce; and Argentina,

India, and Canada produce more than what they consume.

With respect to pork consumption, the world largest consuming countries are

China, the European Union, the United States, Japan, Russia, Brazil, Mexico, Ko-

rea, Philippines, and Canada (Figure 1.7). Comparing the largest producing countries

(Figure 1.4) with the largest consuming countries (Figure 1.7), we observe the coun-

tries are the same but only China, EU-25, and the United States have kept their

leading top three positions with all of them producing more than what they consume.

Similarly, Japan, Russia, Mexico, Korea, and Philippines consume more than what

they produce; and Brazil and Canada produce more than what they consume.

Finally, the world’s largest consuming countries of poultry meat are the United

States, China, European Union, Brazil, Mexico, Japan, Russia, India, Canada, and

Argentina (Figure 1.8). Compared to Figure 1.5, Thailand which was the eighth

13



Figure 1.6: World’s Largest Beef Consuming Countries, Average 1997-2006.

Source: USDA-ERS-PSD Online Database, computed by author. Accessed on
March 17, 2007.

largest poultry meat producing country is not within the ten largest consuming coun-

tries; instead, Russia joined the group. However, the United States, China, EU-25,

Brazil, and Mexico kept their top five leading positions with the United States, EU-

25, and Brazil producing more poultry meat than what they consume; and China

and Mexico consuming more than what they produce. Similarly, Japan and Canada

consume more than what they produce; and India and Argentina slightly producing

more than what they consume.

Additionally, notice that Argentina and India, who are among the top ten lead-

ing beef consuming countries (Figure 1.6), are not among the top ten leading pork

consuming countries (Figure 1.7). Similarly, Korea and Philippines, who are among

the top ten leading pork consuming countries (Figure 1.7), are not among the top

ten leading beef consuming countries (Figure 1.6). Furthermore, all countries who

are the top ten leading beef consuming countries group (Figure 1.6) are also the top

ten leading poultry meat consuming countries group (Figure 1.8). Finally, countries

such as the United States, EU-25, Brazil, China, Russia, Mexico, Japan, and Canada

are leading consuming countries in the three types of meat. Therefore, if we consider

14



Figure 1.7: World’s Largest Pork Consuming Countries, Average 1997-2006.

Source: USDA-ERS-PSD Online Database, computed by author. Accessed on
March 17, 2007.

the combined consumption of beef, pork, and poultry meat, on average for the period

1997-2006, China consumed 58.464 million MT, EU-25 34.668 million MT, United

States 32.943 million MT, Brazil 13.558 million MT, Russia 6.494 million MT, Mex-

ico 5.971 million MT, Japan 5.504 million MT, and Canada 2.929 million MT.

Finally, comparing the combined production with the combined consumption of

beef, pork, and poultry meat, on average for the period 1997-2006, Mexico is a net

meat consumer with excess consumption of 0.859 million MT while Brazil, United

States, EU-25, Canada, and China are net meat producers with excess production of

2.808, 2.054, 1.664, 0.956, and 0.218 million MT respectively. Therefore, Mexico is a

very important market for all net meat producers.
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Figure 1.8: World’s Largest Poultry Meat Consuming Countries, Average 1997-2006.

Source: USDA-ERS-PSD Online Database, computed by author. Accessed on
March 17, 2007.
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1.2.3 Imports and Exports

World meat exports increased 50% from 1997 to 2006 (Table 1.1). Beef has the

largest amount exported. Beef, swine and poultry meat has a world export share of

44%, 18%, and 38% respectively. From 1997 to 2006, swine exports experienced the

largest increase, going from 1,620,000 MT in 1997 to 3,800,000 MT in 2006 (135%

increase). It is followed by poultry meat exports, which increased from 4,059,000 MT

in 1997 to 6,470,000 MT in 2006 (59% increase). Beef, with the smallest increase

(21%), went from 5,795,000 MT in 1997 to 6,996,000 MT in 2006.

In general, world meat imports experience the same trend as exports. World meat

imports increased 29% from 1997 to 2006 (Table I.1). Beef still has the largest amount

exported. Beef, swine and poultry meat has a world export share of 39%, 27%, and

33% respectively. From 1997 to 2006, swine imports experienced the largest increase,

as they went from 2,587,000 MT in 1997 to 3,487,000 MT in 2006 (64% increase). It

is followed by poultry meat imports, which increased from 3,597,000 MT in 1997 to

5,168,000 MT in 2006 (44% increase). Beef imports in 2006 remained at almost the

same level that in 1997, 5,007,000 MT.

According to the USDA-ERS-PSD online database, the ten largest importers of

beef are the United States (28%), Japan (17%), Russia (15%), European Union (9%),

Mexico (7%), Korea (5%), Canada (5%), Egypt (4%), Philippines (2%), and Taiwan

(2%) (Figure 1.9). The largest exporters of beef are Australia (22%), Brazil (16%),

United States (14%), the European Union (9%), New Zealand (8%), Canada (8%),

Argentina (7%), India (7%), Uruguay (5%), and Ukraine (2%) (Figure 1.10). Com-

paring these last two figures, notice that countries such as the United States, EU-25,

and Canada are both among the top ten leading beef exporters and beef importers.

However, the United States is a net beef importer while EU-25 and Canada are net

beef exporters.

Analyzing pork, the ten largest importing countries are Japan (31%), Russia

(19%), United States (12%), Mexico (9%), Hong Kong (8%), Korea (5%), China (4%),

Romania (3%), Canada (3%), Australia (1%), and the European Union (1%) (Figure
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Figure 1.9: World Largest Beef Importing Countries, Average 1997-2006.

Source: USDA-ERS-PSD Online Database, computed by author. Accessed on
March 17, 2007.

1.11). The ten largest pork exporting countries are the United States (50%), Canada

(18%), Brazil (15%), China (12%), Mexico (2%), Chile (2%), Australia (2%), EU

(2%), Korea (2%), and Russia (1%) (Figure 1.12). In these last two figures, countries

such as Russia, United States, Mexico, Korea, China, Canada, Australia and EU-25

are both among the top ten leading pork importers and pork exporters. However,

the United States, Canda, and China are net pork exporters while Russia, Mexico,

Korea, Australia, and EU-25 are net pork importers.

Finally, analyzing chicken, the ten largest importing countries are Russia (27%),

Japan (16%), China (9%), Saudi Arabia (9%), European Union (9%), Mexico (6%),

Hong Kong (5%), United Arab Emirates (3%), South Africa (3%), and Ukraine (2%)

(Figure 1.13). In the exports side, these countries are Uited States (41.1%), Brazil,

(28.1%) European Union (14.5%), China (6.9%), Thailand (5.7%), Canada (1.3%),

Argentina (0.6%), United Arab Emirates (0.4%), Saudi Arabia (0.3%), and Kuwait

(0.2%) (Figure 1.14). Comparing these last two figures, countries such as China,

Saudi Arabia, EU-25, and the United Arab Emirates are both among the top ten

leading poultry meat importers and poultry meat exporters. However, EU-25 is a net
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Figure 1.10: World’s Largest Beef Exporting Countries, Average 1997-2006.

Source: USDA-ERS-PSD Online Database, computed by author. Accessed on
March 17, 2007.

poultry meat exporter while China, Saudi Arabia, and the United Arab Emirates are

net poultry meat importers.
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Figure 1.11: World’s Largest Pork Importing Countries, Average 1997-2006.

Source: USDA-ERS-PSD Online Database, computed by author. Accessed on
March 17, 2007.

Figure 1.12: World’s Largest Pork Exporting Countries, Average 1997-2006.

Source: USDA-ERS-PSD Online Database, computed by author. Accessed on
March 17, 2007.
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Figure 1.13: World’s Largest Poultry Meat Importing Countries, Average 1997-2006.

Source: USDA-ERS-PSD Online Database, computed by author. Accessed on
March 17, 2007.

Figure 1.14: World’s Largest Poultry Meat Exporting Countries, Average 1997-2006.

Source: USDA-ERS-PSD Online Database, computed by author. Accessed on
March 17, 2007.
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1.3 Analyzing Meat at the Table-Cut Level

Growing populations, rising incomes, and increased urbanization have contributed

to an increased in global demand for meat. Countries with good resources in the

production of meat such as abundant feed grains and grassland will tend to export

meat and countries with good resources in the production of other goods but scare

resources in the production of meat will import meat. However, in Section 1.2.3 we

have seen that many countries are both meat importers are exporters, this finding

points to the importance of trade in the form of cuts.

As a matter of fact, most meat trade is in the form of cuts (Dyck and Nelson, 2003).

Demand for the parts varies considerably across countries, depending on consumer

tastes and preferences, whether cuts can be substituted for one another, and other

factors. The largest meat producing companies will look across international markets

for the consumers with the highest willingness to pay. The ability to match meat cuts

with the highest paying markets will allow firms to increase the aggregate value of

each animal. Therefore, any study on meat demand should attempt to analyze meat

at the table-cut level to better understand the demand for meat.

1.4 Mexican Meat Production and Consumption

Meat is produced in Mexico in all its national territory despite the different envi-

ronmental and climatic regions of the country (Figure 1.15). In 1999, the ten largest

meat producing states in Mexico in decreasing order were Jalisco, Veracruz, Guanaju-

ato, Puebla, Sonora, México, Yucatán, Querétaro, Durango, Chiapas and Michoacán

(Table 1.2). However, in 2002 the ten largest producing states became Jalisco, Ve-

racruz, Sonora, Puebla, Guanajuato, Querétaro, Durango, México, Yucatán, Nuevo

León and Coahuila (Table 1.2).

Meat is produced with different technologies. The technology employed ranges

from high technology and integrated industries to very basic techniques used by lower

class farmers. For firms with high technology, meat production represents a form of

wealth accumulation for its owners. On the other hand, for people with very basic
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Figure 1.15: Geographical Distribution of Mexican Meat Production in 1999.

Source: Maŕın et al. (2000, p. 17).

techniques, meat production represents an activity that allows farmers for subsistence.

According to Maŕın et al. (2000), Mexican infrastructure of animal slaughter fa-

cilities is classified in three groups according to the technology being implemented.

The first group is formed by those facilities that have an up-to-date technology. In

this group the quality and sanitary standards are inspected by a government agency,

a Federal Type Inspection (“Tipo Inspección Federal, TIP”). The second group is

formed by an old-dated technology, which is the most traditional in Mexico. This

group has several types of sanitary controls and the quality and sanitary inspections

are performed by the Health Department (“Secretaŕıa de Salud”). Finally, the last

group is composed by the few facilities that perform an ancestral type of slaugh-

ter corresponding the ancestral period. In 1999, there were a total of 87 facilities

of the Federal Type Inspection group (first group): 43 corresponding to the slaugh-

ter of cows, 31 for the slaughter of pigs, and 13 for chicken. Figure 1.16 shows the

geographical distribution of the Federal Type Inspection Group by meat.

24



Figure 1.16: Geographical Distribution of the Federal Type Inspection Slaughter

Facilities in Mexico in 1999.

Source: Maŕın et al. (2000, p. 20).

Maŕın et al. (2000) explain that in the 1990s Mexican meat production was affected

by different factors. Climatic changes in the first half of the 1990s combined with

droughts lead to a deficit of forage crops. Poor feeding lead to lower quality of

slaughter cattle and affected the next generation of feeder cattle. A macroeconomic

crisis led to high interest rates, exchange rate depreciation, and high prices of inputs—

grains and forage crops. At the microeconomic level, the consumers’ purchasing power

decreased during this period.

According to Maŕın et al. (2000), negative factors such as natural phenomenon

(climatic changes, droughts, etc.) and economic conditions (peso devaluations, in-

terest rate changes, etc.) do not immediately affect the production of beef. This is

because of the planning process in the production of beef and the biological cycles

of the different breeds of cattle. According to Maŕın et al. (2000), negative factors

affecting the production of beef in Mexico will have an effect on beef production up
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to three to four years later. In the case of pork, these negative factors will have an

effect on pork production approximately one year later. In the case of chicken the

impact of negative factors is observed immediately, it could take only from two to

four months to observe the negative effect.

On the other hand, the modification of the agricultural legislation in 1992, the

beginning of NAFTA in 1994, and the implementation of the “Alianza para el Campo”

program were all oriented to motivate meat production.

The main meats produced in Mexico are beef, pork, and chicken. According to

Maŕın et al. (2000) during the 1970s, beef had the greatest production in Mexico.

During the first half of the 1980s, pork had the greatest production, but it was

surpass by the beef production in the second half. However, since 1997 chicken has

experienced the greatest production (Figure 1.17).

Figure 1.17: Mexican Meat Production by Type.

Source: SIACON-SIAP-SAGARPA, computed by author. Accessed on March 16,
2007.
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éx

ic
o

19
6,

90
1

4.
19

%
S
in

al
oa

97
,8

04
3.

65
%

D
u
ra

n
go

17
6,

73
6

4.
21

%
Y

u
ca

tá
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1.5 Data

As explained in the beginning of this chapter, the general objective of this research

is to provide an understanding of the SUR procedure. Additionally, one of the specific

objectives is to provide an empirical application of a SUR model. As an empirical

application, this research will study the Mexican meat consumption. In order to study

the Mexican meat consumption, this study will employ Mexican data on household

income and expenditures. As it will be explained in Chapter IV, this data is published

in Encuesta Nacional de Ingresos y Gastos de los Hogares (ENIGH). This is nation-

wide survey published by a Mexican governmental institution.

ENIGH collects data by performing direct interviews through a stratified sam-

pling method. Two instruments are used to collect the data: a questionnaire and

a journal. The questionnaire is designed to collect the data concerning the house

infrastructure, the members and their household identification, and members’ socio-

demographic characteristics. In addition, for household members older than 12 years

old, the questionnaire will capture occupational activities and related characteristics

as well as income and expenditures. On the other hand, the journal is designed to

collect at-home and away-from-home expenditures on food, drinks, cigarettes and

public transportation. However, food expenditures are recorded for the household

unit only. ENIGH also contains information about household incomes, and quanti-

ties and prices of goods purchase. However, ENIGH data on food, drinks, cigarettes

and public transportation is recorded only when the household made a purchase.

Since interviewers collect information from households during the period of one week,

those meat cuts that a household did not buy during the week of the interview will

not be recorded. Chapter IV will describe what type of information ENIGH contains

in more detail.
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CHAPTER II

SEEMINGLY UNRELATED REGRESSIONS

Arnold Zellner (1962) derived a method of estimating parameters of a set of re-

gression equations. His method is now widely used and has been generally referred

as seemingly unrelated regressions (SUR). The terminology arises because estimat-

ing each equation separately will ignore possible relationships of the equations errors

(Griffiths et al., 1992, p. 549).

Zellner (1962) found that the regression coefficient estimators are at least asymp-

totically more efficient than the least squares equation-by-equation estimators. Ad-

ditionally, Zellner (1962) showed that a quite large gain in efficiency can be obtained

when independent variables in different equations are not highly correlated and when

error terms in different equations are highly correlated. Finally, Zellner described

and showed how to apply a test for the equality of all regression equation coefficients.

The test is referred as a test for aggregation bias. This test is used to determine

if aggregated data (macro-data) has an aggregation bias problem or if data at the

micro-level can be aggregated without suffering from aggregation bias.

2.1 Estimation Procedure

Suppose we are interested in estimating a system of M equations. Each equation

contains Ki regression coefficients (parameters), for a total of K̄ =
M∑
i=1

Ki. Addition-

ally, the data sample for the dependent and independent variables of each equation

consist of T observations.

Let the ith equation be given by

yi = Xiβi + ui, i = 1, 2, . . .,M, (2.1)

where yi is a (T × 1) vector of observations on the ith dependent variable, Xi is a

(T × Ki) matrix of observations on the Ki independent variables, βi is a (Ki × 1)

vector of regression coefficients (also called vector of parameters), and ui is a (T × 1)
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vector of random errors (also called vector of disturbances).1 We assume Xi is fixed

(i.e., deterministic or non-stochastic) with rank(Xi) = Ki (i.e., Xi is of full column

rank), E(ui) = 0, and limT→∞
(

1
T
X′iXj

)
= Qij, i, j = 1, 2, . . . ,M where Qij, i 6= j, is

a (Ki ×Kj) matrix with finite elements, and Qij, i = j, is non-singular.2 The latter

assumption means Xi and Xj depend on T . That is, their sizes change as T changes.

Writing all M equations in equation (2.1) into one model gives
y1

y2

...

yM

 =


X1 0 · · · 0

0 X2 · · · 0
...

...
. . .

...

0 0 · · · XM




β1

β2

...

βM

+


u1

u2

...

uM

 (2.2)

or

y
(MT×1)

= X
(MT×K̄)

β
(K̄×1)

+ u
(MT×1)

. (2.3)

We assume the errors from different equations in the same “time period” are correlated

but the errors from two different equations in different time periods are uncorrelated.3

1We could also write equation (2.1) as

yi
(T×1)

=
(

Xi1 Xi2 · · · XiKi

)
(T×Ki)


βi1

βi2
...

βiKi


(Ki×1)

+ ui
(T×1)

, i = 1, 2, . . . ,M ;

or equivalently, yi = βi1Xi1 + βi2Xi2 + · · ·+ βiKiXiKi + ui, i = 1, 2, . . . ,M .

If an intercept is desired, add the (T ×1) vector Xi0 = 1T whose elements are 1, to the Xi matrix

and the parameter βi0 to the βi vector increasing their dimensions to (T×(Ki+1)) and ((Ki+1)×1)

respectively. Alternatively, we could treat Xi1 as 1T and keep in mind there are Ki−1 independent

variables in the Xi matrix.
2Srivastava and Giles (1987, p. 27) explain that these last two assumptions rule out certain data

features, such as the presence of a trend variable.
3The use of t = 1, 2, . . ., T does not necessarily imply time series analysis. It can be applied

to cross-sectional data, time series and cross-sectional, and to regression equations in which each

equation refers to a particular classification category and the observations refer to different points

in space. See Zellner (1962) for a specific example in each of these cases.
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That is,

E[ui(t)uj(s)] =

 σij if t = s

0 if t 6= s
for i, j = 1, 2, . . .,M and t, s = 1, 2, . . ., T .

For instance,

E[uiu
′
j] = E




ui(1)

ui(2)
...

ui(T )


(
uj(1) uj(2) · · · uj(T )

)


=


E[ui(1)uj(1)] E[ui(1)uj(2)] · · · E[ui(1)uj(T )]

E[ui(2)uj(1)] E[ui(2)uj(2)] · · · E[ui(2)uj(T )]
...

...
. . .

...

E[ui(T )uj(1)] E[ui(T )uj(2)] · · · E[ui(T )uj(T )]



=


σij 0 · · · 0

0 σij · · · 0
...

...
. . .

...

0 0 · · · σij

 = σijIT ,

where IT is the identity matrix of dimension (T × T ).
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Then, the variance-covariance matrix for the disturbance vector is:

W = var(u) = E
{

(u− E(u)) (u− E(u))′
}

= E




u1

u2

...

uM


[

u′1 u′2 · · · u′M

]


=


E[u1u

′
1] E[u1u

′
2] · · · E[u1u

′
M ]

E[u2u
′
1] E[u2u

′
2] · · · E[u2u

′
M ]

...
...

. . .
...

E[uMu′1] E[uMu′2] · · · E[uMu′M ]

 =


σ11IT σ12IT · · · σ1MIT

σ21IT σ22IT · · · σ2MIT
...

...
. . .

...

σM1IT σM2IT · · · σMMIT



=


σ11 σ12 · · · σ1M

σ21 σ22 · · · σ2M

...
...

. . .
...

σM1 σM2 · · · σMM

⊗ IT = Σc ⊗ IT , (2.4)

where⊗ (called the Kronecker product) indicates that each element of Σc is multiplied

by an identity matrix of dimension (T × T ).

Given the above variance-covariance matrix for the error term in equation (2.3),

the appropriate procedure to estimate β is the generalized least squares,4

β̂ = (X′W−1X)−1X′W−1y, (2.5)

where W−1 is such that there exists a nonsingular (MT ×MT ) matrix H such that

HWH′ = IMT .

4The purpose of generalized least squares estimation is to estimate β in the most efficient possible

manner by accounting for the information provided by the knowledge of W = E[uu′] = Σc ⊗

IT . The best linear unbiased parameter estimates are obtained if it is possible to transform the

original data so that the variance-covariance matrix of the transformed errors equals IMT . Once the

data is transformed, application of the Gauss-Markov theorem will provide the best linear unbiased

parameter estimates. Assuming that W is a positive definite matrix guarantees the existence of a

nonsingular square matrix H such that HWH′ = IMT . Hence, the transformation of the data is also

guaranteed. For more information about generalized least squares estimation see Aitken (1934-1935)

and Telser (1964).
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We pre-multiply both sides of equation (2.3) by matrix H(MT×MT ) to obtain:

Hy = HXβ + Hu

or

y∗

(MT×1)

= X∗
(MT×K̄)

β
(K̄×1)

+ u∗
(MT×1)

.

The system now satisfies the usual properties of the least squares model E[Hu] =

HE[u] = 0 and var(Hu) = E {[Hu− E(Hu)][Hu− E(Hu)]′} = E {Huu′H′} =

HWH′ = IMT .

Now, the inverse of W in equation (2.4) is denoted by:

W−1 = var−1(u) =


σ11IT σ12IT · · · σ1MIT

σ21IT σ22IT · · · σ2MIT
...

...
. . .

...

σM1IT σM2IT · · · σMMIT



=


σ11 σ12 · · · σ1M

σ21 σ22 · · · σ2M

...
...

. . .
...

σM1 σM2 · · · σMM

⊗ IT = Σc
−1 ⊗ IT . (2.6)
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Hence, β̂
(K̄×1)

=


β̂1

β̂2

...

β̂M

 is given by:

β̂ =




X′1 0 · · · 0

0 X′2 · · · 0
...

...
. . .

...

0 0 · · · X′M




σ11IT σ12IT · · · σ1MIT

σ21IT σ22IT · · · σ2MIT
...

...
. . .

...

σM1IT σM2IT · · · σMMIT



×


X1 0 · · · 0

0 X2 · · · 0
...

...
. . .

...

0 0 · · · XM





−1 
X′1 0 · · · 0

0 X′2 · · · 0
...

...
. . .

...

0 0 · · · X′M



×


σ11IT σ12IT · · · σ1MIT

σ21IT σ22IT · · · σ2MIT
...

...
. . .

...

σM1IT σM2IT · · · σMMIT




y1

y2

...

yM



=


σ11X′1X1 σ12X′1X2 · · · σ1MX′1XM

σ21X′2X1 σ22X′2X2 · · · σ2MX′2XM

...
...

. . .
...

σM1X′MX1 σM2X′MX2 · · · σMMX′MXM



−1

(K̄×K̄)

×



M∑
i=1

σ1iX′1yi

M∑
i=1

σ2iX′2yi

...
M∑
i=1

σMiX′Myi


(K̄×1)

(2.7)

and is the best linear unbiased estimator.
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Now, the variance-covariance matrix of the estimator β̂ is:

var(β̂) = var[(X∗′X∗)−1X∗′y∗] = (X∗′X∗)−1X∗′var(y∗)X∗(X∗′X∗)−1

= (X∗′X∗)−1X∗′E {[y∗ − E(y∗)][y∗ − E(y∗)]′}X∗(X∗′X∗)−1

= (X∗′X∗)−1X∗′E {[y∗ −X∗β][y∗ −X∗β]′}X∗(X∗′X∗)−1

= (X∗′X∗)−1X∗′E
{
u∗u∗′

}
X∗(X∗′X∗)−1

= (X∗′X∗)−1X∗′E {[u∗ − E(u)][u∗ − E(u)]′}X∗(X∗′X∗)−1

= (X∗′X∗)−1X∗′var(u∗)X∗(X∗′X∗)−1 = (X∗′X∗)−1X∗′IMTX∗(X∗′X∗)−1

= (X∗′X∗)−1 = (X′H′HX)−1

= (X′W−1X)−1

=




X′1 0 · · · 0

0 X′2 · · · 0
...

...
. . .

...

0 0 · · · X′M




σ11IT σ12IT · · · σ1MIT

σ21IT σ22IT · · · σ2MIT
...

...
. . .

...

σM1IT σM2IT · · · σMMIT



×


X1 0 · · · 0

0 X2 · · · 0
...

...
. . .

...

0 0 · · · XM





−1

=


σ11X′1X1 σ12X′1X2 · · · σ1MX′1XM

σ21X′2X1 σ22X′2X2 · · · σ2MX′2XM

...
...

. . .
...

σM1X′MX1 σM2X′MX2 · · · σMMX′MXM



−1

(K̄×K̄)

. (2.8)

Nonetheless, the generalized least squares estimators are impossible to use when

W is unknown. Zellner (1962) proposed to replace the unknown σij with the estimate5

sij =
ũ′iũj
T −Ki

=
(yi −Xiβ̃i)

′(yj −Xjβ̃j)

T −Ki

for i, j = 1, 2, . . .,M, (2.9)

5When the system of M equations contains the same number of parameters (i.e., K1 = K2 =

. . . = KM ), the denominator (T − Ki) is not unambiguously defined. When this is not the case,

only T can be used in the denominator and sij will still be consistent (Griffiths et al., 1992, p. 551).
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where β̃i = (X′iXi)
−1X′iyi is the least-squares estimator.6 Consequently, W = Σc⊗IT

in equation (2.4) and W−1 = Σc
−1⊗IT in equation (2.6) will be estimated respectively

by

Ŵ =


s11IT s12IT · · · s1MIT

s21IT s22IT · · · s2MIT
...

...
. . .

...

sM1IT sM2IT · · · sMMIT

 =


s11 s12 · · · s1M

s21 s22 · · · s2M

...
...

. . .
...

sM1 sM2 · · · sMM

⊗ IT = Sc ⊗ IT

(2.10)

and

Ŵ−1 =


s11IT s12IT · · · s1MIT

s21IT s22IT · · · s2MIT
...

...
. . .

...

sM1IT sM2IT · · · sMMIT

 =


s11 s12 · · · s1M

s21 s22 · · · s2M

...
...

. . .
...

sM1 sM2 · · · sMM

⊗ IT = Sc
−1⊗IT ,

(2.11)

where equation (2.11) is obtained by inversion of equation (2.10).7

Therefore, we can estimate β̂ in equation (2.7) and var(β̂) in equation (2.8) re-

6Note that when i = j, the estimate sij (also known as s2) is the same estimate of σij (also

known as σ2) used under least-squares estimation for equation i.
7The replacement of Σc with Sc leads in the literature to one of the many feasible generalized

least squares estimators (FGLS). This particular replacement is called “restricted residuals” and it

leads in literature to seemingly unrelated restricted residuals (SURR).

Srivastava and Giles (1987, p. 13) explain another way to obtain the sij ’s. The approach is called

“unrestricted residuals” because restrictions on the coefficients of the SUR model which distinguish

it from the multivariate regression model are ignored. The unrestricted-residual approach leads in

literature to seemingly unrelated unrestricted residuals (SUUR).
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spectively by

ˆ̂
β = (X′Ŵ−1X)−1X′Ŵ−1y

=


s11X′1X1 s12X′1X2 · · · s1MX′1XM

s21X′2X1 s22X′2X2 · · · s2MX′2XM

...
...

. . .
...

sM1X′MX1 sM2X′MX2 · · · sMMX′MXM



−1

(K̄×K̄)



M∑
i=1

s1iX′1yi

M∑
i=1

s2iX′2yi

...
M∑
i=1

sMiX′Myi


(K̄×1)

(2.12)

and

var(
ˆ̂
β) =


s11X′1X1 s12X′1X2 · · · s1MX′1XM

s21X′2X1 s22X′2X2 · · · s2MX′2XM

...
...

. . .
...

sM1X′MX1 sM2X′MX2 · · · sMMX′MXM



−1

(K̄×K̄)

. (2.13)

2.1.1 Special Cases

The first special case, explained by Zellner (1962), occurs when E[uiu
′
j] = σijIT =

0(T×T ) for i 6= j. In this case, the generalized least squares estimator for the model

in equation (2.2) or (2.3) will be identical to applying least-squares to each equation.

In addition, the generalized least squares variances of the estimators will reduce to

the least-squares variances of the estimators. That is, if

W =


σ11IT σ12IT · · · σ1MIT

σ21IT σ22IT · · · σ2MIT
...

...
. . .

...

σM1IT σM2IT · · · σMMIT

 =


σ11IT 0 · · · 0

0 σ22IT · · · 0
...

...
. . .

...

0 0 · · · σMMIT


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and

W−1 =


σ11IT σ12IT · · · σ1MIT

σ21IT σ22IT · · · σ2MIT
...

...
. . .

...

σM1IT σM2IT · · · σMMIT

 =


σ11IT 0 · · · 0

0 σ22IT · · · 0
...

...
. . .

...

0 0 · · · σMMIT



=


1
σ11

IT 0 · · · 0

0 1
σ22

IT · · · 0
...

...
. . .

...

0 0 · · · 1
σMM

IT

 ,
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then

β̂
(K̄×1)

=




X′1 0 · · · 0

0 X′2 · · · 0
...

...
. . .

...

0 0 · · · X′M




1
σ11

IT 0 · · · 0

0 1
σ22

IT · · · 0
...

...
. . .

...

0 0 · · · 1
σMM

IT



×


X1 0 · · · 0

0 X2 · · · 0
...

...
. . .

...

0 0 · · · XM





−1 
X′1 0 · · · 0

0 X′2 · · · 0
...

...
. . .

...

0 0 · · · X′M



×


1
σ11

IT 0 · · · 0

0 1
σ22

IT · · · 0
...

...
. . .

...

0 0 · · · 1
σMM

IT




y1

y2

...

yM



=


1
σ11

X′1X1 0 · · · 0

0 1
σ22

X′2X2 · · · 0
...

...
. . .

...

0 0 · · · 1
σMM

X′MXM



−1 
1
σ11

X′1y1

1
σ22

X′2y2

...

1
σMM

X′MyM



=


(X′1X1)−1X′1y1

(X′2X2)−1X′2y2

...

(X′MXM)−1X′MyM


= (X′X)−1X′y = β̃. (2.14)

Then, since var(β̂) = E{[β̂ − E(β̂)][β̂ − E(β̂)]′} = E{[β̂ − β][β̂ − β]′} and in

this case β̂ = β̃ = (X′X)−1X′y = (X′X)−1X′(Xβ + u) = β + (X′X)−1X′u then
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β̂ − β = (X′X)−1X′u. Therefore,

var(β̂) = E{[(X′X)−1X′u][(X′X)−1X′u]′} = E{(X′X)−1X′uu′X(X′X)−1}

= (X′X)−1X′E(uu′)X(X′X)−1

= (X′X)−1X′E{[u− E(u)][u− E(u)]′}X(X′X)−1

= (X′X)−1X′WX(X′X)−1

=


(X′1X1)−1X′1 0 · · · 0

0 (X′2X2)−1X′2 · · · 0
...

...
. . .

...

0 0 · · · (X′MXM)−1X′M



×


σ11IT 0 · · · 0

0 σ22IT · · · 0
...

...
. . .

...

0 0 · · · σMMIT



×


X1(X′1X1)−1 0 · · · 0

0 X2(X′2X2)−1 · · · 0
...

...
. . .

...

0 0 · · · XM(X′MXM)−1



=


σ11(X′1X1)−1 0 · · · 0

0 σ22(X′2X2)−1 · · · 0
...

...
. . .

...

0 0 · · · σMM(X′MXM)−1



=


var(β̃1) 0 · · · 0

0 var(β̃2) · · · 0
...

...
. . .

...

0 0 · · · var(β̃M)


(K̄×K̄)

, (2.15)

where the diagonal blocks are the least-squares variances of the estimators for the

corresponding equations.
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Alternatively, we could have used equation (2.8), where

var(β̂) = (X′W−1X)−1

=




X′1 0 · · · 0

0 X′2 · · · 0
...

...
. . .

...

0 0 · · · X′M




1
σ11

IT 0 · · · 0

0 1
σ22

IT · · · 0
...

...
. . .

...

0 0 · · · 1
σMM

IT



×


X1 0 · · · 0

0 X2 · · · 0
...

...
. . .

...

0 0 · · · XM





−1

=


σ11(X′1X1)−1 0 · · · 0

0 σ22(X′2X2)−1 · · · 0
...

...
. . .

...

0 0 · · · σMM(X′MXM)−1



=


var(β̃1) 0 · · · 0

0 var(β̃2) · · · 0
...

...
. . .

...

0 0 · · · var(β̃M)


(K̄×K̄)

.

The second special case, explained by Zellner (1962), occurs when X1 = X2 =

. . . = XM = Xi, i = 1, 2, . . . ,M . In this case the generalized least squares estimators

will reduce again to single equation least-squares estimators even when E[uiu
′
j] =

σijIT 6= 0(T×T ). Similarly, the generalized least squares variances of the estimators

will also reduce to the least squares variances of the estimators but the generalized

least squares covariances of the estimators are unique to the generalized least squares
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variance-covariance matrix. That is,8

β̂
(K̄×1)

= (X′W−1X)−1X′W−1y

=
[
X′(Σc

−1 ⊗ IT )X
]−1

X′(Σc
−1 ⊗ IT )y

=




X′i 0 · · · 0

0 X′i · · · 0
...

...
. . .

...

0 0 · · · X′i

 (Σc
−1 ⊗ IT )


Xi 0 · · · 0

0 Xi · · · 0
...

...
. . .

...

0 0 · · · Xi





−1

×


X′i 0 · · · 0

0 X′i · · · 0
...

...
. . .

...

0 0 · · · X′i

 (Σc
−1 ⊗ IT )y

=
[
(IM ⊗X′i)(Σc

−1 ⊗ IT )(IM ⊗Xi)
]−1

(IM ⊗X′i)(Σc
−1 ⊗ IT )y

=
[
(IMΣc

−1 ⊗X′iIT )(IM ⊗Xi)
]−1

(IMΣc
−1 ⊗X′iIT )y

=
[
(Σc

−1 ⊗X′i)(IM ⊗Xi)
]−1

(Σc
−1 ⊗X′i)y

=
[
(Σc

−1IM ⊗X′iXi)
]−1

(Σc
−1 ⊗X′i)y = (Σc

−1 ⊗X′iXi)
−1(Σc

−1 ⊗X′i)y

=
[
Σc ⊗ (X′iXi)

−1
]

(Σc
−1 ⊗X′i)y =

[
ΣcΣc

−1 ⊗ (X′iXi)
−1X′i

]
y

=
[
IM ⊗ (X′iXi)

−1X′i
]
y =

[
IMIM ⊗ (X′iXi)

−1X′i
]
y

=
[
IM ⊗ (X′iXi)

−1
]

(IM ⊗X′i)y

=


(X′iXi)

−1 0 · · · 0

0 (X′iXi)
−1 · · · 0

...
...

. . .
...

0 0 · · · (X′iXi)
−1




X′i 0 · · · 0

0 X′i · · · 0
...

...
. . .

...

0 0 · · · X′i

y

= (X′X)−1X′y = β̃. (2.16)

Once again, since var(β̂) = E{[β̂ −E(β̂)][β̂ −E(β̂)]′} = E{[β̂ − β][β̂ − β]′} and

also in this case β̂ = β̃ = (X′X)−1X′y = (X′X)−1X′(Xβ + u) = β + (X′X)−1X′u

8Useful Kronecker product properties are found in Harville (1997, Chapter 16).
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then β̂ − β = (X′X)−1X′u. Therefore,

var(β̂) = E{[(X′X)−1X′u][(X′X)−1X′u]′} = E{(X′X)−1X′uu′X(X′X)−1}

= (X′X)−1X′E(uu′)X(X′X)−1

= (X′X)−1X′E{[u− E(u)][u− E(u)]′}X(X′X)−1

= (X′X)−1X′WX(X′X)−1

=


(X′iXi)

−1X′i 0 · · · 0

0 (X′iXi)
−1X′i · · · 0

...
...

. . .
...

0 0 · · · (X′iXi)
−1X′i



×


σ11IT σ12IT · · · σ1MIT

σ21IT σ22IT · · · σ2MIT
...

...
. . .

...

σM1IT σM2IT · · · σMMIT



×


Xi(X

′
iXi)

−1 0 · · · 0

0 Xi(X
′
iXi)

−1 · · · 0
...

...
. . .

...

0 0 · · · Xi(X
′
iXi)

−1



=


σ11(X′iXi)

−1 σ12(X′iXi)
−1 · · · σ1M(X′iXi)

−1

σ21(X′iXi)
−1 σ22(X′iXi)

−1 · · · σ2M(X′iXi)
−1

...
...

. . .
...

σM1(X′iXi)
−1 σM2(X′iXi)

−1 · · · σMM(X′iXi)
−1



=


var(β̃1) σ12(X′iXi)

−1 · · · σ1M(X′iXi)
−1

σ21(X′iXi)
−1 var(β̃2) · · · σ2M(X′iXi)

−1

...
...

. . .
...

σM1(X′iXi)
−1 σM2(X′iXi)

−1 · · · var(β̃M)

 , (2.17)

where the diagonal blocks are the least-squares variances of the estimators for the

corresponding equations but the off-diagonal blocks are unique to the generalized
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least squares variance-covariance matrix.

Alternatively, if we use equation (2.8), we get

var(β̂) = (X′W−1X)−1

=




X′i 0 · · · 0

0 X′i · · · 0
...

...
. . .

...

0 0 · · · X′i




σ11IT σ12IT · · · σ1MIT

σ21IT σ22IT · · · σ2MIT
...

...
. . .

...

σM1IT σM2IT · · · σMMIT



×


Xi 0 · · · 0

0 Xi · · · 0
...

...
. . .

...

0 0 · · · Xi





−1

=


σ11X′iXi σ12X′iXi · · · σ1MX′iXi

σ21X′iXi σ22X′iXi · · · σ2MX′iXi

...
...

. . .
...

σM1X′iXi σM2X′iXi · · · σMMX′iXi



−1

(K̄×K̄)

. (2.18)

This means that computing the inverse in equation (2.18) will give equation (2.17).

However, when the Xi, i = 1, 2, . . . ,M , are not all the same or when E[uiu
′
j] =

σijIT 6= 0(T×T ), the generalized least squares estimators will be different from the

single-equation least squares estimators. In particular, a quite large gain in efficiency

can be obtained when independent variables in different equations are not highly

correlated and when the error terms in different equations are highly correlated.

2.2 Properties

Zellner (1962) showed the following properties:

• First,
ˆ̂
β = β̂ +Op(T−1).

• Second, T 1/2(
ˆ̂
β − β) and T 1/2(β̂ − β) have the same asymptotic multivariate

normal distribution.
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• Third,

var(
ˆ̂
β)

(K̄×K̄)

= (X′Ŵ−1X)−1 + op(T
−1)

=


s11X′1X1 s12X′1X2 · · · s1MX′1XM

s21X′2X1 s22X′2X2 · · · s2MX′2XM

...
...

. . .
...

sM1X′MX1 sM2X′MX2 · · · sMMX′MXM



−1

+ op(T
−1), (2.19)

whereOp(T−1) denotes a quantity which is of the order T−1 in probability and op(T
−1)

denotes terms of higher order of smallness than T−1.9

Property 1:
ˆ̂
β = β̂ +Op(T−1).

Let Ŵ = (Σc + ∆1) ⊗ IT where Σc ⊗ IT is given in equation (2.4) and ∆1 is a

matrix whose elements are the sampling errors of using the elements of Sc as estimates

9Brockwell and Davis (1987, p. 192, Definition 6.1.3) define convergence in probability and order

in probability as follows:

Let {an, n = 1, 2, . . .} be a sequence of strictly positive real numbers and let {Xn, n = 1, 2, . . .}

be a sequence of random variables all defined on the same probability space. Then,

(i) Xn converges in probability to the random variable X, written Xn
P−→ X, if and only if

Xn − X = op(1). That is, we say that Xn − X converges in probability to zero, written

Xn −X = op(1) or Xn −X
P−→ 0, if for every ε > 0, Pr (|Xn −X| > ε)→ 0 as n→∞.

(ii) Xn = op(an) if and only if a−1
n Xn = op(1). That is, we say that Xn

an
converges in probability

to zero, written Xn
an

= op(1) or Xn
an

P−→ 0, if for every ε > 0, Pr
(∣∣∣Xnan ∣∣∣ > ε

)
→ 0 as n→∞.

(iii) Xn = Op(an) if and only if a−1
n Xn = Op(1). That is, we say that the sequence {Xnan }

is bounded in probability (or tight), written Xn = Op(1), if for every ε > 0 there exists

δ(ε) ∈ (0,∞) such that Pr
(∣∣∣Xnan ∣∣∣ > δ(ε)

)
< ε for all n.
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of the elements of Σc. That is, ∆1 = Sc −Σc. Then,

∆1 ⊗ IT = Sc ⊗ IT −Σc ⊗ IT

= Ŵ −W

=


s11IT s12IT · · · s1MIT

s21IT s22IT · · · s2MIT
...

...
. . .

...

sM1IT sM2IT · · · sMMIT

−


σ11IT σ12IT · · · σ1MIT

σ21IT σ22IT · · · σ2MIT
...

...
. . .

...

σM1IT σM2IT · · · σMMIT



=


(s11 − σ11) (s12 − σ12) · · · (s1M − σ1M)

(s21 − σ21) (s22 − σ22) · · · (s2M − σ2M)
...

...
. . .

...

(sM1 − σM1) (sM2 − σM2) · · · (sMM − σMM)

⊗ IT

=


δ

(1)
11 δ

(1)
12 · · · δ

(1)
1M

δ
(1)
21 δ

(1)
22 · · · δ

(1)
2M

...
...

. . .
...

δ
(1)
M1 δ

(1)
M2 · · · δ

(1)
MM

⊗ IT ,

where each δ
(1)
ij is Op(T−1/2) according to Zellner (1962).10

Thus,

Ŵ−1 = (Σc + ∆1)−1 ⊗ IT . (2.20)

Now we use a theorem from Harville (1997, p. 429, Theorem 18.2.16) for the

10Brockwell and Davis (1987, p. 193, Definition 6.1.4) define order in probability for random

vectors as follows:

Suppose that {Xn, n = 1, 2, . . .} is a sequence of random vectors, all defined on the same proba-

bility space such that Xn has k components Xn1, Xn2, . . . , Xnk, n = 1, 2, . . .. Then,

(i) Xn = op(an) if and only if Xnj = op(an), j = 1, 2, . . . , k.

(ii) Xn = Op(an) if and only if Xnj = Op(an), j = 1, 2, . . . , k.

(iii) Xn converges in probability to the random vector X, written Xn
P−→ X, if and only if

Xn −X = op(1).

Therefore, by applying (ii) to ∆1 we conclude that ∆1 and consequently ∆1⊗ IT are Op(T−1/2).
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geometric series of a square matrix. The theorem states that for C(M×M), the infinite

series I + C + C2 + C3 + . . . converges if and only if limk→∞Ck = 0, in which case

I−C is nonsingular and

(I−C)−1 =
∞∑
k=0

Ck = I + C + C2 + C3 + . . .

(where C0 = I).

Let C = A−1(−B) and suppose limk→∞(A−1B)k = 0. Then,

(A + B)−1 = [A− (−B)]−1 =
[
A(IM −A−1(−B))

]−1

=
[
IM −A−1(−B)

]−1
A−1

=
[
IM + (A−1(−B)) + (A−1(−B))2 + (A−1(−B))3 + . . .

]
A−1

=
[
A−1 − (A−1B)A−1 + (A−1B)2A−1 − (A−1B)3A−1 + . . .

]
.

Now, let A = Σc(M×M) and B = ∆1(M×M). In order to apply this previous result

to equation (2.20), we need to show limk→∞(A−1B)k = 0. Using another theorem

from Harville (1997, p. 431, Theorem 18.2.19), if ||C(n×n)|| < 1 then limk→∞Ck = 0.

Since

Sc
(M×M)

=


s11 s12 . . . s1M

s21 s22 . . . s2M

...
...

. . .
...

sM1 sM2 . . . sMM


and ∆1 = Sc −Σc, then

||C|| = ||A−1B|| = ||Σc
−1∆1|| = ||Σc

−1(Sc −Σc)|| = ||Σc
−1Sc − IM ||.

Griffiths et al. (1992, pp. 447–451 and p. 551) explain that lim
T→∞

Pr (|sij − σij| < ε) =
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1 for any ε > 0.11 Consequently, 12

Sc
P−→ Σc as T →∞ ;

Σc
−1Sc

P−→ IM as T →∞ ;

Σc
−1Sc − IM

P−→ 0(M×M) as T →∞ ;

||Σc
−1Sc − IM ||

P−→ 0(M×M) as T →∞ ,

where
P−→ denotes convergence in probability.

Therefore, for sufficiently large T ,13 equation (2.20) becomes

Ŵ−1 = [Σc
−1 −Σc

−1∆1Σc
−1 − (Σc

−1∆1)2Σc
−1 − · · · ]⊗ IT

= Σc
−1 ⊗ IT − (Σc

−1∆1Σc
−1)⊗ IT +

[
(Σc

−1∆1)2Σc
−1
]
⊗ IT − · · ·

= W−1 −∆2 +
[
(Σc

−1∆1)2Σc
−1
]
⊗ IT − . . . .

Neglecting the terms of higher order of smallness,14 we have

Ŵ−1 ≈W−1 −∆2, (2.21)

where ∆2 = (Σc
−1∆1Σc

−1)⊗ IT .

11Equivalently, we can write

lim
T→∞

[1− Pr (|sij − σij | > ε)] = 1 ;

lim
T→∞

Pr (|sij − σij | > ε) = 0 ;

sij − σij = op(1) or sij
P−→ σij .

12Harville (1997, p. 59) defines the norm ||D|| of a matrix D(m×n) = (dij) as

||D|| = (D •D)1/2 = [tr(D′D)]1/2 =

 m∑
i=1

n∑
j=1

d2
ij

1/2

.

13For sufficiently large T means ∃ T0 3 ∀ T > T0 our claim holds.
14(Σc

−1∆1)2, (Σc
−1∆1)3, . . . P−→ 0(M×M) faster than (Σc

−1∆1) P−→ 0(M×M) as T →∞.
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That is,

∆2 =




σ11 σ12 · · · σ1M

σ21 σ22 · · · σ2M

...
...

. . .
...

σM1 σM2 · · · σMM




δ

(1)
11 δ

(1)
12 · · · δ

(1)
1M

δ
(1)
21 δ

(1)
22 · · · δ

(1)
2M

...
...

. . .
...

δ
(1)
M1 δ

(1)
M2 · · · δ

(1)
MM



×


σ11 σ12 · · · σ1M

σ21 σ22 · · · σ2M

...
...

. . .
...

σM1 σM2 · · · σMM




⊗ IT

=



M∑
i=1

σ1iδ
(1)
i1

M∑
i=1

σ1iδ
(1)
i2 · · ·

M∑
i=1

σ1iδ
(1)
iM

M∑
i=1

σ2iδ
(1)
i1

M∑
i=1

σ2iδ
(1)
i2 · · ·

M∑
i=1

σ2iδ
(1)
iM

...
...

. . .
...

M∑
i=1

σMiδ
(1)
i1

M∑
i=1

σMiδ
(1)
i2 · · ·

M∑
i=1

σMiδ
(1)
iM




σ11 σ12 · · · σ1M

σ21 σ22 · · · σ2M

...
...

. . .
...

σM1 σM2 · · · σMM

⊗ IT

=



M∑
i=1

M∑
j=1

σ1iδ
(1)
ij σ

j1
M∑
i=1

M∑
j=1

σ1iδ
(1)
ij σ

j2 · · ·
M∑
i=1

M∑
j=1

σ1iδ
(1)
ij σ

jM

M∑
i=1

M∑
j=1

σ2iδ
(1)
ij σ

j1
M∑
i=1

M∑
j=1

σ2iδ
(1)
ij σ

j2 · · ·
M∑
i=1

M∑
j=1

σ2iδ
(1)
ij σ

jM

...
...

. . .
...

M∑
i=1

M∑
j=1

σMiδ
(1)
ij σ

j1
M∑
i=1

M∑
j=1

σMiδ
(1)
ij σ

j2 · · ·
M∑
i=1

M∑
j=1

σMiδ
(1)
ij σ

jM


⊗ IT

=


δ

(2)
11 δ

(2)
12 · · · δ

(2)
1M

δ
(2)
21 δ

(2)
22 · · · δ

(2)
2M

...
...

. . .
...

δ
(2)
M1 δ

(2)
M2 · · · δ

(2)
MM

⊗ IT ,

where δ
(2)
kl =

M∑
i=1

M∑
j=1

σkiδijσ
jl is Op(T−1/2) according to Zellner (1962).15

15Consequently, ∆2 is Op(T−1/2).

In addition, Srivastava and Giles (1987, p. 42) explain X′X = O(T ), where O(·) denotes the
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Now, the generalized least-squares estimator is

ˆ̂
β = (X′Ŵ−1X)−1X′Ŵ−1y

= (X′Ŵ−1X)−1X′Ŵ−1(Xβ + u)

= (X′Ŵ−1X)−1(X′Ŵ−1X)β + (X′Ŵ−1X)−1X′Ŵ−1u.

Thus,

ˆ̂
β − β = (X′Ŵ−1X)−1X′Ŵ−1u.

Substitution of equation (2.21) yields

ˆ̂
β − β ≈ [X′(W−1 −∆2)X]−1X′(W−1 −∆2)u

=
{

[X′W−1X][I− (X′W−1X)−1X′∆2X]
}−1

X′(W−1 −∆2)u

=
{

(X′W−1X)− (X′∆2X)
}−1

X′(W−1 −∆2)u. (2.22)

Now we use another result derived from the geometric series of a square matrix. Let

C(K̄×K̄) = A−1
(K̄×K̄)

B(K̄×K̄). Then,

(A−B)−1 =
[
A(IK̄ −A−1B)

]−1
=
(
IK̄ −A−1B

)−1
A−1

=
[
IK̄ + (A−1B) + (A−1B)2 + . . .

]
A−1

=
[
A−1 + A−1BA−1 + (A−1B)2A−1 + (A−1B)3A−1 + . . .

]
.

In order to apply this result to (2.22), let A(K̄×K̄) = (X′W−1X) and B(K̄×K̄) =

order arising from mathematical convergence. Therefore, by Proposition 6.1.1 (i) and Definition

6.1.4 (ii) from Brockwell and Davis (1987, pp. 192–193), and because ∆2 = Op(T−1/2), we have

(X′∆2X) = Op(T−1/2T ) = Op(T 1/2).
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(X′∆2X).16 Then,

ˆ̂
β−β ≈

{
(X′W−1X)−1 + (X′W−1X)−1(X′∆2X)(X′W−1X)−1 + . . .

}
X′(W−1−∆2)u

or after deleting the terms of higher order of smallness than Op
(
T−3/2

)
gives17

ˆ̂
β − β ≈

{
(X′W−1X)−1 + (X′W−1X)−1(X′∆2 X)(X′W−1X)−1

}
X′(W−1 −∆2)u.

(2.23)

Rearranging terms and neglecting those of higher order of smallness gives

ˆ̂
β − β ≈ β̂ − β + ∆3, (2.24)

where

∆3 = −(X′W−1X)−1X′∆2u + (X′W−1X)−1X′∆2X(X′W−1X)−1X′W−1u. (2.25)

16To use this result we need to show ||(X′W−1X)−1(X′∆2X)|| < 1. Since lim
T→∞

1
T X′X = Qij

for all i, j = 1, 2, . . . ,M and W−1 is positive definite, then lim
T→∞

1
T X′W−1X = G, where G is

a (K̄ × K̄) positive definite matrix that does not depend on T . Hence, lim
T→∞

(
1
T X′W−1X

)−1 =

G−1, where G−1 is also (K̄ × K̄) positive definite. Then, lim
T→∞

T
(
X′W−1X

)−1 = G−1 and thus

(X′W−1X)−1 = Op(T−1). Therefore, (X′W−1X)−1(X′∆2X) = Op(T−1T 1/2) = Op(T−1/2) and

thus (X′W−1X)−1(X′∆2X) = op(1). Consequently, ||(X′W−1X)−1(X′∆2X)|| < 1 for sufficiently

large T .
17Brockwell and Davis (1987, p. 192, Proposition 6.1.1) propose:

If Xn and Yn, n = 1, 2, . . ., are random variables defined on the same probability space and an > 0,

bn > 0, n = 1, 2, . . ., then

(i) if Xn = op(an) and Yn = op(bn), we have XnYn = op(anbn), Xn + Yn = op(max(an, bn)), and

|Xn| = op(arn), for r > 0;

(ii) if Xn = op(an) and Yn = Op(bn), we have XnYn = op(anbn). Moreover

(iii) the statement (i) remains valid if op is everywhere replaced by Op.

Therefore, by Proposition 6.1.1 (i) and Definition 6.1.4 (ii) from Brockwell and Davis (1987),

(X′W−1X)−1(X′∆2X) = Op(T−1T 1/2) = Op(T−1/2)[
(X′W−1X)−1(X′∆2X)

]2
= Op(T−1/2T−1/2) = Op(T−1).

Similarly,
[
(X′W−1X)−1(X′∆2X)

]3 = Op(T−3/2),
[
(X′W−1X)−1(X′∆2X)

]4 = Op(T−2), and so

on.
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According to Zellner (1962), the order of X′∆2u is equal to the order of ∆2

multiplied by the order of X′u.18 Therefore, the order of X′∆2u is Op(1).19 In

addition, according to Zellner (1962), the first term as a whole in the right had side

of (2.25) is Op(T−1),20 and X′W−1u is Op(T 1/2). Therefore, the second term as a

whole in the right hand side of equation (2.25) is Op(T−1).21 Finally, ∆3 is Op(T−1).22

Therefore,
ˆ̂
β = β̂ +Op(T−1).

Property 2: T 1/2(
ˆ̂
β − β) and T 1/2(β̂ − β) have the same asymptotic normal

distribution.

We use equation (2.23) and the facts that (X′W−1X)−1 = Op(T−1), X′∆2X =

Op(T 1/2), X′∆2u = Op(1), and E(u) = 0. If we drop the term (X′W−1X)−1

(X′∆2X) (X′W−1X)−1 = Op(T−3/2) in equation (2.23) and then take expectation in

both sides of the equation we get

E(
ˆ̂
β − β) ≈ (X′W−1X)−1E[X′(W−1 −∆2)u]

= (X′W−1X)−1E[(X′W−1u)− (X′∆2u)]

= (X′W−1X)−1[X′W−1E(u)− E(X′∆2u)]

= −(X′W−1X)−1E(X′∆2u)

= Op(T−1 1) = Op(T−1).

Similarly, we could have taken expectation in both sides of the equation (2.24) to

get

E(
ˆ̂
β − β) ≈ E(β̂ − β) + E(∆3).

According to Zellner (1962), β̂−β isOp(T−1/2). Since ∆3 isOp(T−1), then bias
(

ˆ̂
β
)

=

18Srivastava and Giles (1987, p. 42) explain X′u = Op(T 1/2).
19Since ∆2 = Op(T−1/2) and X′u = Op(T 1/2), then (X′∆2u) = Op(T−1/2T 1/2) = Op(1).
20Therefore, (X′W−1X)−1(X′∆2u) = Op(T−1 1) = Op(T−1). Srivastava and Giles (1987, p. 43,

equation (3.7)) also explain (X′W−1X)−1 = Op(T−1).
21Because (X′W−1X)−1(X′∆2X)(X′W−1X)−1(X′W−1u) = Op(T−1T 1/2T−1T 1/2) = Op(T−1).
22By Proposition 6.1.1 (i) from Brockwell and Davis (1987), ∆3 = Op(max(T−1, T−1)) =

Op(T−1).
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E(
ˆ̂
β − β) is at most Op(T−1/2).23 Alternatively, using the result in the paragraph

above, bias
(

ˆ̂
β
)

is as well at most Op(T−1). Furthermore, since β̂ − β is Op(T−1/2)

and ∆3 is Op(T−1), the asymptotic covariance matrix of
ˆ̂
β−β is the same as β̂−β.

Finally, since under general conditions the asymptotic distribution of T 1/2(β̂ − β) is

multivariate normal, the asymptotic distribution of T 1/2(
ˆ̂
β − β) is the same as that

of T 1/2(β̂ − β). This is because

lim
T→∞

Pr
[∣∣∣T 1/2(

ˆ̂
β − β)− T 1/2(β̂ − β)

∣∣∣ > ε
]

= lim
T→∞

Pr
[∣∣T 1/2∆3

∣∣ > ε
]

= 0,

where ε is a very small quantity.24

Property 3: var(
ˆ̂
β) = (X′Ŵ−1X)−1 + op(T

−1).

Intuitively, this property might follow from Property 1 and equation (2.8).

2.3 Efficiency Gain

We have shown that the generalized least squares estimator, β̂ =
(
β̂
′
1, β̂

′
2, . . . , β̂

′
M

)′
,

is different from applying least-squares to each equation, β̃ =
(
β̃
′
1, β̃

′
2, . . . , β̃

′
M

)′
.

As shown before, this difference occurs because the least-squares estimator assumes

E[uiuj] = σijIT = 0(T×T ) for i 6= j while the generalized least squares estimator does

not. That is, the least-squares estimator assumes errors from different equations in

the same time period are uncorrelated.

To show how the generalized least squares estimator differs from the least-squares

estimator, consider the example given by Zellner (1962, p. 354) where he supposed 25

σij =

 σij = σ2 if i = j
√
σii
√
σjj ρ = σ2 ρ if i 6= j

for i, j = 1, 2, . . .,M.

23(ˆ̂
β − β) = Op(max(T−1/2, T−1)) = Op(T−1/2).

24Zellner (1962) referred to the convergence theorem in Cramér (1946, p. 254).
25This example is only for illustrative purposes. For estimation purposes, Σc is estimated with

Sc.

In addition, Zellner (1962, p. 360) explains ρ is the correlation of contemporaneous disturbances

between equations. The correlation between two contemporaneous random variables ui(t) and uj(t),

is defines as ρ = cov[ui(t),uj(t)]√
var[ui(t)]

√
var[uj(t)]

= σij√
σii
√
σjj

. Then, σij =
√
σii
√
σjj ρ, i 6= j and −1 ≤ ρ ≤ 1.
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As it can be seen in equation (2.4), this implies that

Σc
(M×M)

=


σ2 σ2 ρ · · · σ2 ρ

σ2 ρ σ2 · · · σ2 ρ
...

...
. . .

...

σ2 ρ σ2 ρ · · · σ2

 = σ2


1 ρ · · · ρ

ρ 1 · · · ρ
...

...
. . .

...

ρ ρ · · · 1



= σ2




1− ρ 0 · · · 0

0 1− ρ · · · 0
...

...
. . .

...

0 1− ρ · · · 1− ρ

+ ρ


1 1 · · · 1

1 1 · · · 1
...

...
. . .

...

1 1 · · · 1




= σ2 [(1− ρ)IM + ρ1M1′M ] ,

where 1M is a (M × 1) vector whose elements are 1.

Then, Σ−1
c

(M×M)

= [%IM − γ1M1′M ] with % = 1
σ2(1− ρ)

and γ =
%ρ

[1 + (M − 1)ρ]
=

ρ
σ2(1− ρ) [1 + (M − 1)ρ]

. That is,26

Σ−1
c

(M×M)

=


1+Mρ−2ρ

σ2(1−ρ)[1+(M−1)ρ]
−ρ

σ2(1−ρ)[1+(M−1)ρ]
· · · −ρ

σ2(1−ρ)[1+(M−1)ρ]

−ρ
σ2(1−ρ)[1+(M−1)ρ]

1+Mρ−2ρ
σ2(1−ρ)[1+(M−1)ρ]

· · · −ρ
σ2(1−ρ)[1+(M−1)ρ]

...
...

. . .
...

−ρ
σ2(1−ρ)[1+(M−1)ρ]

−ρ
σ2(1−ρ)[1+(M−1)ρ]

· · · 1+Mρ−2ρ
σ2(1−ρ)[1+(M−1)ρ]

 .

Alternatively, a simplified expression is

Σ−1
c =


% 0 · · · 0

0 % · · · 0
...

...
. . .

...

0 0 · · · %

−

γ γ · · · γ

γ γ · · · γ
...

...
. . .

...

γ γ · · · γ

 =


(%− γ) −γ · · · −γ

−γ (%− γ) · · · −γ
...

...
. . .

...

−γ −γ · · · (%− γ)

 .

26In addition, observe that when multiplying Σc with Σ−1
c :

σ2(1+Mρ−2ρ)
σ2(1−ρ)[1+(M−1)ρ] −

(M−1)σ2ρ2

σ2(1−ρ)[1+(M−1)ρ] = 1, and
−σ2ρ

σ2(1−ρ)[1+(M−1)ρ] + (1+Mρ−2ρ)σ2ρ
σ2(1−ρ)[1+(M−1)ρ] −

(M−2)σ2ρ2

σ2(1−ρ)[1+(M−1)ρ] = 0.
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Then, the variance-covariance matrix of the estimator β̂ is:

var(β̂)
MK×MK

= (X′W−1X′)−1

= [X′(Σc
−1 ⊗ IT )X]−1

=


(%− γ)X′1X1 −γX′1X2 · · · −γX′1XM

−γX′2X1 (%− γ)X′2X2 · · · −γX′2XM

...
...

. . .
...

−γX′MX1 −γX′MX2 · · · (%− γ)X′MXM



−1

. (2.26)

Since var(β̂) is nonsingular, when M = 2, we can partition var(β̂) and solve for

the leading sub-matrix, var(β̂1). According to Zellner (1962) this variance-covariance

matrix is

var(β̂1) =

[
(%− γ)X′1X1 −

γ2

%− γ
X′1X2(X′2X2)−1X′2X1

]−1

(2.27)

and Zellner and Hwang (1962, p. 308) showed∣∣∣var(β̂1)
∣∣∣ =

(1− ρ2)K1

K1∏
i=1

(1− ρ2r2
i )

∣∣σ2(X′1X1)−1
∣∣ , (2.28)

where K1 is the number of independent variables in the first equation (K1 ≤ K2),

ri is the ith canonical correlation coefficient associated with the sets of variables in

X1 and X2, and |σ2(X′1X1)−1| is the determinant of σ2(X′1X1)−1 or the generalized

variance of the “single-equation” least squares estimator of the coefficient vector of

the first equation.27 Since 0 ≤ r2
i ≤ 1, the generalized variance of β1 will be smaller

than the generalized variance of the “single-equation” least squares estimator of the

coefficient vector of the first equation. That is,∣∣∣var(β̂1)
∣∣∣
M=2

=
(1− ρ2)K1

K1∏
i=1

(1− ρ2r2
i )

∣∣σ2(X′1X1)−1
∣∣

︸ ︷︷ ︸
Generalized Variance of

ˆβ1

≤
∣∣σ2(X′1X1)−1

∣∣︸ ︷︷ ︸
“Single-equation”

Generalized Variance of β̂1

=
∣∣∣var(β̂1)

∣∣∣
M=1

.

27Suppose we want to estimate y1 = X1 β1 + u1. Then, var(β̂1) = (X′1W
−1X1)−1 =

[X′1(σ11IK1)−1X1]−1 = σ11(X′1X1)−1 = σ2(X′1X1)−1.
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Now, suppose X′1X2 = 0 (which implies ri = 0 for all i). Plugging ri = 0 for all i in

equation (2.28) gives
∣∣∣var(β̂1)

∣∣∣ = (1−ρ2)K1 |σ2(X′1X1)−1|. Since in general X′1X2 6= 0,

this latter equation represents the minimum value
∣∣∣var(β̂1)

∣∣∣ can take given σ2 and ρ

(as stated at the beginning of this section).

Similarly, as in the two-dimensional case, in the M -dimensional case, the gener-

alized variance of β̂1 will be smaller than the “single-equation” least squares gen-

eralized variance of β̂1. In addition, in the M -dimensional case, the generalized

variance of β̂1 is smaller than the least squares variance of β̃1. The assumption

cov(ui,uj) = E {[ui − E(ui)][uj − E(uj)]
′} = E[uiu

′
j] = σijIT = 0(T×T ) for i 6= j is

needed in order for the Gauss-Markov theorem to apply to the least squares model

in the M -dimensional case.28

However, when we consider the M dimensional case with X′iXj = 0 for i 6= j,

i, j = 1, 2, . . . ,M , as long as var(β̂) is nonsingular, equation (2.26) reduces to

var(β̂) =


(%− γ)X′1X1 0 · · · 0

0 (%− γ)X′2X2 · · · 0
...

...
. . .

...

0 0 · · · (%− γ)X′MXM



−1

=


[(%− γ)X′1X1]−1 0 · · · 0

0 [(%− γ)X′2X2]−1 · · · 0
...

...
. . .

...

0 0 · · · [(%− γ)X′MXM ]−1

 .

Thus,

var(β̂1) =
1

(%− γ)
(X′1X1)−1 =

1(
1

σ2(1−ρ)

)
−
(

ρ
σ2(1−ρ)[1+(M−1)ρ]

)(X′1X1)−1

=
(1− ρ)σ2

1− ρ
[1+(M−1)ρ]

(X′1X1)−1 =

[
1− ρ

1− ρ
1+ρ(M−1)

]
σ2(X′1X1)−1

28If this assumption does not hold, the error variance-covariance matrix of the least-squares model

involves a special form of heteroskedasticity and autocorrelation (Griffiths et al., 1992, p. 551).
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Now, as M approaches infinity,

lim
M→∞

var(β̂1) =

 1− ρ
1− ρ

1+ρ
lim
M→∞

1
(M−1)

σ2(X′1X1)−1,

var(β̂1) = [1− ρ]σ2(X′1X1)−1.

2.4 Test for Aggregation Bias

2.4.1 Micro-Data, Macro-Data and the Aggregation Problem

Micro-data refers to data that is not aggregated. For example, data on individuals,

such as firms or consumers (Theil, 1954, p. 2). However, as is frequently the case,

data are available only for aggregates of consumers and firms. Macro-data refers

to data that has being aggregated over individuals, commodities or time.29 The

transition from micro-economics of individuals to the analysis of economic aggregates

is referred as the “aggregation problem.” As explained by Deaton and Muellbauer

(1980, p. 148), “[a]ggregation is seen as a nuisance, a temporary obstacle lying in the

way of a straightforward application of the theory to the data. In this view, the role

of aggregation theory is to provide the necessary conditions under which it is possible

to treat aggregate consumer behavior as if it were the outcome of the decision of a

[‘representative’] consumer.”30

As explained by Theil (1954, p. 2), the relations postulated by the economic the-

ory of individual households (the micro-theory) are called micro-relations or micro-

equations. The micro-equations are composed of micro-variables and micro-parameters.

Aggregation implies that micro-variables are replaced by aggregates or macro-variables.

Similar to the micro-theory, the macro-theory postulates that macro-variables are con-

nected by macro-relations or macro-equations. The macro-equations are composed of

macro-variables and macro-parameters.

Theil (1954, p. 3) distinguishes between three types of aggregation: aggregation

over individuals, such as firms and consumers, aggregation over several sets of com-

29In general, aggregated data is a function of micro-data.
30In this example, the aggregate consumer behavior is the average behavior of all consumers.
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modities, and aggregation over time. Consider the following examples provided by

Theil (1954, pp. 1–4) for each of these cases.

a) Aggregation over individuals.

Consider the sugar consumption by families of some country during a certain

period. Suppose that according to economic theory each family’s demand for

sugar is a function of its income, of the price of sugar and of the number of family

members. Suppose furthermore that the empirical research worker decides to

consider total sugar consumption as a function of total personal income, the price

of sugar and the population size.

b) Aggregation over commodities.

Consider for instance, an entrepreneur who uses several factors of production.

Suppose that his demand for each of these factors depends on the level of produc-

tion and on the price of this factor. Suppose also that an econometrician wants

to combine some of these factors to a group and that he considers an input index

of this group as a function of the level of production and of an input price index.

c) Aggregation over time periods.

Suppose that an entrepreneur bases his demand for labour on the quantity of

products sold during past periods. More specifically, we assume that the de-

mand for labour during a certain month depends on the quantity sold during the

preceding four months. Suppose furthermore that only quarterly sales figures are

available. Then an obvious procedure is to aggregate monthly periods to quarterly

periods and to postulate that the demand for labour during a quarterly period

is a function of the quantity sold during the same and the preceding quarterly

periods.

2.4.2 Testing with Micro-Data

Suppose micro-data is available for y1,y2, . . . ,yM and X1,X2, . . . ,XM . In addi-

tion, suppose that each Xi, i = 1, 2, . . . ,M , is a (T ×K) matrix containing observa-

tions on K independent variables.31 For instance, consider a general version of the

31That is, K1 = K2 = . . . = KM = K.
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investment example provided by Zellner (1962, pp. 357–362). Suppose y1 is a (T ×1)

vector of observations on firm one’s current gross investment, y2 is a (T ×1) vector of

observations on firm two’s current gross investment, . . ., yM is a (T ×1) vector of ob-

servations on firm M ’s current gross investment. Then, X1 is a matrix of observations

on the K independent variables affecting y1. For example, X11 is a (T × 1) vector of

observations on firm one’s capital stock, X12 is a (T × 1) vector of observations on

firm one’s outstanding shares, . . ., X1K is a (T × 1) vector of observations on firm

one’s kth independent variable affecting gross investment. Similarly, X2 is a matrix of

observation on the K independent variables affecting y2. So, X21 is a (T × 1) vector

of observations on firm two’s capital stock, X22 is a (T × 1) vector of observations on

firm two’s outstanding shares, . . ., X2K is a (T × 1) vector of observations on firm

two’s kth independent variable affecting gross investment. Similar for X3 to XM . You

would like to know whether you can work with aggregated data. Or equivalently, you

would like to know whether the M firms’ current gross investment react in the same

way to changes in its capital stock, outstanding shares, and so on. That is, you would

like to know if the M firms are characterized by the same regression parameters. If

they do, then you can aggregate your micro-data without suffering from aggregation

bias. Therefore, you need to test

H0 : β1 = β2 = . . . = βM

Ha : at least one βi 6= βj, i 6= j, i, j = 1, 2, . . . ,M.
(2.29)

Or equivalently,

H0 : Cβ =



IK −IK 0 · · · 0 0 0

0 IK −IK · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · IK −IK 0

0 0 0 · · · 0 IK −IK




β1

β2

...

βM

 =


0

0
...

0


Ha : at least one βi 6= βj, i 6= j, i, j = 1, 2, . . . ,M,

(2.30)
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where C is [(M − 1)K ×MK] matrix, β is a (MK × 1) vector, IK is a (K × K)

identity matrix, and 0 is a [(M − 1)K × 1] zero matrix. Therefore, there are (M−1)K

restrictions under H0.

According to Zellner (1962), ifH0 is true, there will be no aggregation bias involved

in the simple linear aggregation.32 To show this is the case, suppose we estimate β̄ in

ȳ = X̄β̄ + ū, (2.31)

where ȳ =
∑M

i=1 yi is a (T × 1) vector of observations on the dependent variable,

X̄ =
∑M

i=1 Xi is a (T × K) matrix of observations on the K independent variables,

β̄ is the (K × 1) vector of parameters to be estimated, and ū =
∑M

i=1 ui is a (T × 1)

vector of disturbances.33

The least-squares estimator of β̄ is given by

˜̄β
(K×1)

= (X̄′X̄)−1X̄′ȳ.

Taking expected value in both sides of the equation gives

E
(

˜̄β
)

= E
[
(X̄′X̄)−1X̄′ȳ

]
= E

[
(X̄′X̄)−1X̄′

(
M∑
i=1

yi

)]

= E

[
(X̄′X̄)−1X̄′

(
M∑
i=1

(Xiβi + ui)

)]

= E

[
(X̄′X̄)−1X̄′

(
M∑
i=1

Xiβi

)
+ (X̄′X̄)−1X̄′

(
M∑
i=1

ui

)]

=
M∑
i=1

(X̄′X̄)−1X̄′(Xiβi) + (X̄′X̄)−1X̄′
M∑
i=1

E(ui)

=
M∑
i=1

(X̄′X̄)−1X̄′(Xiβi). (2.32)

32Zellner (1962) followed Kloek’s (1960) matrix representation of the aggregation problem.
33We could also write equation (2.31) as

ȳ
(T×1)

=
(

X̄1 X̄2 · · · X̄K

)
(T×K)


β̄1

β̄2

...

β̄K


(K×1)

+ ū
(T×1)

.
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Thus, under H0 : β1 = β2 = . . . = βM = β̄,

E
(

˜̄β
)

= (X̄′X̄)−1X̄′ (X1β1 + X2β2 + . . .+ XMβM)

= (X̄′X̄)−1X̄′ (X1 + X2 + . . .+ XM) β̄

= (X̄′X̄)−1X̄′X̄β̄

= β̄

= β1 = β2 = . . . = βM .

That is, under H0, the expectation of macro-estimator, ˜̄β, will be equal to the micro-

parameter vector β̄, where β̄ = β1 = β2 = . . . = βM .

The hypotheses in (2.29) or (2.30) can be tested using the model in equation (2.3)

and employing Roy’s (1957) F -statistic34

Fq,MT−MK =
MT −MK

q

× y′W−1X(X′W−1X)−1C′[C(X′W−1X)−1C′]−1C(X′W−1X)−1X′W−1y

y′W−1y − y′W−1X(X′W−1X)−1X′W−1y
.

(2.33)

Now, replacing W−1 with Ŵ−1 gives

F̃q,MT−MK =
MT −MK

q

× y′Ŵ−1X(X′Ŵ−1X)−1C′[C(X′Ŵ−1X)−1C′]−1C(X′Ŵ−1X)−1X′Ŵ−1y

y′Ŵ−1y − y′Ŵ−1X(X′Ŵ−1X)−1X′Ŵ−1y
,

(2.34)

where q = (M − 1)K is the number of restrictions under H0 and Ŵ−1 is given in

equation (2.11).

34Roy (1957, p. 82) derived the F -statistic without involving the likelihood-ratio approach. How-

ever, determining how the F -statistic is distributed requires the assumption that ū is normally

distributed. Zellner (1962, Appendix A) showed the likelihood-ratio approach asymptotically leads

to the same test statistic. Similar to Roy (1957), Zellner (1962, Appendix A) assumed normality of

u when formulating the likelihood function for the null and alternative hypotheses of the system in

equations (2.2) or (2.3).
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Zellner (1962, Appendix B) showed that

F̃ = Fq,MT−MK +Op((MT )−1/2) (2.35)

and made use of one of Cramér’s (1946, p. 254) theorem to conclude that F̃ has the

same asymptotic distribution as F . Therefore, we reject H0 if F̃ > F ∗q,MT−MK(α)

with at most α 100% probability of Type I error. The quantity F ∗q,MT−MK(α) is a

critical value from an F -distribution with q degrees of freedom in the numerator,

(MT −MK) degrees of freedom in the denominator, and level α.35

Zellner (1962, Appendix A) also showed that−2 log λ = q Fq,MT−MK+Op((MT )−1),

where λ is the likelihood ratio for testing H0 in (2.29).36 Then Zellner (1962) used

results from Mood (1950, p. 259) and Wilks (1943, p. 151) to conclude that −2 log λ,

q Fq,MT−MK and q F̃q,MT−MK are asymptotically distributed as χ2
q. Therefore, we

could also reject H0 if
∣∣∣q F̃ ∣∣∣ > χ2

q(α) with level α or alternatively reject H0 if

−2 log λ > χ2
q(α) with level α.37

Zellner (1962) emphasized that for small samples we could proceed in two ways.

One way is to compute q F̃ and assume it is asymptotically distributed as χ2
q. Another

way is to compute F̃ and assume is closely distributed as F ∗q,MT−MK .38

2.4.3 Testing with Macro-Data

Now, suppose only macro-data is available for ȳ and X̄. For example, you only

have information on the total current gross investment by the M firms and the X̄(T×K)

matrix of observations in the K independent aggregated variables affecting ȳ. That

is, X̄1 is a (T × 1) vector of observations on total capital stock of the M firms, X̄2 is

35I.e., α = Pr ν1,ν2

(
F̃ > F ∗ν1,ν2(α)

)
.

36I.e., λ =
sup
H0

L(β,σ2)

sup
H0∪Ha

L(β,σ2) .

37Now, α = Pr ν
(
χ2 > χ2

ν(α)
)
.

38Zellner (1962, pp. 357–362) provided an example of testing for aggregation bias with micro-data

for a system of two equations (M = 2) with two independent variables (K = 2) when the sample

size is small (T = 20). In his example, he showed how both procedures lead to the same conclusion.
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a (T × 1) vector of observations on total outstanding shares of the M firms, . . ., X̄K .

You would like to know whether aggregation bias is present in your aggregated data.

Hence, you are going to test the hypotheses in (2.29), but employing your macro-data.

Suppose we have a system of M equations, each with Ki independent variables

and an intercept. Let’s consider the tth observation from each equation. That is,

y1(t) = β10 + β11x11(t) + β12x12(t) + · · ·+ β1K1x1K1(t) + u1(t)

y2(t) = β20 + β21x21(t) + β22x22(t) + · · ·+ β2K2x2K2(t) + u2(t)

...

yM(t) = βM0 + βM1xM1(t) + βM2xM2(t) + · · ·+ βMKMxMKM (t) + uM(t) .

Since K1 = K2 = . . . = KM , we drop the subscript and only use K. Now we

proceed to aggregate the data. That is,

(y1(t) + y2(t) + . . .+ yM(t)) = (β10 + β20 + . . .+ βM0)

+ (β11x11(t) + β21x21(t) + . . .+ βM1xM1(t))

+ (β12x12(t) + β22x22(t) + . . .+ βM2xM2(t))

...

+ (β1Kx1K(t) + β2Kx2K(t) + . . .+ βMKxMK(t))

+ (u1(t) + u2(t) + . . .+ uM(t)) .

Now letting ȳ(t) =
M∑
i=1

yi(t), β0 =
M∑
i=1

βi0, x̄k(t) =
M∑
j=1

xjk(t), and ū(t) =
M∑
i=1

ui(t) for

k = 1, 2, . . . , K and adjusting terms gives

ȳ(t) = β0 +

[
β11x11(t) + β21x21(t) + . . .+ βM1xM1(t)

x11(t) + x21(t) + . . .+ xM1(t)

]
x̄1(t)

+

[
β12x12(t) + β22x22(t) + . . .+ βM2xM2(t)

x12(t) + x22(t) + . . .+ xM2(t)

]
x̄2(t)

...

+

[
β1Kx1K(t) + β2Kx2K(t) + . . .+ βMKxMK(t)

x1K(t) + x2K(t) + . . .+ xMK

(t)

]
x̄K + ū(t).
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Now, we expand terms in the brackets to obtain

ȳ(t) = β0 + β11


x11(t)
M∑
j=1

xj1(t)

 x̄1(t) + . . .+ βM1


xM1(t)
M∑
j=1

xj1(t)

 x̄1(t)

+β12


x12(t)
M∑
j=1

xj2(t)

 x̄2(t) + . . .+ βM2


xM2(t)
M∑
j=1

xj2(t)

 x̄2(t)

...

+β1K


x1K(t)
M∑
j=1

xjK(t)

 x̄K(t) + . . .+ βMK


xMK(t)
M∑
j=1

xjK(t)

 x̄K(t)

+ū(t).

Now, let

wik(t) =
xik(t)

M∑
j=1

xjk(t)

, i = 1, 2, . . . ,M, k = 1, 2, . . . , K.

Note that,

wMk(t) = 1−
M−1∑
i=1

wik(t), k = 1, 2, . . . , K.
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Then,

ȳ(t) = β0 + β11w11(t)x̄1(t) + . . .+ β(M−1)1w(M−1)1x̄1(t) + βM1

1−
(M−1)∑
i=1

wi1(t)

 x̄1(t)

+β12w12(t)x̄2(t) + . . .+ β(M−1)2w(M−1)2x̄2(t) + βM2

1−
(M−1)∑
i=1

wi2(t)

 x̄2(t)

...

+β1Kw1K(t)x̄K(t) + . . .+ β(M−1)Kw(M−1)kx̄K(t) + βMK

1−
(M−1)∑
i=1

wiK(t)

 x̄K(t)

+ū(t)

= β0 + (β11 − βM1)w11(t)x̄1(t) + . . .+
(
β(M−1)1 − βM1

)
w(M−1)1x̄1(t) + βM1x̄1(t)

+ (β12 − βM2)w12(t)x̄2(t) + . . .+
(
β(M−1)2 − βM2

)
w(M−1)2x̄2(t) + βM2x̄2(t)

...

+ (β1K − βMK)w1K(t)x̄K(t) + . . .+
(
β(M−1)K − βMK

)
w(M−1)kx̄K(t) + βMK x̄K(t)

+ū(t) (2.36)

= β0 + βM1x̄1(t) +

(M−1)∑
i=1

(βi1 − βM1)wi1(t)

 x̄1(t)

+βM2x̄2(t) +

(M−1)∑
i=1

(βi2 − βM2)wi2(t)

 x̄2(t)

...

+βMK x̄K(t) +

(M−1)∑
i=1

(βiK − βMK)wiK(t)

 x̄K(t)

+ū(t). (2.37)

Now, let

X̄1
(T×1)

=


x̄1(1)

x̄1(2)
...

x̄1(T )

 , X̄2
(T×1)

=


x̄2(1)

x̄2(2)
...

x̄2(T )

 , . . . , X̄K
(T×1)

=


x̄K(1)

x̄K(2)
...

x̄K(T )

 ,
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w̄ik
(T×T )

=


w̄ik(1) 0 . . . 0

0 w̄ik(2) . . . 0
...

...
. . .

...

0 0 . . . w̄ik(T )

 ,

where i = 1, 2, . . . , (M − 1) and k = 1, 2, . . . , K.

Hence, if data is available on wi1(t), wi2(t), . . ., wiK(t) for i = 1, 2, . . . ,M and

t = 1, 2, . . . , T ,39 it is possible to do a least-squares regression of ȳ on w11X̄1, . . .,

w(M−1)1X̄1, X̄1, w12X̄2, . . ., w(M−1)2X̄2, X̄2, . . ., w1KX̄K , . . ., w(M−1)KX̄K , X̄K for

equation (2.36) and perform K different F tests involving equality of the coefficients

of equation (2.36). These K different F -tests are:

H01 : (β11 − βM1) = . . . =
(
β(M−1)1 − βM1

)
= 0

Ha1 : at least one βi1 6= βj1, i 6= j, i, j = 1, 2, . . . ,M
...

H0K : (βiK − βMK) = . . . =
(
β(M−1)K − βMK

)
= 0

HaK : at least one βiK 6= βjK , i 6= j, i, j = 1, 2, . . . ,M.

Or equivalently,

H01 : There is no Aggregation Bias in X̄1

Ha1 : There is Aggregation Bias in X̄1

...

H0K : There is no Aggregation Bias in X̄K

HaK : There is Aggregation Bias in X̄K .

If we consider the kth F -test, notice that we are testing whether the M firms are

affected in the same way by the X1k,X2k, . . . ,XMk independent variables. That is,

39Zellner (1962) provided the following example. Suppose you have aggregated sales of M different

firms from one particular industry at time year t. Consider the aggregated sales of firm one, x̄1(t) =

x11(t) + x21(t) + . . .+ xM1(t). Then, w11(t) might be firm one’s proportion of industry sales in year

t, w21(t) is firm two’s proportion of industry sales in year t, ..., wM1(t) is firm M ’s proportion of

industry sales in year t.
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we are testing if the M firms can be characterized by a common regression parameter

that corresponds to the independent variables X1k,X2k, . . . ,XMk. If they can, then

there is no aggregation problem but if they can not, then not all firms react in the

same way to the X1k,X2k, . . . ,XMk independent variables; therefore, it is incorrect

to aggregate the data.

In order to understand how we can apply one of these K F -tests, suppose we would

like to perform the first test. For simplicity and convenience, we let π11 = (β11−βM1),

. . ., π(M−1)1 = (β(M−1)1 − βM1), πM1 = βM1, π12 = (β12 − βM2), . . ., π(M−1)2 =

(β(M−1)2 − βM2), πM2 = βM2, π1K = (β1K − βMK), . . ., π(M−1)K = (β(M−1)K − βMK),

πMK = βMK . Hence, we can write the first test as

H01 : π11 = . . . = π(M−1)1 = 0

Ha1 : at least one πi1 6= 0, i = 1, 2, . . . , (M − 1).

Then, if H01 is false, we can rewrite equation (2.36) as: 40

40Equation (2.36) can also be written as:

ȳ = β01T + π11w11X̄1 + . . .+ π(M−1)1w(M−1)1X̄1 + πM1X̄1

+π12w12X̄2 + . . .+ π(M−1)2w(M−1)2X̄2 + πM2X̄M2

...

+π1Kw1KX̄K + . . .+ π(M−1)Kw(M−1)KX̄K + πMKX̄K + ū.
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ȳ
(T×1)

=



[1T ]′

−−−−−−−[
w11X̄1

]′
...[

w(M−1)1X̄1

]′[
X̄1

]′
−−−−−−−[

w12X̄2

]′
...[

w(M−1)2X̄2

]′[
X̄2

]′
−−−−−−−

...

−−−−−−−[
w1KX̄K

]′
...[

w(M−1)KX̄K

]′[
X̄K

]′



′

(T×(MK+1))



β0

−−−−−

π11

...

π(M−1)1

πM1

−−−−−

π12

...

π(M−1)2

πM2

−−−−−
...

−−−−−

π1K

...

π(M−1)K

πMK


((MK+1)×1)

+ ū
(T×1)

= Xπa + ū.
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However, if H01 is true, we rewrite this previous equation as

ȳ
(T×1)

=



[1T ]′

−−−−−−−[
X̄1

]′
−−−−−−−[

w12X̄2

]′
...[

w(M−1)2X̄2

]′[
X̄2

]′
−−−−−−−

...

−−−−−−−[
w1KX̄K

]′
...[

w(M−1)KX̄K

]′[
X̄K

]′



′

(T×(MK−M))



β0

−−−−−

πM1

−−−−−

π12

...

π(M−1)2

πM2

−−−−−
...

−−−−−

π1K

...

π(M−1)K

πMK


((MK−M)×1)

+ ū
(T×1)

= X0π0 + ū.

To test the H01, we employ the following F -statistic from a theorem in Christensen

(2002, p. 58):41

Frank(M−M0),rank(IT−M)
=

ȳ′ (M−M0) ȳ

rank (M−M0)

ȳ′ (IT −M) ȳ

rank (IT −M)

,

where M(T×T ) = X (X ′X )−1X ′ and M0(T×T ) = X0 (X0
′X0)

−1X0
′.

Therefore, we reject H0 if F > F ∗rank(M−M0),rank(IT−M)
(α) with at most α 100%

probability of Type I error. The quantity F ∗rank(M−M0),rank(IT−M)
(α) is a critical

value from an F -dsitribution with rank(M−M0) degrees of freedom in the numerator,

41We assume ū ∼ N(0, σ2I) under Ha1 and H01.
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rank(IT −M) degrees of freedom in the denominator, and α level.42

However, if data is not available on wi1(t), wi2(t), . . ., wiK(t) for i = 1, 2, . . . ,M

and t = 1, 2, . . . , T , it might be that wi1(t), wi2(t), . . . , wiK(t) are functions of variables

for which data are available. For instance, suppose43

wi1(t) = θ0i1 + θi1z1(t), for i = 1, 2, ...,M

wi2(t) = θ0i2 + θi2z2(t), for i = 1, 2, ...,M
...

...

wiK(t) = θ0iK + θiKzK(t), for i = 1, 2, ...,M.

42I.e., α = Pr ν1,ν2

(
F > F ∗ν1,ν2(α)

)
.

43Zellner (1962) assumed this relation is non-stochastic. That is, there is no disturbance term

at the end of each function. However, as he explained, if this relation is stochastic, say, wik(t) =

θ0ik + θikzk(t) + ν(t), the approach to take is to consider a regression model in which one (or some)

of the independent variables have “measurement error.”

70



Then, equation (2.37) becomes

ȳ(t) = β0 + βM1x̄1(t) +

(M−1)∑
i=1

(βi1 − βM1) (θ0i1 + θi1z1(t))

 x̄1(t)

+βM2x̄2(t) +

(M−1)∑
i=1

(βi2 − βM2) (θ0i2 + θi2z2(t))

 x̄2(t)

...

+βMK x̄K(t) +

(M−1)∑
i=1

(βiK − βMK) (θ0iK + θiKzK(t))

 x̄K(t)

+ū(t)

= β0 +

βM1 +

(M−1)∑
i=1

(βi1 − βM1) θ0i1 + (βi1 − βM1) θi1z1(t)

 x̄1(t)

+

βM2 +

(M−1)∑
i=1

(βi2 − βM2) θ0i2 + (βi2 − βM2) θi2z2(t)

 x̄2(t)

...

+

βMK +

(M−1)∑
i=1

(βiK − βMK) θ0iK + (βiK − βMK) θiKzK(t)

 x̄K(t)

+ū(t)

= β0 +

βM1 +

(M−1)∑
i=1

(βi1 − βM1) θ0i1

 x̄1(t) +

(M−1)∑
i=1

(βi1 − βM1) θi1

 z1(t)x̄1(t)

+

βM2 +

(M−1)∑
i=1

(βi2 − βM2) θ0i2

 x̄2(t) +

(M−1)∑
i=1

(βi2 − βM2) θi2

 z2(t)x̄2(t)

...

+

βMK +

(M−1)∑
i=1

(βiK − βMK) θ0iK

 x̄K(t) +

(M−1)∑
i=1

(βiK − βMK) θiK

 zK(t)x̄K(t)

+ū(t). (2.38)
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Now, let

X̄1
(T×1)

=


x̄1(1)

x̄1(2)
...

x̄1(T )

 , X̄2
(T×1)

=


x̄2(1)

x̄2(2)
...

x̄2(T )

 , . . . , X̄K
(T×1)

=


x̄K(1)

x̄K(2)
...

x̄K(T )

 ,

Z̄1
(T×T )

=


z1(1) 0 . . . 0

0 z1(2) . . . 0
...

...
. . .

...

0 . . . 0 z1(T )

 , . . . , Z̄K
(T×T )

=


zK(1) 0 . . . 0

0 zK(2) . . . 0
...

...
. . .

...

0 . . . 0 zK(T )

 .

Now, a simple least-squares regression of ȳ on X̄1, Z1X̄1, X2, Z2X̄2, . . ., XK , and

ZKX̄K is all that is needed to test K hypotheses of micro-parameter equality. These

K possible t-tests are:44

H01 :
(M−1)∑
i=1

(βi1 − βM1) θi1 = 0

Ha1 :
(M−1)∑
i=1

(βi1 − βM1) θi1 6= 0

...

H0K :
(M−1)∑
i=1

(βiK − βMK) θiK = 0

HaK :
(M−1)∑
i=1

(βiK − βMK) θiK 6= 0.

44We assume ū ∼ N(0, σ2I).
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Or equivalently, 45

H01 : There is no Aggregation Bias in X̄1

Ha1 : There is Aggregation Bias in X̄1

...

H0K : There is no Aggregation Bias in X̄K

HaK : There is Aggregation Bias in X̄K .

Therefore, we reject the kth null hypothesis (k = 1, 2, . . . , K) if |t| =
∣∣∣∣ π̃k − πkŜE(π̃k)

∣∣∣∣ =∣∣∣∣ π̃k
ŜE(π̃k)

∣∣∣∣ > t∗(T−K)(α) with at most α 100% probability of Type I error. Where πk =∑(M−1)
i=1 (βik − βMk), π̃k is the least-squares estimator of πk, ŜE(π̃k) is the estimate

of the standard error of π̃k, and the quantity t∗(T−K)(α) is a critical value from a

t-distribution with (T −K) degrees of freedom, and α level.46

Now, if we consider a system of M equations, each with only one independent

variable (K = 1),47 equation (2.38) reduces to

ȳ(t) = β0 + βM1x̄1(t) +

(M−1)∑
i=1

(βi1 − βM1)wi1(t)

 x̄1(t) + ū(t) (2.39)

and equation (2.37) reduces to

ȳ(t) = β0 +

βM1 +

(M−1)∑
i=1

(βi1 − βM1) θ0i1

 x̄1(t)

+

(M−1)∑
i=1

(βi1 − βM1) θi1

 z1(t)x̄1(t) + ū(t). (2.40)

45Since all θik, i = 1, 2, . . . ,M , are different from zero, H0k is true if each (βik−βMk) equals zero,

which implies that βik = βMk for i = 1, 2, . . . ,M , which then implies that β1k = β2k = . . . = βMk.

Hence, if all micro-parameters corresponding to X1k,X2k, . . . ,XMk are equal, there is no aggregation

bias in X̄k where k = 1, 2, . . . ,K. However, if βjk 6= βMk for i, j = 1, 2, . . . ,M and i 6= j, there is

aggregation bias in X̄k.
46I.e., α = Pr (t > t∗ν(α)).
47This is Zellner’s (1962, p. 357) second example.
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In equation (2.39) we can apply one F -test as we did for equation (2.36). In

equation (2.40) we can apply one t-test on the corresponding parameter of Z1X̄1 as

we did for equation (2.38) to test for aggregation bias in X̄1.

In the most simple system involving two micro-equations (M = 2), each with only

one independent variable (K = 1),48 equation (2.38) reduces to

ȳ(t) = β0 + β11x̄1(t) + (β11 − β21)w11(t)x̄1(t) + ū(t) (2.41)

and equation (2.37) reduces to

ȳ(t) = β0 + [β21 + (β11 − β21) θ011] x̄1(t) + [(β11 − β21) θ11] z1(t)x̄1(t) + ū(t). (2.42)

In equation (2.41), if data is available on w11(t), t = 1, 2, ..., T , it is possible to do

a least-squares regression of ȳ on X̄1 and w11X̄1. However, due to the simplicity of

equation (2.41), not only an F -test can be performed to test for aggregation bias in

X̄1 as we did for equation (2.36) but also a t-test on the corresponding parameter of

w11X̄1.

Therefore, we reject the null hypothesis if |t| =

∣∣∣∣ π̃ − πŜE(π̃)

∣∣∣∣ =

∣∣∣∣ π̃
ŜE(π̃)

∣∣∣∣ > t∗(T−1)(α)

with at most α 100% probability of Type I error. Where π = (β11 − β21), π̃ is the

least-squares estimator of π, ŜE(π̃) is the estimate of the standard error of π̃, and

the quantity t∗(T−1)(α) is a critical value from a t-distribution with (T − 1) degrees of

freedom and α level.49

If data is not available on w11(t) but on z1(t), t = 1, 2, ..., T , equation (2.42) can

be used instead of equation (2.41) to test for aggregation bias in X̄1. As we did for

equation (2.38), we apply one t-test for the corresponding parameter of Z1X̄1.

48This is Zellner’s (1962, p. 356) first example.
49I.e., α = Pr (t > t∗ν(α)).
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CHAPTER III

LITERATURE REVIEW

The primary objective of this chapter is to review previous research on seemingly

unrelated regressions (SUR) and relevant issues in consumer survey data that will

provide insight in the formulation and empirical application of Mexican household

meat consumption model. Section 3.1 starts with a review of censored data, which is a

frequently encountered problem in consumer survey data—the same nature of the data

used in this study. This issue is our first experience before familiarizing with a second

problem encountered in consumer survey data: adult equivalence scales. In order

to understand how other researchers have modeled and estimated adult equivalence

scales, it is good to have knowledge on the censored expenditures problem. This is

recommended because the literature reviewed in Section 3.2 implicitly assumes the

reader was familiar with censored expenditures. In addition, the models from Section

3.1 are then used in Section 3.4 as examples of parametric models of item nonresponse

on the dependent variable. Section 3.3 expands on the topic discussed in Chapter

2 by reviewing seemingly unrelated regression with unequal number of observations.

Section 3.4 provides basic concepts related to missing data and then it moves on

to explain how to deal with it. Some of the techniques learned in Section 3.4 were

intended to be used in Section 4.2, but a simpler approach was adopted. Finally,

Section 3.5 begins with an introduction to stratified sampling and finishes with a

discussion on how to estimate linear models with stratified sample data—the type of

probability sampling technique that was used to collect the data used in this study.

Finally, Section 3.6 briefly explains the bootstrap, a general bootstrap algorithm, and

different bootstrap sampling methods.

3.1 Censored Expenditures

Censored expenditures are common in consumer survey data. Generally, the cen-

soring is due to survey design and implementation or institutional constraints. Cen-
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sored expenditures occur when the value is partially known. It is partially known

because even though you do not have the actual value (it might be coded as zero or

omitted) on the variable of interest (e.g. the dependent variable); you do have infor-

mation on related variables (e.g. the independent variables). As it will be explained

in Section 3.4, this is also referred as item nonresponse on the dependent variable. In

literature, when information is missing on both dependent and independent variables,

the dependent variable is referred as truncated (Wooldridge, 2006, p. 613; Pindyck

and Rubinfeld, 1997, p. 325). Again, using Section 3.4’s terminology, when informa-

tion is missing on both dependent and independent variables and there is no more

information collected, it is also referred as unit nonresponse. A truncated regres-

sion model differs from a censored regression model in that in a truncated regression

model we do not observe any information about a certain segment of the population

(Wooldridge, 2006, p. 613). In addition, truncated regression is a special case of a

general problem known as nonrandom sample selection (Wooldridge, 2006, p. 616).

Wooldridge (2006, p. 609) explains censored data is an issue of data observ-

ability. Wooldridge (2006, p. 609) explains the use of a censored regression model

when there is missing data on the response variable (the dependent variable) but

there is information about when the variable is missing (above or below some known

threshold). For instance, consider the example provided by Wooldridge (2006, p. 610)

where we know the value of a family’s wealth up to a certain threshold. This censor-

ing problem might occur, Wooldridge (2006) explains, when respondents are asked

for their wealth, but people are allowed to respond with “more than $500,000.” Then,

we observe actual wealth for those respondents whose wealth is less than $500,000

but not for those whose wealth is greater than $500,000. In this case, the censoring

threshold is fixed for all families whose wealth is greater than $500,000. However, the

censoring threshold may also change depending on individual or family characteris-

tics. For instance, consider another example provided by Wooldridge (2006, p. 611)

where we know the time in months until an inmate is arrested after being released

from prison. By the end of the period in which you investigate if an inmate was ar-
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rested again, not all of them would have been rearrested; therefore, the observations

from the inmates not yet arrested would be censored. In other words, some felons

may never be arrested again or they may be arrested after such a long time that there

is a need to censor the number of days in order to analyze the data. In addition, in

this case, the censoring time is different for each inmate. By providing an empirical

application of the second example, Wooldridge showed that applying Ordinary Least

Squares (OLS) will result in coefficient estimates markedly different from those of a

censoring regression model where coefficients and the variance of the error term are

estimated by maximum likelihood. In his example, OLS coefficient estimates were

all shrunk toward zero. Furthermore, Wooldridge (2006, p. 613) emphasized that an

application of a censored regression model will be more reliable.

The second example provided by Wooldridge (2006, p. 611) is very similar to a

problem encountered in this study with the Mexican survey data on household income

and weekly expenditures. At the end of the period in which the interviewer recorded

all items purchased by a household, there will be items that would have not been

purchased, which the household consumes, or were purchased away from home and

the interviewer did not record them. Therefore, items not purchased during the week

of the interview, which the household consumes, will be censored.

Pindyck and Rubinfeld (1997, p. 325) explain that censoring occurs when

“the dependent variable has been constructed on the basis of an underlying continuous

variable for which there are a number of observations about which we do not have

information.” Pindyck and Rubinfeld (1997, p. 325) provide the following examples.

Suppose, for example, that we are studying the wages of women. We know the actual

wages of those women who are working, but we do not know the “reservation wage”

(the minimum wage at which an individual will work) for those who are not. The latter

group is simply recorded as not working. Or suppose that we are studying automobile

purchasing behavior using a random survey of the population. For those who happened

to buy a car, we can record their expenditure, but for those who did not we have no

measure of the maximum amount they would have been willing to pay at the time of

survey.
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Pindyck and Rubinfeld (1997, p. 325) explain ordinary least-squares estimation of

the censored regression model results in biased and inconsistent parameter estimates.

They emphasized a maximum-likelihood estimator as a preferred alternative.

Pindyck and Rubinfeld’s (1997, p. 325) examples provide insight into the data

used in this study, the Mexican survey data on household income and weekly expen-

ditures. For those households that happen to buy a particular item, their expenditure

was recorded, but for those who did not we have no measure of the maximum amount

they would have been willing to pay at the time of the survey. As it will be explained

later, the Mexican survey data on household income and weekly expenditures omit

this transaction (i.e., does not make any record of items not purchased). Hence,

expenditure on that particular item is censored because if the price goes below the

maximum price they may have been willing to pay, the household would have pur-

chased that item. Consequently, for those who did not buy an item, we have no

measure of the maximum amount they would have been willing to pay at the time of

the survey.

Some researchers more specifically point out the importance of addressing the

presence of censored food expenditures when working with weekly food expenditures.

If weekly expenditures are reported for at-home expenditures and away-from-home

expenditures, then not all households might purchased and consumed food away from

home. When this is the case, expenditures on food away from home are censored in

nature (Sabates et al., 2001; Gould and Villarreal, 2002).1 For example, a household

expenditure on food away from home that is not recorded (sometimes, but not in the

dataset used in this study, expenditure on food away from home are recorded as zero

dollars) is censored because this household might have bought and consumed this

commodity a week later after the interviewer left. However, if the commodity was

not bought at all, then there is no censoring. It is worth while mentioning that Gould

and Villarreal (2002) and Sabates et al. (2001) both used data corresponding to the

1This is the same idea of the censored data problem mentioned above but this time distinguishing

between at-home expenditures and away-from-home expenditures.
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year 1996 from the Mexican survey of household income and expenditures, Encuesta

Nacional de Ingresos y Gastos de los Hogares (ENIGH), published by a Mexican

governmental institution (Instituto Nacional de Estad́ıstica, Geograf́ıa e Informática

or INEGI). The study presented in this report uses data from the same source.

3.2 Adult Equivalence Scales

Adult equivalence scales are measures that show how much an individual house-

hold member of a given age and sex contributes to household expenditures or con-

sumption of goods relative to a standard household member. As explained by Deaton

and Muellbauer (1986) adult equivalence scales assign different weights to house-

hold members according to their age and gender; whereas a simple count of household

members, the most common practice, implicitly assumes each household member has

the same marginal impact. The purpose of scales is to capture economies of size

associated with larger households, the different impacts of children versus adults and

to permit welfare comparisons across households of different size and composition

(Lazear and Michael, 1980; Deaton and Muellbauer, 1986; Blaylock, 1991; Perali,

1993).

Deaton and Muellbauer (1986) note that equivalence scales can be determined

from nutritional and psychological studies, sociological relationships, or the use of

revealed consumption or purchase patterns. They note that the last approach appears

to be the most reasonable but there continues to be the dilemma of how to use

expenditure data to develop these scales (Brown and Deaton, 1972).

Gould and Villarreal (2002) analyzed Mexican adult equivalence scales and

weekly food expenditures for Mexican beef and pork purchases in 1996. They endoge-

nously determined adult equivalence scales and allowed marginal impact to vary by

age and gender. Their study estimated commodity-specific adult equivalence scales

using the single equation approach suggested by Tedford et al. (1986). Moreover,

their two-stage econometric model was an extension of the model implemented by

Dong et al. (1998) but first formulated by Wales and Woodland (1980). Their model
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accounted for censored meat expenditures and endogenously determined commod-

ity specific unit values and therefore product quality. Gould and Villarreal (2002)

proceeded to examine whether there are differences in the impacts of household com-

position on food expenditures and whether there are differences in equivalent profiles

across meat commodity.

Gould and Villarreal (2002) used Deaton’s (1988) suggestion of using unit values,

which are obtained by dividing expenditures by quantities purchased. They cautioned

that these values should not be interpreted as the market prices. This is because unit

values may not only reflect quantity but also quality.2

To represent the consumer maximization problem in terms of composite goods,

Gould and Villarreal (2002) used the Hicksian composite commodity theorem (Deaton,

1988; Nelson, 1991). Then they combined it with a quality indicator (Theil, 1952–

1953; Dong et al., 1998) and a measure of average quality within each commodity

group to derive an expression for composite commodity unit value and expenditures

on composite commodity. Then, Gould and Villarreal (2002) referred to Dong et al.

(1998) and Wales and Woodland (1980) to derive an expression for censored household

expenditures.

Gould and Villarreal (2002) specified an unconditional probability that a partic-

ular household will not purchase a particular commodity, the log-likelihood function

2The market price of a commodity refers to the price of such commodity in the market, assuming

this commodity is homogeneous everywhere in the market. Hence, there is only one price for the

commodity in the market. However, in practice, even if we are dealing with homogeneous commodi-

ties there are going to be differences in the price of a commodity in different locations due to different

profit margins charged by different sellers. Sellers charging higher profit margins most likely reflect

‘better’ store’s conditions. For example, even if it is the same commodity, it is very likely that a

supermarket will have a different price than a flea market. This difference in price is translated into

a quality attribute. Therefore, calculating unit values by dividing expenditure by quantity will pick

up these differences in quality. However, one could argue that market prices, which are some kind of

average of prices in the market, include differences in qualities anyways; therefore, in practice unit

values and market prices are the same thing. Nonetheless, when the difference between the two is

clear, this distinction is usually made.
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for the entire set of households, and the expected values of conditional expenditures

and unit values. Their study combined expressions for conditional probability to ob-

tain an estimate of the expected value of unconditional expenditures and unit values.

Model parameters were obtained by maximizing the likelihood function.

Estimates were reported for the coefficients of the unit value equation, the ex-

penditure equation and the equation for the total of adult equivalence scales in each

household. Additionally, income and adult equivalent elasticities and marginal re-

gional impacts were reported. They found that household composition is an important

determinant of total household expenditures as well as product quality. They rejected

the null hypothesis that the marginal impact of an additional household member on

meat expenditures is invariant to the member’s age or gender. They found a small

but positive impact of the number of adult equivalents in the household on expendi-

tures for beef and pork. They also found a negative impact of the number of adult

equivalents in the household on endogenous unit values.

However, their study could not reject the null hypothesis that the female and

male adult equivalent profiles are the same. Even more surprising, they found that

female adult equivalence scale consistently exceeds the male adult equivalence scale in

consumption of beef for females of 40-65 years old. They attributed this result to the

high participation of males in the labor force compared to adult females. Adult males

working more time outside their home tend to purchase and consume more food away

from home than adult females who stay at home. This finding is similar to Sabates

et al. (2001) who found that adult female equivalence scales in Argentina and Brazil

were either no different or lower than adult male equivalence scales over the age of

40 years. Since the data they used in the analysis did not allow them to identify

who purchased and consumed food away from home, Gould and Villarreal (2002)

further examine this result by regressing the percentage of total food expenditures

originating from food-away-from home purchases on household income, household

size, percentage of adult males working full and part time, and percentage of adult

females working full and part time. They found insignificant male adult impacts and
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significant female adult impacts.

Sabates et al. (2001) studied weekly food expenditures in Argentina, Brazil, and

Mexico for the corresponding time periods of 1996-1997, 1995-1996, and 1996. They

analyzed the impacts of household member counts versus endogenously determined

equivalence scales at the per capita aggregated food expenditure level. They estimated

country specific expenditure functions to obtain parameter estimates and perform

several non-nested hypothesis tests. For instance, hypothesis tests were elaborated

to know whether male and female adult equivalent profiles are the same; or whether

the use of a simple count of household members provides as much information as the

use of adult equivalence scales in explaining food purchase behavior; or whether adult

equivalence scales are the same across Argentina, Brazil and Mexico. In addition, they

created interaction variables with income to calculate and report income and adult

equivalent elasticities. Finally, Sabates et al. (2001) also compared the distribution of

weekly per capita food expenditures based on the simple count of household members

with the distribution of weekly per capita food expenditures based on the number of

adult equivalence scales.

Sabates et al. (2001) made use of the model proposed by Tedford et al. (1986)

and categorized each household member as being in a developmental or transitional

period (Levinson et al., 1978). Then, cubic spline functions were used to join the de-

velopmental periods with the transitional periods (Tedford et al., 1986, pp. 323–325).

The number of adult equivalent scales was derived from the cubic spline functions

based on the gender and age-based categories (Tedford et al., 1986, pp. 325–236). In

addition, the number of adult equivalents in each household equaled the sum of adult

equivalence scales over all household members. A total food expenditure function was

specified. Log-likelihood functions for the total number of adult equivalence scales

in each household and for the simple count of household members in each household

were also specified. Parameter estimates were obtained by maximizing the above

log-likelihood functions using an iterated procedure. Each log-likelihood function re-

quired a specification for the variance and the assumption of normality for the error
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term of the total food expenditure function.

Sabates et al. (2001) found that adult male equivalent profiles are statistically

different from adult female profiles. Male household members in general placed greater

demands on household food supplies than female members. In particular, for both

Argentina and Brazil the female adult equivalent value was below the male value;

however, for Mexico, the male profile was greater than the female profile for up to

age 35. After this age, the male and female profiles followed a similar pattern. The

male profile in Mexico increased in adult equivalence scale values up to the mid-

50s and then declined. They found the oldest male age category in Mexico has an

adult equivalence scale value of 1.15 but it was not statistically different from 1. The

female profiles for Argentina and Brazil were consistently less than 1.0. Similar to

the male profile for Mexico, the male profile for Argentina and Brazil increased in

adult equivalence scale values until the mid-50s and then declined.

Sabates et al. (2001) also found that a simple count of household members does

not provide the same information as the use of equivalence scales in explaining food

purchase behavior. Age and gender information has a statistical significant effect

in food expenditures. Furthermore, Sabates et al. (2001) graphically showed and

statistically proved that the distribution of weekly per capita food expenditures based

on the simple count of household members is consistently above and statistically

different than the distribution of weekly per capita food expenditures based on the

number of adult equivalence scales. Therefore, using the former variable as a measure

of poverty will result in a significant increase in the number of households below a

defined poverty line.

Tedford et al. (1986) developed a model to calculate adult equivalence scales,

which they named after their last names as the TCH model. Their model was based on

concepts from the fields of psychology as well as child and human development. Their

conception and components of the life cycle was based upon research by Levinson et al.

(1978) and upon concepts from child and human development described by Duvall

(1977) and by Vander Zanden (1978). They presented a model where the life cycle
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was comprised of a sequence of developmental and transitional phases. Tedford et al.

(1986) also compared adult scale parameter estimates for total food expenditure from

their model with estimates from Blokland’s (1976) and Buse-Salathe’s (1978) models.

Tedford et al. (1986) used U.S. household weekly data from 1977-1978 to obtain

parameter estimates of the three models. In addition they reported estimates of the

income elasticity for food and household equivalence scale elasticity for food. They

also considered geographical regions and whether household were located in central

city or non-metropolitan area.

First, Tedford et al. (1986) presented different ways in which the life cycle can be

delineated by ages or important events. They presented the view of Levinson et al.

(1978) of the life cycle as a sequence of developmental and transitional periods and

as a sequence of eras. They also presented the view of Duvall (1977) of the life cycle

as a sequence of important events, and the National Research Council’s recommen-

dations of the different food energy allowances for males and/or females during the

life cycle. Tedford et al. (1986) primarily adopted Levinson’s et al. (1978) develop-

mental and transitional periods to specify adult scale functions. Since consumption,

expenditure, and socio-demographic information are reported only for the household

unit, Tedford et al. (1986) estimated adult scale parameters indirectly as components

of household equivalence scales. Household equivalence scales were then aggregates

of adult equivalence scales and expressed explicitly as functions of the adult scale

parameters. Tedford et al. (1986) specified household equivalence scales as functions

of weighted sum variables dependent upon the age-sex composition of the household.

An expenditure function was then estimated using a nonlinear procedure as a func-

tion of expenditure, income, education, sex, age, geographical region variables, level

of urbanization variables, seasonality variables, race variables, the household equiv-

alence scale function, and square of the household equivalence scale function. The

latter variable was introduced to account for the possible existence of economies of

size. Inclusion of socio-demographic variables reflected the recognition of heteroge-

neous tastes and preferences. Finally, households that did not report relevant income
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or socio-demographic information were excluded. Tedford et al. (1986) claimed that

sample selection bias was not going to be a problem because the frequencies for the

usable sample are quite similar to the frequencies for the overall sample.

Based on the statistical significance of some key parameter estimates and the

statistical significance from each other, Tedford et al. (1986) found that the Buse-

Salathe’s (1978) life-cycle-age-class specification was inconsistent with Blokland’s

(1976) specification. However, in the analysis of Tedford et al. (1986), despite differ-

ences in the age-class delineations and despite the fact that TCH model constitutes

a more general specification than Buse-Salathe’s (1978) model, the empirical findings

of the scale parameters based on the TCH model were similar to those based on

Buse-Salathe’s (1978) model. Additionally, Buse-Salathe’s (1978) model was also a

more general specification than Blokland’s (1976) model. Hence, the most general

specification is found in the TCH model while the simplest specification is found in

Blokland’s (1976) model.

Tedford et al. (1986) also found that food expenditure behavior for males and

females is generally different at various developmental and transitional stages of the

life cycle. The TCH model even indicated that food expenditure behavior is different

from males and females within the same developmental and transitional stages of the

life cycle. They also found differences in household food expenditures by regions,

seasons, and by population density (city or non-metropolitan location).

Based on the life cycle pattern of the three models, Tedford et al. (1986) con-

cluded that the adult equivalence scale specification by Blokland (1976) may be too

restrictive. Second, the TCH and the Buse-Salathe’s (1978) equivalence scales during

the life cycle profile were reasonably similar, although noticeably differences resulted

in the equivalence scales for females as well as for household members greater than

sixty years of age.

Summarizing, the last three articles presented models where adult equivalence

scales are determined endogenously within the model. All these models require the

specification of an expenditure function which incorporates adult equivalence scales.
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Specifically, the first two articles used the Levinson’s et al. (1978) sequence of tran-

sitional and developmental periods of the life cycle. Hence, adult equivalence scales

were estimated by linking concepts from psychology, child development, and human

development to economic concepts. Tedford et al. (1986) repeatedly remarked the ex-

plicit rationale and consistency of their TCH model with the life-cycle developmental

concepts. However, although perhaps lacking some of this rationale and consistency,

Tedford et al. (1986) also presented alternative models such as the Blokland’s (1976)

and Buse-Salathe’s (1978) models and the National Research Council’s recommenda-

tions on food energy allowances for males and/or females. Despite the model used,

it is required to use a measure of adult equivalence scale in per capita meat expen-

ditures. In addition, it is important to differentiate between males and females as it

has been statistically shown that male and female household members place differ-

ent demands on household food supplies (Gould and Villarreal, 2002; Sabates et al.,

2001; Tedford et al., 1986). It also important to notice that we cannot use estimates

of adult equivalence scales in another country for Mexico or estimates of similar com-

modities because these scales change across countries (Sabates et al., 2001) and across

commodities (Gould and Villarreal, 2002).

In addition, it can be observed that these adult equivalence scales tend to be

smaller for female household members than male household members (Sabates et al.,

2001; Tedford et al., 1986) but it might not always be the case specially when there is

high participation of males in the labor force compared to adult females (Gould and

Villarreal, 2002). In addition, these scales tend to be smaller than one for members

younger or older than the standard adults (Gould and Villarreal, 2002; Sabates et al.,

2001; Tedford et al., 1986).

3.3 Seemingly Unrelated Regressions with Unequal Number of Observations

Chapter 2 explained Zellner’s (1962) method of estimating parameters of a set

of regression equations with equal number of observations. In this section we briefly

review SUR models with unequal number of observations. The literature reviewed
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in this section will provide an idea how SUR with unequal number of observations is

handled, inform about the alternative estimators of the variance-covariance matrix of

the error term (Σ) and the conditions under which one estimator will perform better

than another, the main findings about the different feasible-GLS-regression-coefficient

estimators and whether or not it is relevant to use better estimates of Σ, and other

relevant issues related to SUR and unequal number of observations.

In addition, in Chapter 2, it was mentioned that the SUR model was not necessar-

ily restricted to time-series data. Specifically, it was said that Zellner (1962) provides

specific examples when the data could be time series, cross sectional or both. It is

important to be clear that the SUR model with unequal number of observations is

also not restricted to time-series data.

In times-series data, the extra observations of one equation with respect to a

second equation will necessarily be missing in the second equation. That is, in terms of

Section 3.4, we have unit nonresponse because the entire observation unit is missing—

either because the observation unit did not provide any information or simply because

no information was collected from the observation unit during the time period under

consideration. In consumer surveys of cross-sectional data, the extra observations of

one equation with respect to a second equation could be missing in the second equation

for several reasons. For example, consider a consumer survey where interviewers make

journal entries of any consumption item purchased by the interviewees (households)

during the time of interview (say one week).3 During the week of the interview not all

possible consumption items will be purchased by the households; hence, it is easy to

record only those that are purchased rather than making a list of all items consumed

by the households and record those that were purchased and those that were not.

Given that interviewers record only those that were purchased during the week of

the interview, it is natural that an expenditure equation (or a demand equation) of

a consumption item will have more (or less) observations than a second expenditure

3This is the case for the data used in this study. Section 4.2 discusses how ENIGH collects

expenditure data on items purchased by households by using a weekly journal.
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equation on another item. As explained in Section 3.1, expenditure on the second

item is censored and there are several explanations why. In this example, there are

extra observations in an expenditure equation of an item compared to an equation

for another item because not all households purchase the same items. For all items

to have the same observations, households will have to buy the same items. Now, if

journals were sent by mail and households were asked to record all items purchased

during a week, there would be households that will refuse to write the journal, and

among those who participate, there would be households that may refuse to record

all items. This will also result in unequal number of observations for some equations.

Finally, we could combine time-series with cross-sectional data and give examples of

panel data.

Whether there is time-series data, cross-sectional data, or panel data, there will be

examples of equations with unequal number of observations. The literature reviewed

in this section includes both time-series data (Sharma, 1993; Baltagi et al., 1989;

Brown and Kadiyala, 1985) and cross-sectional data (Baltagi et al., 1989).

Sharma (1993) attempted to estimate two-equations using seemingly unrelated

regression models when the number of observations in each equation were unequal.

He studied two cases. In the first case, there were n1 + n time series observations

for the first equation and n + n2 for the second equation; the last n observations of

the first equation match in time with the first n observations of the second equation.

In the second case, there were n time-series observations for the first equation and

n1 + n+ n2 for the second; the observations for the first equation match in time with

those for the second, starting from the (n1 + 1)-th observation.

In the first case, Sharma (1993) partitioned the matrices of each regression equa-

tion strategically by the number of observations in the first equation that match in

time with the second equation. He computed the variance-covariance matrix for the

error term, and then he used generalized least-squares to estimate the vector of pa-

rameters. He showed that when the observations on both equations start from the

same point in time (n1 = 0), his results reduced to those given by Schmidt (1977).
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Similarly, when the observation on both equations terminate together in time series

(n2 = 0), his results were similar to those given by Schmidt (1977).

In the second case, there was only the need to partition the second equation

strategically by n1, n, and n2. Sharma (1993) again computed the variance-covariance

matrix of the error term and used generalized least-squares to estimate the vector of

parameters. When n1 = 0, his results reduced once again to those of Schmidt (1977).

When n2 = 0, similar results to Schmidt (1977) were obtained.

In both cases, Sharma (1993) also indicated how to proceed when the elements

of the variance-covariance matrix were unknown. In general, partition of the error

terms of each equation and the use of least-squares residuals was necessary for the

first case, but only partition of the error term of the second equation was necessary

for the second case.

Sharma (1993) explained that if first order autoregressive errors were present, his

analysis could be modified analogously to Parks (1967). He also remarked that his

results apply when the order of observations is important (e.g. time-series data) or the

order of observations is irrelevant (e.g. cross-sectional data) while Schmidt’s (1977)

results only apply to the latter situation.

Hwang (1990) studied several alternative estimators of the variance-covariance

matrix of the error term (Σ) in the seemingly unrelated regressions (SUR) model

when sample sizes vary for a two-equation SUR model. The purpose of his study

was threefold. First, he wanted to clarify the amount of sample information that en-

ters the generalized least squares (GLS) estimation procedure through the alternative

estimators. In particular, he wanted to emphasize that the sample information con-

tained in each estimator of Σ is misleading. Second, Hwang (1990) identified a sample

statistic (α) which differs among alternative estimators of Σ presented in his study.4

His sample statistic was used to investigate the conditions under which an estimator

of Σ performs better than the other estimators. Hence, Hwang (1990) showed that

his sample statistic was a useful guide for the choice of estimator in practice. Finally,

4A sample statistic is a function of the sample.
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Hwang (1990) proposed an alternative estimator of Σ based on the specification of

Telser (1964).

Hwang (1990) examined four of the five alternative estimators of Σ presented by

Schmidt (1977). The first alternative was the “usual” estimator of Zellner (1962),

but instead of dividing the sum of squared OLS residuals by the difference of the

number of observations in each equation and the number of independent variables (as

originally presented in Zellner (1962)), Schmidt (1977) divided only by the number

of observations in each equation, except for the second equation where the extra

observations were ignored. The second, third and fourth alternatives were Wilks’

(1932) estimator, Srivastava-Zaatar’s (1973) estimator, and Hocking-Smith’s (1968)

estimator respectively.

As explained by Hwang (1990), the “usual” estimator ignores the extra observa-

tions on the second equation; the Wilks’ (1932) estimator uses them only in the esti-

mation of the variance of the error term in the second equation (σ22); the Srivastava-

Zaatar’s (1973) estimator uses them in the estimation of the covariance of the con-

temporaneous errors of the two equations (σ12) and the variance of the error term

in the second equation (σ22) and the Hocking-Smith’s (1968) estimator fully uses the

extra observations on second equation in the estimation of all σij.

Hwang (1990) first parameterized Σ−1 by a set of three parameters (θ, δ, σ22).

The first parameter is the ratio of the covariance of the contemporaneous errors of

the two equations to variance of the error term in the second equation
(
θ = σ12

σ22

)
, the

second parameter δ = σ11−θ2σ22, and the third parameter is the variance of the error

term in the second equation (σ22). Hwang (1990) explained that his parameterization

is commonly used in multivariate statistical analysis; for example, he explained, in the

orthogonal transformation of a normal random vector, in the conditional distribution,

in the partial correlation coefficient, etc. Then Hwang (1990) presented the alternative

estimators of Σ in terms of their estimates of (θ, δ, σ22). Hwang (1990) proceeded

to explain that differences among the alternative estimators of hinge on the value of

the sample statistic (α). Then, before turning to a sampling experiment, he proposed
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an alternative procedure for the estimation of (θ, δ, σ22), the Telser-type (1964)

estimator.

In his sampling experiment, Hwang (1990) measured relative efficiencies of alter-

native estimators by the ratios of their mean square errors (MSEs) of the estimate of

the ith equation parameter (β̂i) to that of the “usual” estimator. Since MSE ratios of

individual coefficient estimates varied from one coefficient to another, Hwang (1990)

decided to compute the average of the MSE ratios of the three coefficients in each

equation.

Hwang (1990) computed the sample statistics of α, the average MSE ratios of the

alternative estimators to the usual estimator in the full sample, and the average MSE

ratios of the alternative estimator to the usual estimator in subsamples. The latter

was constructed to investigate the effects of α. Hwang (1990) found that the sample

distribution of the coefficient estimators are sensitive to the values of α.

In particular, the [Hocking-Smith’s (1968)] estimator of Σ may yield significantly more

efficient coefficient estimates than the “usual” estimator of Σ when α is significantly

larger than one and [the contemporaneous correlation between the error terms of the

two equations (ρ)] is high.

In practice, ρ is generally unknown. Therefore, a reasonable procedure is to estimate ρ̂

from the joint observations first, and then use the [Hocking-Smith’s (1968)] estimator

if α and ρ̂ are large. If ρ̂ is small and/or α is smaller than one, the “usual” estimator

is the proper choice. Alternatively, when ρ̂ is high, one may use the Telser estimator

of Σ, which dominates other estimators regardless of the value of α.

Then, Hwang (1990) proceeded to briefly mention and provide some results on how

to extend the model when there are more than two equations. Specifically, he consid-

ered a three-equation system for which the first two equations have N observations

and the third equation has T observations.

Baltagi et al. (1989) used the same system of two equations of Schmidt (1977)

and Kmenta and Gilbert (1968) to replicate the Monte Carlo experiments performed

by Schmidt (1977) with the objective of providing additional support or counter-

evidence to his findings. Baltagi et al. (1989) also explored whether the performance
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of estimates of the variance-covariance matrix of the error term in the two-equation

seemingly unrelated regression model (Σ) leads to better estimates of the regression

coefficients. In addition, Baltagi et al. (1989) considered the re-parameterization

by Hwang (1987) in order to check whether better estimates of Σ−1 yield better

estimates of the regression coefficients. Finally, Baltagi et al. (1989) focused on the

type of additional observations available. That is, whether the results will change if

the type of additional information is time-series or cross-sectional.

Baltagi et al. (1989) examined four of the five different estimators of Σ presented

by Schmidt (1977). All of the estimators of Σ presented by Schmidt (1977) are consis-

tent and the corresponding coefficient estimates are asymptotically efficient. Baltagi

et al. (1989) examined Wilks’ (1932) estimator, Srivastava and Zaatar’s (1973) esti-

mator and the Hocking and Smith’s (1968) estimator. The fifth estimator presented

by Schmidt (1977), the maximum likelihood estimator, was not considered. Baltagi

et al. (1989) rather focused on the true GLS estimator instead of the maximum like-

lihood estimator as a basis for comparison. In the design of their experiment, Baltagi

et al. (1989) followed Schmidt’s (1977) and Kmenta and Gilbert’s (1968) model of

two equations.

Following [Schmidt (1977)], we set the variance of [the error term of the first equation

(ε1)] and [the error term of the second equation (ε2)] equal to one (σ11 = σ22 = 1)

and consider three alternative values of the correlation between ε1 and ε2: namely

ε12 = ρ = 0.3, 0.6, 0.925. Three different values of the extra observations are used: E

= 5, 10 and 20. All the extra observations are on the second equation. Also, three

different sample sizes are considered: T = 10, 20, and 50. For our study all possible

combinations of T , E and ρ are entertained.

For each experiment, (X matrix, value of ρ, value of T and value of E), a sample

was generated using a pseudo-random normal deviate generator and the four feasible

GLS estimators described in the previous section along with the true GLS and OLS

are performed. Each experiment is replicated 500 times and the MSE’s are obtained

for the σ’s and the regression coefficients. Also, a count measure is obtained which

gives the number of times an estimator is close to the true value of the parameter than

another estimator, and whether this frequency count is significantly different from 50%.
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Wilks’ (1932) estimator was dropped for comparison purposes of the various es-

timators because the estimate of Σ was not necessarily positive definite. That is, it

frequently gives negative definite estimates of Σ. Baltagi et al. (1989) reported the

mean squared error (MSE) of the remaining three feasible GLS estimators of Σ, the

number of times a specific estimator (additionally including the OLS estimator) of

β11 (the coefficient of one of the independent variables (X11) in the first equation)

is closer to β11 than the true GLS estimator, and the mean-squared error (MSE)

of various estimators (the usual, Srivastava-Zaatar (SZ), Hocking-Smith (HS), and

OLS estimators) of β11 to that of true GLS. Baltagi et al. (1989) found evidence that

estimators of the variances which use the extra observations have better MSE and

better simple count performance5 than those estimators that do not use the extra

observations fully. They also found that better estimates of the variances need not

imply better estimates of the regression coefficients.

With respect to Hwang’s (1987) study, Baltagi et al. (1989) explained that Hwang’s

(1987) re-parameterization of the estimation problem in terms of the elements of

Σ−1 rather than Σ was different from the original Σ parameterization presented by

Schmidt (1977). In particular, the Hocking-Smith estimator presented by Schmidt

(1977) was shown to use extra observations in estimating all the elements of Σ, while

the Hocking-Smith (1968) estimator presented by Hwang’s (1987) differed from the

usual estimator only in its estimate of θ2 (one of the three re-parameterizations of the

estimation problem for the second equation).

Baltagi et al. (1989) used Hwang’s (1987) re-parameterization to examine com-

parisons of the various regression coefficient estimators according to the performance

of the corresponding estimate of θ. Once again they found that “better estimate of a

certain crucial parameter of Σ−1 (that differentiates between two feasible GLS esti-

mators) does not necessarily lead to a better estimate of the corresponding regression

5A count of the number of times that an estimator of the variance of the error term of the first

(σ11) or second equation (σ22) or the covariance of the error term of the first equation with the error

term of the second equation (σ12) was close to the true variance or covariance.

93



coefficients.” In addition, Baltagi et al. (1989) results indicated that for larger ρ and

larger T , the MSE performance of θ̂1,HS better than that of θ̂1,SZ but that this dom-

inance does not necessarily translates into dominance of β̂11,HS over β̂11,SZ . Finally,

they explained their conjecture that better estimates of the variances need not imply

better estimates of regression coefficients has also been obtained in panel data studies

by Maddala and Mount (1973), Taylor (1980) and Baltagi (1981).

Finally, when the type of additional observations changes from time-series to cross-

sectional data, Baltagi et al. (1989) found that in both data sets that “[f]easible

GLS estimators that seem to ignore the extra observations in estimating Σ (but not

necessarily in estimating Σ−1 or β) do not generally do badly relative to feasible GLS

estimators that seem to use extra observations fully.” That is, “[Schmidt’s (1977)]

results are shown to be robust to the type of additional observation available i.e.,

whether they are time series or cross-sectional in nature.”

Brown and Kadiyala (1985) also studied the estimation of missing observations

with time series data. They referred to missing observations as the difference of the

number of observations between two-equations in a seemingly-unrelated-regressions

(SUR) model with time series data. That is, the extra observations of one equation

were referred to as missing observations in the other equation. The objectives of their

study were twofold. First, they wanted to design a test statistic for the significance

of the prediction efficiency of a seemingly unrelated regression (SUR) model. Their

test statistic consisted of a likelihood ratio test for the predictive ability of the SUR

method against the single equation alternative. Second, the cumulative residual pro-

cedure described by Fama et al. (1969) was used as a special case within the class of

“missing data estimation problems” in an empirical application. In their latter ob-

jective, Brown and Kadiyala (1985) adopted a two step process for predicting missing

observations from a stock revenue series from the utilities and airline industry over

the period 1968-1977. In the first step, a portion of the returns to an asset was

deleted while in a second step of the process a cumulative average of the residuals

was computed from the single estimates of the “missing” data and the actual values.
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In general, Brown and Kadiyala (1985) found that the SUR procedure was able

to substantially reduce prediction error and that the sum of squared prediction errors

for the single equation model was over a quarter larger than the SUR model. In their

study, Brown and Kadiyala (1985) illustrated that it is possible to use a SUR model

to assess information treated as unknown.

In summary, first it is important to recognize that researchers refer to the extra

observations of one equation with respect to a second equation in a seemingly unre-

lated regressions (SUR) model as missing observations. Second, there are alternative

estimators of the variance-covariance matrix of the error term Σ in the seemingly

unrelated regressions (SUR) model. Zellner (1962) who first derived the seemingly-

unrelated-regressions (SUR) method of estimating parameters proposed one alterna-

tive to estimate Σ. Schmidt (1977) then proposed another five consistent estimators

when there are unequal number of observations for each regression equation: the

“usual” estimator which was similar to the original estimator presented by Zellner

(1962), Wilks’ (1932) estimator, Srivastava and Zaatar’s (1973) estimator, the Hock-

ing and Smith’s (1968) and the maximum likelihood estimator (MLE). Then, Hwang

(1990) proposed another alternative estimator based on Telser (1964).

With so many alternative ways to estimate Σ, some researchers (Hwang, 1990;

Baltagi et al., 1989; Schmidt, 1977) were motivated to study under what conditions

one estimator will be better than the others. Surprising results were found. Baltagi

et al. (1989) confirmed Schmidt’s (1977) result that a feasible GLS estimator of the

regression coefficients that ignores the extra observations in estimating Σ (but not

necessarily in estimating Σ−1 or β) compares favorably to a feasible GLS estimator

of the regression coefficients that seem to use all extra observations. However, ac-

cording to Hwang (1990) this does not mean that it can not be shown that under

certain conditions an alternative estimator of Σ will perform better. Hwang (1990)

showed that when the contemporaneous correlation between the error terms in a

two-equation SUR model is high, the Telser’s (1964) estimator of Σ dominates all

the other estimators. Nonetheless, Baltagi et al. (1989), who did not used Telser’s
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(1964) estimator, showed that better estimates of Σ or Σ−1 need not imply better

estimates of regression coefficients. This final result is supported by studies in panel

data by Maddala and Mount (1973), Taylor (1980) and Baltagi (1981). Therefore,

even though better estimates of Σ or Σ−1 can be used, better estimates of regression

coefficients are not guaranteed.

Third, the SUR model with unequal number of observations is not restricted to

time-series data. SUR model with unequal number of observations in panel-data

studies have been studied among others by Fiebig and Kim (2000) and Baltagi et al.

(1989). Finally, compared to the literature reviewed in Section 3.1, we now find

alternative procedures to deal with censored data. However, no matter what of the

procedures presented in this chapter is used, a feasible GLS estimator of the regression

coefficients that ignores the extra observations in estimating Σ (but not necessarily

in estimating Σ−1 or β) compares favorably to a feasible GLS estimator of the regres-

sion coefficients that seem to use all extra observations. Consequently, econometric

Software such as SAS, when estimating a SUR model with unequal number of obser-

vations, simply ignore the extra observations of one equation with respect to another

one.

3.4 Missing Data

The term missing data is generally used instead of nonresponse. When the non-

response rate is not negligible, inference based upon only the respondents may be

seriously flawed. Lohr (1999, p. 255) explains two types of nonresponse: unit non-

response and item nonresponse. Unit nonresponse occurs when when the entire

observation unit is missing. For instance, the person provides no information for the

survey. Item nonresponse occurs when some measurements are present for the

observation unit but at least one item is missing. For instance, the person does not

respond to a particular item in the questionnaire.

Lohr (1999, pp. 264–265) explains three different ways how the type of nonresponse

(unit or item nonresponse) could be missing. Lohr (1999, p. 264) uses Little and
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Rubin’s (1987) terminology of nonresponse classification.

Missing Completely at Random If [the probability that a unit i is selected for

the sample and it will respond] does not depend on [the vector of known information

about the unit i in the sample], [the response of interest], or the survey design, the

missing data are missing completely at random (MCAR). Such a situation occurs if,

for example, someone at the laboratory drops a test tube containing the blood sample

of one of the survey participants—there is no reason to think that the dropping of the

test tube had anything to do with the white blood cell count. If data are MCAR, the

respondents are representative of the selected sample.

Missing at Random Given Covariates, or Ignorable Nonresponse If [the prob-

ability that a unit i is selected for the sample and it will respond] depends on [the vector

of known information about the unit i in the sample] but not on [the response of inter-

est], the data are missing at random (MAR); the nonresponse depends only on observed

variables. We can successfully model the nonresponse, since we know the values of [the

vector of known information about the unit i in the sample] for all sample units. Per-

sons in the [National Crime Victimization Survey (NCVS)] would be missing at random

if the probability of responding to the survey depends on race, sex, and age-all known

quantities-but does not vary with victimization experience within each age/race/sex

class. This is sometimes termed ignorable nonresponse: Ignorable means that a

model can explain the nonresponse mechanism and that the nonresponse can be ig-

nored after the model accounts for it, [but it does not mean] that the nonresponse can

be completely ignored and complete-data methods used.

Nonignorable Nonresponse If the probability of nonresponse depends on the value

of a response variable and cannot be completely explained by values of the [vectors of

known information about the unit i in the sample], then the nonresponse is nonig-

norable. This is likely the situation for the NCVS: It is suspected that a person who

has been victimized by crime is less likely to respond to the survey than a nonvictim,

even if they share the values of all known variables such as race, age, and sex. Crime

victims may be more likely to move after a victimization and thus not be included in

subsequent NCVS interviews. Models can help in this situation, because the nonre-

sponse probability may also depend on known variables but cannot completely adjust

for the nonresponse.

Lohr (1999, pp. 255–288) discusses four approaches to deal with nonresponse:
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1. Ignoring the nonresponse. This is not recommended.

2. Preventing the nonresponse by designing a survey so that the nonresponse is

low. This is highly recommended.

3. Taking a representative subsample of the nonrespondents and use it to make

inferences about the other nonrespondents.

4. Using models to predict values for the nonrespondents. Among these models

Lohr (1999, pp. 265–288) discusses weighting methods, imputation methods,

and parametric models for nonresponse.

The main problem caused by the nonresponse is potential bias of population es-

timates. The bias results when we estimate the population mean by using only the

sample respondent mean and the population mean in the nonrespondent group differs

from the population mean in the respondent group. Lohr (1999, p. 258) shows that

the bias is small if either (1) the mean of the population nonrespondents is close to

the mean for the population respondents or (2) the proportion of the population non-

respondents to the entire population is small (i.e., there is little nonresponse). Since

it not possible to know (1), the only alternative is to reduce the nonresponse rate.

Designing the survey such that the nonresponse is low refers to carefully studying

the best way to collect the data. This includes being able to anticipate and prevent

reasons for nonresponse as much as possible. Lohr (1999, pp. 260–262) provides and

discusses a list of factors that need to be examined: survey content, time of survey,

interviewers, data-collection method, questionnaire design, respondent burden, survey

introduction, incentives and disincentives, and follow up.

Lohr (1999, p. 263) explains Hansen and Hurwitz’s (1946) procedure to subsam-

ple nonrespondents and to use two-phase sampling (also called double sampling) for

stratifying and then estimating the population mean or total. In this procedure, an

estimate of the population mean is obtained from a portion of the sample average

of the original respondents and a portion of the average of the subsampled nonre-
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spondents. These portions are the percentages of the sample that responded and not

responded respectively. Similarly, an estimate of the population total can be obtained

from a portion of the sample units in the respondent stratum and a portion of the

sampled units in the nonrespondent stratum.

Weighting methods for nonresponse refer to incorporating weights in calculating

population estimates of interest or to the use of weights to adjust for the nonresponse.

Some weighting methods are weighting-class adjustment methods, postratification

using weights, and weights that are the reciprocal of the estimated probability of

response. A discussion and further references of these weighting methods are found

in Lohr (1999, pp. 265–272). Lohr (1999, p. 272) explains weighting adjustments are

usually used for unit nonresponse, not for item nonresponse (which would require a

different weight for each item).

Imputation methods refer to alternative ways in which a nonresponse is replaced.

The word imputation refers to substituting a missing value for a replacement value.

Imputation methods are commonly used for item nonresponse. Lohr (1999, pp. 272–

278) explains deductive imputation, cell mean imputation, hot-deck imputation, re-

gression imputation, cold-deck imputation, and multiple imputation. In particular,

regression imputation uses a regression of the item of interest on variables observed

for all cases to predict the missing value. However, Lohr (1999, p. 278) explains that

“[v]ariances computed using the data together with the imputed values are always

too small, partly because of the artificial increase in the sample size and partly be-

cause the imputed values are treated as though they were really obtained in the data

collection.” Lohr (1999, p. 278) refers to Rao (1996) and Fay (1996) for a discussion

on methods for estimating the variances after imputation.

Finally, parametric models for nonresponse refer to models that estimate within

the model the nonresponse by using information on both known values of the variable

of interest and missing values of the variable of interest (i.e., the nonresponse). That

is, a model for the complete data is developed and components are added to the model

to account for the proposed nonresponse mechanism. Depending on how good the
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model describes the data, the estimates of the variances that result from fitting the

model may be better or worse. Examples can be found in Wooldridge (2006, pp. 609–

613) and Pindyck and Rubinfeld (1997, pp. 325–331) who explain a censoring model

and a maximum likelihood model respectively to address item non-response on the

dependent variable.

3.5 Stratified Sampling

Lohr (1999, pp. 23–24) explains three basic types of probability samples.

• A simple random sample (SRS) is the simplest form of probability sample.

An SRS of size n is taken when every possible subset of n units in the population

has the same chance of being the sample... In taking a random sample, the

investigator is in effect mixing up the population before grabbing n units. The

investigator does not need to examine every member of the population for the

same reason that a medical technician does not need to drain you of blood to

measure your red blood cell count. Your blood is sufficiently well mixed that any

sample should be representative.

• In a stratified random sample, the population is divided into subgroups called

strata. Then an SRS is selected from each stratum, and the SRSs in the strata

are selected independently. The strata are often subgroups of interest to the

investigator—for example, the strata might be different ethnic or age groups in a

survey of people, different types of terrain in an ecological survey, or sizes of firms

in a business survey. Element in the same stratum often tend to be more similar

than randomly selected elements from the whole population, so stratification

often increases precision.

• In a cluster sample, observation units in the population are aggregated into

larger sampling units, called clusters. Suppose you want to survey Lutheran

church members in Minneapolis but do not have a list of all church members in

the city, so you cannot take an SRS of church members. However, you do have

a list of all the Lutheran churches. You can then take an SRS of the churches

and then subsample all or some church members in the selected churches. In this

case, the churches form the clusters, and the church members are the observation

units.
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As it can be read, all these methods involve random selection of units to be in the

sample. The key difference among them is in the level at which the random selection

of units takes place. For instance, in an SRS, the observation units are randomly

sampled from the population of observation units; in a stratified random sample, the

strata are first selected and then the observation units within each stratum are ran-

domly sampled; in a cluster sample, the clusters are first randomly selected from the

population of all clusters and then all or some of the observation units are sampled.

To illustrate this further, Lohr (1999, p. 24) provides a very useful example. Suppose

you want to estimate the number of journal publications that professors at your uni-

versity have. In an SRS, construct a list of all professors in your sample and randomly

select n of them and ask them for the number of journal publications. In a stratified

sample, classify faculty by college (agricultural sciences and natural resources, ar-

chitecture, arts and sciences, business, education, engineering, human sciences, mass

communications, etc.) and then take an SRS of faculty in the agricultural sciences

and natural resources, another SRS of faculty in architecture, and so on. Finally, in a

cluster sample, randomly select 10 of the 50 academic departments in the university

and ask each professor in each selected department for his/her number of journal

publications.

Lohr (1999, p. 95) further explains stratified random sampling. In stratified ran-

dom sampling the strata do not overlap, and they constitute the whole population

so that each sampling unit belongs to exactly one stratum. Lohr (1999, pp. 95–96)

provides the following reasons to use stratified sampling:

1. To be protected from the possibility of obtaining a really bad sample that is

not representative of the population.

2. To obtain data of known precision for subgroups. These subgroups should be

the strata, which coincide with the domain of the study.

3. To reduce cost and increase ease of administration.
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4. To obtain more precise (having lower variance) estimates for the whole popula-

tion.

The sampling weight in stratified sampling is given by whj = (Nh/nh) (Lohr,

1999, p. 103), where N = N1 + N2 + . . . + NH is the total number of units in

the entire population, H is the number of “layers” (also called strata), Nh is the

population units in the hth stratum, and nh is number of observations randomly

sampled from the population units in stratum h. The sampling weight whj can be

thought of as the number of units in the population represented by the sample unit j

in stratum h or simply the sample member (h, j).6 Additionally, Lohr (1999, p. 103)

explains the probability of selecting the jth unit in the hth stratum to be in the

sample is πhj = nh/Nh, which is also the sampling fraction in the hth stratum. Hence,

the sampling weight is the reciprocal of the probability of selection. That is, whj =

1/πhj. Then, the sum of the sampling weights equals the population size. That is,

N =
∑H

h=1

∑
j∈Sh whj, where Sh is the set of nh units in the SRS for stratum h. “[If]

each sampled unit ‘represents’ a certain number of units in the population,. . . the

whole sample ‘represents’ the whole population” (Lohr, 1999, p. 103).7

It is very important that a statistician does not ignore the weights in a strati-

fied sampling. A statistician who designs a survey to be analyzed using weights has

implicitly visualized a model for the data. A sample is usually stratified and subpop-

ulations oversampled precisely because researchers believe there will be differences

among the subpopulations. Such differences also need to be included in the model.

“A data analyst who ignores stratification variables and dependence among observa-

tions is not fitting a good model to the data but is simply being lazy” (Lohr, 1999, p.

229).

Lohr (1999, p. 229) recommends incorporating weights in calculating quantities

6As it will be discussed in Section 4.2, ENIGH calls the sampling weight the “expansion factor”

(i.e., the number of households that a particular household represent nationally).
7As it will be mentioned in Section 4.2, according to ENIGH—Śıntesis Metodológica (2006), the

results obtained from ENIGH survey can be generalized to the entire Mexican population.
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such as means, medians, quantiles, totals, and ratios. One way to estimate these

quantities is by incorporating the stratification variables (Lohr, 1999, pp. 95–130).

Another way to estimate these quantities (but not their standard errors) is by con-

structing an empirical distribution for the population from the sampling weights.

“The statistics calculated using weights are much closer to the population quantities”

(Lohr, 1999, p. 234).

Lohr (1999, pp. 347–378) also explores how to do regression in complex survey

samples. She explains that even though there is debate whether the sample sampling

weights are relevant for inference in regression (Lohr, 1999, p. 363), the data structure

needs to be taken into account in either approach. She explains two things can happen

in complex surveys (Lohr, 1999, pp. 352–253):

1. Observations may have different probabilities of selection, πi. If the probability

of selection is related to the response variable yi, then an analysis that does

not account for the different probabilities of selection may lead to biases in the

estimated regression parameters.

2. Even if the estimators of the regression parameters are approximately design

unbiased, the standard errors given by SAS or SPSS will likely be wrong if the

survey design involves clustering. Usually, with clustering, the design effect (deff)

for regression coefficients will be greater than 1.

Lohr (1999, p. 355) recommends, “[i]n practice, use professional software designed

for estimating regression parameters in complex surveys. If you do not have ac-

cess to such software, use any statistical regression package that calculates weighted

least squares estimates. If you use weights wi in weighted least squares estimation,

you will obtain the same point estimates...; however, in complex surveys, the stan-

dard errors and hypothesis tests the software provides will be incorrect and should

be ignored.” Lohr (1999, pp. 289–318) explains several methods for estimating vari-

ances of estimated totals and other statistics from complex surveys. She explains

linearization (Taylor Series) methods, random group and resampling methods (bal-

anced repeated replication, the Jacknife, and the Bootstrap) for calculating variances
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of nonlinear statistics. In addition, she also explains the calculation of generalized

variance functions and how to construct confidence intervals. For more information

on these methods refer to Lohr (1999, pp. 298–318).

Wooldridge (2002, p. 551) explains that there are a variety of selection mech-

anisms that result in nonrandom samples (also called selected samples). Some

of these are due to sample design, while others are due to the behavior of the units

being sampled, including nonresponse on survey questions and attrition from social

programs (i.e., in panel data where people leave the sample entirely and usually do

not reappear in later years). Wooldridge (2002, p. 552) explains that in some cases,

the fact that we have a nonrandom sample does not affect the way we estimate popu-

lation parameters. Wooldridge (2002, pp. 552–558) provides conditions under which

estimating the population model with linear and nonlinear models using nonrandom

sample is consistent for the population parameters. For an explanation of these con-

ditions refer to Wooldridge (2002). Wooldridge (2002, pp. 558–590) also explains

how to deal with nonrandom samples on the basis of the response variable, how to

do nonrandom sample corrections with a probit or tobit model under exogenous or

endogenous explanatory variables, and how to deal with other nonrandom sample

issues.

Wooldridge (2002, p. 590) explains stratified samples are a form of nonrandom

samples. In stratified samples different subsets of the population are sampled with

different frequencies. Stratification can be based on exogenous variables or endoge-

nous variables or a combination of these. Wooldridge (2002, p. 596) explains that

when x is exogenous (see Wooldridge 2002, p. 596 for the sense in which x must be

exogenous) and stratification is based entirely on x, the standard unweighted esti-

mator on the stratified sample is consistent and asymptotically normal. In addition,

Wooldridge (1999) shows that the usual asymptotic variance estimators are valid

when stratification is based on x and we ignore the stratification problem. In this

case the usual conditional maximum likelihood analysis holds, and in the case of re-

gression the usual heteroskedasticity robust variance matrix estimator can be used
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(Wooldridge, 1999, p. 597).

Two common kinds of stratification are discussed by Wooldridge (2002, pp. 590–

591): standard stratified sampling (SS sampling) and variable probability sampling

(VP sampling).

In SS sampling, the population is first partitioned into J groups, W1, W2, . . ., WJ ,

which are assumed to be nonoverlapping and exhaustive. We let w denote the random

variable representing the population of interest. . . For j = 1, . . . , J , draw a random

sample of size Nj from stratum j. For each j, denote this random sample by {wij :

i = 1, 2, . . . , Nj}. The strata samples sizes Nj are nonrandom. Therefore, the total

sample size, N = N1 + . . . + NJ , is also nonrandom. A randomly drawn observation

from stratum j, wij , has distribution D(w|w ∈ Wj). Hence, the observations within

a stratum are identically distributed but observations across strata are not.

Notice that Wooldridge’s (2002) definition of SS sampling is the same as Lohr

(1999) definition of stratified random sampling. Now, consider Wooldridge’s (2002, p.

591) explanation of variable probability sampling (VP sampling).

[In VP sampling,] an observation is drawn at random from the population. If the

observation falls into stratum j, it is kept with probability pj . Therefore, random draws

from the population are discarded with varying frequencies depending on which stratum

they fall into. This kind of sampling is appropriate when information on the variable or

variables that determine the strata is relatively easy to obtain compared with the rest of

the information. Survey data sets, including interviews to collect panel or longitudinal

data, are good examples. Suppose we want to oversample individuals from, say, lower

income classes. We can first ask an individual her or his income. If the response is

in income class j, this person is kept in the sample with probability pj , and then the

remaining information, such as education, work history, family background, and so on

can be collected; otherwise, the person is dropped without further interviewing.

It is important to notice that in VP sampling the observations within a stratum

are discarded randomly. Wooldridge (1999) discusses why VP sampling is equivalent

to the procedure in Table 3.1.

The number of observations falling into stratum j is denoted by Nj, the number

of data points we actually have for estimation is N0 = N1 +N2 + . . .+NJ , and N is
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Table 3.1: Variable Probability Sampling (VP Sampling)

Repeat the following steps N times

1. Draw an observation wi at random from the population.

2. If wi is in stratum j, toss (a biased) coin with probability pj of turning up heads.

Let hij = 1 if the coin turns up heads and zero otherwise.

3. Keep observation i if hij = 1; otherwise, omit it from the sample.

Source: Wooldridge (2002, p. 591).

the number of times the population is sampled. Wooldridge (2002, p. 592) explains

that if N is fixed, then N0 is a random variable. It is not known what each Nj would

be prior to sampling.

In VP sampling, Wooldridge (2002, p. 594) shows that in estimating the following

linear model by weighted least squares (WLS),

y = xβ0 + u, E(x′u) = 0, (3.1)

where x is a (1×K) vector of explanatory variables, y is a scalar response variable,

and u is a scalar disturbance variable; the asymptotic variance estimator is(
N0∑
i=1

p−1
ji

x′ixi

)−1( N0∑
i=1

p−2
ji
û2
ix
′
ixi

)(
N0∑
i=1

p−1
ji

x′ixi

)−1

, (3.2)

where ûi = yi − xiβ̂w is the residual after WLS estimation, p−1
ji

the weight attached

to observation i in the estimation, and ji the stratum for observation i. Wooldridge

(2002, p. 593) explains that in practice, the p−1
ji

are the sampling weights reported

with other variables in stratified samples. Additionally, Wooldridge (2002, p. 594)

explains that this asymptotic variance matrix estimator is simply White’s (1980)

heteroskedastic-consistent covariance matrix estimator applied to the stratified sam-

ple, where all variables for observation i are weighted by p
−1/2
ji

before performing the

regression. This estimator has also been suggested by Hausman and Wise (1981). Ad-

ditionally, Wooldridge (2002, p. 54) remarks that it is important to remember that the

asymptotic variance matrix estimator above is not due to potential heteroskedasticity
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in the underlying population model. Even if E(u2|x) = σ2
0, the estimator in equation

(3.1) is generally needed because of the stratified sampling. Wooldridge (2002, p. 54)

explains this estimator works in the presence of heteroskedasticity of arbitrary and

unknown form in the population, and it is routinely computed by many regression

packages.

The weights in SS sampling are different from those in the VP sampling. In SS

sampling the weights are (Qji/Hji) rather than p−1
ji

, where ji denotes the stratum for

observation i, Qj = P(w ∈ Wj) denotes the population frequency for stratum j (it is

assumed that Qj are known), and Hj = Nj/N denotes the fraction of observations in

stratum j. Additionally, the formula for the asymptotic variance is different.

In SS sampling, Wooldridge (2001, p. 464) shows that in estimating the linear

model in equation (3.1) above, the weighted estimator is consistent for β0. Addition-

ally, if the stratification is exogenous and E(u|x) = 0, the asymptotic variance matrix

estimator of β̂w can be written as(
N∑
i=1

(Qji/Hji)x
′
ixi

)−1( N∑
i=1

(Qji/Hji)
2û2

ix
′
ixi

)(
N∑
i=1

(Qji/Hji)x
′
ixi

)−1

, (3.3)

which is again simply White’s (1980) heteroskedasticity-consistent covariance matrix

estimator applied to the stratified sample, where all variables for observation j are

weighted by (Qji/Hji)
−1/2 before performing the regression.

Wooldridge (2002, pp. 595–596) comments that if the population frequencies Qj

are known in VP sampling, he recommends using as weights Qj/(Nj/N0) rather than

p−1
j . His recommendation is based on his findings in Wooldridge (1999). Additionally,

Wooldridge (2002, p. 596) explains that when the sampling weights Qji/Hji or p−1
ji

and the stratum are given, the weighted M -estimator under SS or VP sampling is

fairly straightforward, but it is not likely to be efficient. It is possible to do better

with conditional maximum likelihood (Imbens and Lancaster, 1996).

Summarizing, when dealing with stratified sampling, the weighted estimator is

consistent (Wooldridge, 2001, p. 464). “If [we] use weights wi in the weighted least

squares estimation, [we] will obtain the same point estimates...; however, in com-
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plex surveys, the standard errors and hypothesis tests the software provides will be

incorrect and should be ignored” (Lohr, 1999, p. 355). Hence, we briefly mentioned

procedures that can be used to estimate standard errors and hypothesis tests. Of par-

ticular interest, Lohr (1999, pp. 298–308) points to the use of Bootstrap or Jacknife

in complex survey designs. We also provided Wooldridge’s (2002; 2001) estimators of

asymptotic variances. However, since Wooldridge’s (2001) SS sampling estimator of

asymptotic variances is not in the context of seemingly unrelated regressions (i.e., do

not deal with the estimation of a system of equations), Lohr’s (1999, pp. 306–307)

bootstrap procedure is more general and appropriate to the specific objective of this

study of providing an empirical application of a seemingly unrelated regression model.

Therefore, the bootstrap procedure will be adopted in this study.

3.6 The Bootstrap

The bootstrap was first proposed by Efron (1979). Then, further theory was pre-

sented by Singh (1981), Bickel and Freedman (1981), and Efron (1982). Efron and

Tibshirani (1993) provided a good introductory statistics treatment. Other stud-

ies, mentioned in the literature bellow, include Freedman (1984), Sitne (1990), Hall

(1992), Dixon (1993), Hjorth (1994), Brownstone and Kazimi, and Mackinnon (2002).

Cameron and Trivedi (2005, p. 355) explain that “bootstrap methods for statistical

inference... have the attraction of providing a simple way to obtain standard errors

when the formulae from asymptotic theory are complex.” There is a wide range of

bootstrap methods. Cameron and Trivedi (2005, p. 357) classify the wide range of

bootstrap method into two broad approaches. “First, the simplest bootstrap methods

can permit statistical inference when conventional methods such as standard error

computation are difficult to implement. Second, more complicated bootstraps can

have the additional advantage of providing asymptotic refinements that can lead to

a better approximation in finite samples.”

Lohr (1999, p. 306) explains the bootstrap for an simple random sample (SRS)

with replacement. When applying the bootstrap for an SRS with replacement, we
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hope that it will reproduce properties of the whole population. Lohr (1999, p. 306)

provides the following example. Suppose S is an SRS of size n. The sample S is

treated as if it were a population, and resamples from S are taken. If the sample really

is similar to the population—if the empirical probability mass function (epmf) of the

sample is similar to the probability mass function of the population—then samples

generated from the epmf should behave like samples taken from the population.

Lohr (1999, p. 307) further explains that after a total of B SRSs with replacement

are taken from S (i.e., B resamples), the bootstrap distribution of the parameter of

interest is calculated. Then, this distribution may be used to calculate a confidence

interval directly. A 95% confidence interval is calculated by finding the 2.5 percentile

and 97.5 percentile of the bootstrap distribution of the parameter of interest.

The bootstrap for an SRS can also be without replacement (Lohr, 1999, p. 307).

Gross (1980) discusses some properties of with-replacement and without-replacement

bootstrap distributions. When the original SRS is without replacement, Gross (1980)

proposes creating N/n copies of the sample to form a “pseudopopulation,” where N

denotes the population size, and then drawing B SRSs without replacement from the

pseudopopulation. When n/N is small, the with-replacement and without-replacement

bootstrap distribution should be similar (Lohr, 1999, p. 307).

Bootstrap methods for statistical inference in the context of stratified samples

have also been studied. For example, Rao and Wu (1988) explain rescaling boot-

strap methods for a stratified random sample, Sitter (1992) describes and compares

three bootstrap methods for complex surveys, and Shao and Tu (1995) summarize

theoretical results for the bootstrap in complex survey samples.

Cameron and Trivedi (2005, p. 358) summarize key bootstrap methods for an es-

timator θ̂ and associated statistics based on an iid sample {w1,w2, . . . ,wn}, where

usually wi = (yi,xi) and θ̂ is a smooth estimator that is
√
N consistent and asymp-

totically normally distributed.8 For notational simplicity they generally presented

8Cameron and Trivedi (2005, p. 358) use N to denote the bootstrap sample size. If N denotes

the population size, and a bootstrap sample size n is desired, then replace N by n.
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results for scalar θ. For vector θ in most instances the replacement of θ by θj, the jth

component of θ is required. Statistics of interest include the usual regression output:

the estimate θ̂; standard errors sθ̂; t-statistic t = (θ̂−θ0)
sθ̂

, where θ0 is the null hypoth-

esis value; the associated critical value or p-value for this statistic; and confidence

interval.

A general bootstrap algorithm is presented by Cameron and Trivedi (2005, p.

360):

1. Given data w1,w2, . . . ,wN draw a bootstrap sample [of] size N using a method

given [below] and denote this new sample w∗1,w
∗
2, . . . ,w

∗
N .

2. Calculate an appropriate statistic using the bootstrap sample. Examples include

(a) the estimate θ̂∗ of θ, (b) the standard error sθ̂∗ of the estimate θ̂∗, and (c)

a t-statistic t∗ = (θ̂∗−θ̂)
sθ̂∗

centered at the original estimate θ̂. Here θ̂∗ and sθ̂∗ are

calculated in the usual way but using the new bootstrap sample rather than the

original sample.

3. Repeat steps 1 and 2 B independent times, where B is a large number, obtaining

B bootstrap replications of the statistic of interest, such as θ̂∗1 , θ̂
∗
2 , . . . , θ̂

∗
B or

t∗1, t
∗
2, . . . , t

∗
B .

4. Use these B bootstrap replications to obtain a bootstrapped version of the statis-

tic.

The following bootstrap sampling methods are explained by Cameron and

Trivedi (2005, p. 360):

• Empirical distribution function (EDF) bootstrap or nonparametric

bootstrap.

The simplest bootstrapping method is to use the empirical distribution of the

data, which treats the sample as being the population. The w∗1,w
∗
2, . . . ,w

∗
N are

obtained by sampling with replacement from w1,w2, . . . ,wN . In each bootstrap

sample so obtained, some of the original data points will appear multiple times

whereas others will not appear at all... [This method] is also called a paired

bootstrap since in single equation regression models wi = (yi,xi), so here both

yi and xi are resampled.

• Parametric bootstrap.
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Suppose the conditional distribution of the data is specified, say y|x ∼ F (x,θ0),

and an estimate θ̂
P→ θ0 is available. Then in step 1 we can instead form a boot-

strap sample by using the original xi while generating yi by random draws from

F (xi, θ̂). This corresponds to regressors fixed in repeated samples [see Cameron

and Trivedi (2005, Section 4.4.5)]. Alternatively, we may first resample x∗i from

x1,x2, . . . ,xN and then generate yi from F (x∗i , θ̂), i = 1, 2, . . . , N . Both... exam-

ples... can be applied in fully parametric models.

• Residual bootstrap.

For regression model with additive iid error, say yi = g(xi,β) + ui, we can form

fitted residuals û1, û2, . . . , ûN , where ûi = yi− g(xi, β̂). Then in step 1 bootstrap

from these residuals to get a new draw of residuals, say (û∗1, û
∗
2, . . . , û

∗
N ), leading to

a bootstrap sample (y∗1 ,x1), (y∗2 ,x2), . . . , (y∗N ,xN ), where y∗i = g(xi, β̂)+u∗i . [The

residual bootstrap] uses information intermediate between the nonparametric and

parametric bootstrap. It can be applied if the error term has distribution that

does not depend on unknown parameters.

In this study, the first bootstrap sampling method is used. According to Cameron

and Trivedi (2005, p. 361), “the paired bootstrap... appli[es] to a wide range of non-

linear models, and reli[es] on weak distributional assumptions.” However, according

to Cameron and Trivedi (2005, p. 361), the other bootstraps generally provide better

approximations (see Horowitz, 2001, p. 3185).

Particularly, this study uses the %BOOT macro developed by SAS Online Sup-

port (Accessed July 1, 2008). “The %BOOT macro does elementary nonparametric

bootstrap analyses for simple random samples, computing approximate standard er-

rors, bias-corrected estimates, and confidence intervals assuming a normal sampling

distribution” (SAS Institute Inc., p. 1). Additionally, this study resamples obser-

vations and the %BOOT macro executes a macro loop that generates and analyzes

the resamples one at time. Moreover, with the %BOOT macro “[e]ither method of

resampling for regression models (observations or residuals) can be used regardless

of the form of the error distribution. However, residuals should be resampled only

if the errors are independent and identically distributed and if the functional form
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of the model is correct within a reasonable approximation. If these assumptions are

questionable, it is safer to resample observations” (SAS Institute Inc., p. 8). Finally,

the default size of each resample used by the %BOOT macro is equal to the size of

the input dataset from which the rample is being taken. For detailed information

about the %BOOT macro refer to SAS Online Support.
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CHAPTER IV

METHODS AND PROCEDURES

This chapter starts by explaining the Mexican database on household income and

expenditures that is used in the study. In particular, Section 4.1 explains what type

of information is contained in the database, the sampling methods used to collect

the data, how the data is collected, and the activities performed to preserve the

quality of the data. Additionally, Section 4.1 explains how the Mexican database

is divided into seven datasets. Then, Section 4.2 begins by explaining the variables

from the seven datasets that are used in the study. It continues to give details

about how new variables are created or transformed from the variables provided.

In addition, it reports the difficulties that emerge as the data is organized in the

desired manner. Further, it describes the procedure adopted to reduce the number of

missing observations and how this study stayed away from price imputations. Finally,

given the outcome of Section 4.2, Section 4.3 specifies the SUR models that will be

estimated. In particular, Section 4.3.1 provides one general model while Section 4.3.2

explains how individual models will be estimated for each urbanization level within

each Mexican region.

4.1 Data

Mexican data on household income and expenditures was obtained from Encuesta

Nacional de Ingresos y Gastos de los Hogares (ENIGH). This nation-wide survey is

published since 1984 by Instituto Nacional de Estad́ıstica, Geograf́ıa e Informática

(INEGI). Even though ENIGH is available for the years 1984, 1989, 1992, 1994, 1998,

2000, 2002, 2004 and 2006, this study only uses data for the year 2006, which was

collected between August and November 2006.

ENIGH nation-wide Mexican household survey encompasses Mexico’s 31 states

and the Federal District (a territory which belongs to all states), and contains in-

formation about house infrastructure, appliances and services as well as household
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members demographic and socio-demographic characteristics and occupational ac-

tivities. Particularly, ENIGH contains information about household incomes, and

quantities and prices of goods purchased.

According to ENIGH—Śıntesis Metodológica, ENIGH’s sampling methods are

probabilistic, multi-staged, stratified, and conglomerated. According to Encuesta

Nacional sobre la Dinámica de las Relaciones en los Hogares (ENDIREH)— Śıntesis

Methodológica (2006), the sampling method is probabilistic because the sampling

units have a probability of being selected, which is known and different from zero.

Additionally, the sampling method is multi-staged because the sampling units are se-

lected in multiple stages. It is stratified because the target population is divided into

groups with similar characteristics, which form the strata. Finally, it is conglomer-

ated because the sampling units (households) are made up from the observation units

(household members). However, for some data the observation unit is the household.

For example, each household contains information on its members about age, gen-

der, marital status, etc., but information on food expenditures is recorded for the

household unit only.

Results obtained from the survey can be generalized to the entire population

(ENIGH—Śıntesis Metodológica, 2006 ). ENIGH chooses households for interview

and reports information mainly for the household unit. Excluded from the analysis

are diplomatic foreign homes and homes maintained by companies for business-related

purposes. Additionally, ENIGH is based on the international recommendations of the

United Nations (UN) and the International Labour Organization (ILO). Furthermore,

it is articulated to the Mexican governmental institutions and surveys accomplished

by INEGI.

In order to collect the data, ENIGH performs direct interviews to each household

during one week, usually from August to November. The workforce is organized into

interviewers, supervisors, and state project managers. Two instruments are used to

collect the data: a questionnaire and a journal. The questionnaire is designed to

collect the data concerning the house infrastructure, the members and their house-
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hold identification, and members’ socio-demographic characteristics. In addition, for

household members older than 12 years old, the questionnaire will capture occupa-

tional activities and related characteristics as well as income and expenditures. On

the other hand, the journal is designed to collect at-home and away-from-home ex-

penditures on food, drinks, cigarettes and public transportation. During the first day

of interview, these latter expenditures are recorded in the journal by the interviewer

in order to train the interviewee. The journal remains with, and is filled by, the

interviewee for the next six days of the week (INEGI, personal contact). Hence, data

on food, drinks, cigarettes and public transportation is recorded in the Expenditure

dataset (see Table 4.1) only when the household makes a purchase.1 However, the in-

terviewer will visit the household each day until the end of the week of the interview

in order to continue training the interviewee and make sure expenditures on food,

drinks, cigarettes and public transportation are correctly being recorded by the inter-

viewee in the journal (INEGI, personal contact). In the first day of interview, food

that already belonged to the household, before the interviewer arrived, is recorded

in the journal only if the food was acquired the day before the interviewer arrived

(INEGI, personal contact).

To assure the quality of the data during the collection period, the following super-

vising activities are performed: a) registering the questionnaire and journal by an id

number, which contains the year, state, stage, consecutive number and type of home;

b) controlling the number of homes in the framework; c) verifying the nonresponse; d)

observing directly the interview and supervisor; and e) applying a re-interview ques-

1In Section 3.1, this problem was referred as censored data. Additionally, although ENIGH will

not record meat cuts that the household did not buy during the week of the interview, if we consider

Section 3.4’s terminology, there will be item nonresponse in some variables (e.g. place of purchase,

price, quantity, expenditure, etc.), but we can still recover other variables (e.g. the “expansion

factor”, stratum, household size, etc.). Now, if we look at the Expenditure dataset as it is reported

by ENIGH and consider the demand of certain items as equations (i.e., quantity as a function of

prices and income), there will be equations with unequal number of observations as discussed in

Section 3.3.
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tionnaire to completed interviews. After the data is collected, it is carefully entered

into the database, which is then electronically validated. In case of omitted item

observations, incomplete observations, errors or inconsistent information, the data is

verified via phone or by returning to the collection field. When it is not possible to

have a 100% response rate, a nonreponse rate is reported. In ENIGH 2006, there was

a nonresponse rate of 10.55%.

The ENIGH database is divided into seven datasets as described in Table 4.1.

The observation unit for the Concentrated, Household, Expenditures, and Financial

Transactions datasets is the household, while the observation unit for the Members

and Incomes datasets is the household member. For the No Monetary Transactions

dataset the observation unit is the household or the household member. For more

detailed information, the reader should refer to ENIGH.
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Table 4.1: List of the Seven Datasets in ENIGH 2006 Database.

Dataset Number
of
Records
in 2006

General Description

Concentrated
(concen-
trado.dbf)

20,875 Information about the expansion factor (number of
households that a particular household represent nation-
ally) and other variables that appear in the other six
datasets.

Households
(hogares.dbf)

20,875 Information about the household geographical location,
household stratum, house infrastructure, utilities, home
vehicles and home appliances, etc.

Members
(pobla-
cion.dbf)

83,624 Information about number of household members, rela-
tionships among household members, gender, age, city
of residency, level of education, marital status, employ-
ment status, job position, if member has salary/wages,
job description, weekly number of workdays, if member
has social security contributions, etc.

Income (in-
gresos.dbf)

79,752 Information about type of employment, current income,
income one, two, three, four, five and six months ago,
quarterly income, etc.

Expenditures
(gastos.dbf)

1,348,530 Information about items purchased, place of purchase,
day of purchase, payment option, quantity, cost, price,
expenditure, last month expenditure, quarterly expen-
diture, and frequency of purchase.

Financial
Transactions
(eroga-
ciones.dbf)

18,269 Information about bank deposits, loans, credit card pay-
ments, debt with employer, interest payment, purchase
of local and foreign currency, purchase of jewelries, life
insurance, money inherited, purchase of houses, pur-
chase of condominiums, purchase of land, mortgage pay-
ments, others, equipment purchases, stock investment,
patent investments, etc.

No Monetary
Transactions
(nomone-
tario.dbf)

174,490 Information about the type of expenditure, reason of
purchase, day of purchase, quantity, price, expenditure,
and quarterly expenditure.

Source: ENIGH 2006, summarized by author.
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4.2 Procedures

As explained in Chapter I, the Mexican meat consumption will be analyzed in

this research. In the previous section, Table 4.1 listed the seven datasets in ENIGH

2006 database. However, in order to provide an empirical application of a SUR model

using ENIGH 2006 database, the variables of interest need to organized in one dataset

first. Table 4.2 list the variables, from the seven ENIGH 2006 datasets, used in this

study.

However, before putting all variables of interest together in one dataset, a new

variable (the number of adult equivalents per household) needs to be computed from

the “edad” variable in the Members dataset. As explained in Section 3.2, adult equiv-

alence scales are used to compute the number of adult equivalents per household by

taking into account how much an individual household member of a given age and sex

contributes to household expenditures or consumption of goods relative to a standard

household member. Adult equivalents are computed to be able to compare house-

hold consumption. For instance, meat consumption in different households cannot be

directly compared without computing per capita meat consumption because a big-

ger households will naturally have a tendency to consume more meat than smaller

households. Not adjusting meat consumption and expenditures by adult equivalents

presents a problem when estimating quantity consumed (quantity demand) as a func-

tion of prices and total expenditure. For example, suppose one household demands

q amount of beef and suppose a bigger household who pays a higher price demands

more beef. If we compare these two households without adjusting by adult equiva-

lents, price increases but does quantity decrease? On the other hand, adjusting by

adult equivalents (i.e., computing per capita beef consumption) in our example, price

will always increase but this time, quantity will decrease. Hence, this study used the

National Research Council’s recommendations of the different food energy allowances

for males and/or females during the life cycle as reported by Tedford et al. (1986) to

compute the number of adult equivalents.

After computing the number of adult equivalents per household, all nominal vari-
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ables2 (nominal prices and nominal expenditures) are transformed into real variables3

(real prices and real expenditures). Real prices and real expenditures are computed

as follows:

preali =
pnominali(
CPI2006

100

) , mreal
i =

mnominal
i(

CPI2006
100

) , (4.1)

where i = A025, A026, . . . , A074 and CPI2006 is the simple average of the consumer

price index (CPI) for the months of August, September, October, and November

20064 as reported by Banco de Mexico. The base period for the CPI of Banco de

Mexico is the second half of June 2002. Hence, the new prices of each meat cut5 and

the new expenditures on each meat cut become the real price of each meat cut in

2002 Mexican pesos per kilogram and the real expenditure of each meat cut in 2002

Mexican pesos per household respectively.

Then, the meat consumption variables in kilograms per household are divided by

the number of adult equivalents to compute per capita meat consumption variables

in kilograms. Similarly, the new real expenditure variables are divided by the number

of adult equivalents to obtain per capita real expenditure variables in 2002 Mexican

pesos.

Descriptive statistics for each meat cut with the original number of observations

as reported by ENIGH 2006 are provided in Table 4.4 through 4.53. In Tables 4.4

through 4.53, pi is the real price of meat cut i in 2002 Mexican pesos per kilogram,

qi is the per capita consumption of meat cut i in kilograms, mi is the per capita real

2A nominal variable is a variable whose unit of measurement is in nominal economic value. In

economics, nominal value is the value of anything expressed in money of the day. A nominal variable

does not adjust for inflation. For example, nominal price does not adjust for inflation.
3In economics, real value is the value of anything expressed in the nominal value of that anything

in the base period. For example, real price adjusts for inflation; therefore, it is expressed in the

nominal price of the base period.
4The survey period of ENIGH 2006 was from August to November 2006. The simple average CPI

of these months was used in order to use the same months when ENIGH 2006 collected the data.
5As it can be observed from Table 4.3, sometimes a specific code, for instance A025, may refer

to more than one cut of meat. However, to facilitate the flow of the discussion in this study, a code

such as A025 will be referred as if it were only one meat cut.
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expenditure on meat cut i in 2002 Mexican pesos, and i = 025, 026, . . . , 074 stands

for the corresponding meat cuts A025, A026, . . . , A074 provided in Table 4.3. The

number of observations for each meat cut varies because ENIGH interviewers only

recorded a transaction when a household consumed a meat cut. Hence, the meat cuts

that are consumed most often by households are those who have the largest number of

observations. Additionally, as mentioned in Section 4.1 at-home and away-from-home

expenditure on food is collected by ENIGH 2006. In particular, expenditures on food

at home and away from home are identified by the variable “place of purchase” in

the Expenditures dataset (see Table 4.1). Even though this variable was not included

in this study, it is important to mention that the descriptive statistic in Table 4.4

through 4.53 include as different observations purchases made at different places by

the same household of the same meat cut. That is, if during the week of the interview

a household purchased the same meat cut twice but at different places, then two

transactions will be recorded appearing as two observations. However, this method

of recording transactions has no distorting effect on the descriptive statistics provided

in Table IV.4 through IV.53. Finally, the “N Miss” column reports the number of

missing observations for each of the three variables reported. Only for meat cuts A057,

A068, and A070, households failed to report both price and quantity, but yet reported

meat expenditure. Hence, the number of missing observations due to household not

reporting prices and quantities occurs very rarely. However, once again, the number

of observations in each table reflects the number of times each meat cut was reported

by all households, including more than one record per household.

Now, if we would like to put all meat cut datasets into one dataset where the

columns of this new dataset are the prices, quantities, and expenditures of each meat

cut; then, only one transaction per meat cut per household has to be allowed. To do

this, when a household purchased the same meat cut during the week of the interview

more than once but in different places, a simple average of the same meat cut is

computed, but the sum of the quantity is computed, and expenditure is computed as

price times quantity. Once again, doing this operation will only allow one transaction
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per meat cut per household. This is required in order to combine all datasets using

a one-to-one match merge by household id. Since each meat cut dataset has four

columns (household id, price, quantity, and expenditure), a one-to-one match merge

by household id will produce a dataset with 50(3)+1=151 columns. Assuming all

households purchased at least one meat cut, then the number of rows of this dataset

equals the number of households. Additionally, when a household did not consume

a particular meat cut, for instance A025, but consumed all others meat cuts, then a

missing value appears in that row for the columns corresponding to the real price of

meat cut A025 (p025), the per capita consumption of meat cut A025 (q025), and the

per capita real expenditure on meat cut A025 (m025); but the corresponding numeric

value for all other columns. However, some households will not consume any meat

cut at all during the week of the interview and several households will only consume

few (in some cases only one) meat cut during the week of the interview. Hence, the

dataset will have a lot of missing observations for the corresponding columns of meat

cuts that are rarely consumed; but a moderate amount of missing observations for

the corresponding columns of the most frequently consumed meat cuts. Table 4.54

shows the descriptive statistics of this dataset.

Once again, Table 4.54 was generated by allowing only one transaction per meat

cut per household6 and then by performing a one-to-one match merge by household

id to merge all meat cut datasets. Since we know that 20, 875 households participated

in the survey (Table 4.1), this means that 20, 875 − 16, 909 = 3, 966 households of

the total number of households that participated in the survey did not consume any

meat cut at all during the week of the interview. In addition to this information,

Table 4.54 also shows the new number of missing observations (column “N Miss”)

of the price, quantity, and expenditure of meat cut i, i = 025, 026, . . . , 074, resulting

from the merge of all meat cut datasets. Clearly, the number of missing observations

is extremely high compared to the total number of observations, which is 16,909.

6That is, by recalculating the corresponding datasets of the descriptive statistics in Tables 4.4

through 4.53, but this time only allowing one transaction per meat cut per household.
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However, a missing quantity in Table 4.54 is simply a decision of a household of

not to purchase that particular meat cut during the week of the interview. Hence,

missing quantities in Table 4.54 are transformed to zero quantities. Finally, it is

very important to notice that the sum of weights in Table 4.54 is an estimate of the

total number of households in Mexico that consumed meat during the week of the

interview. That is, 22.1 million households eat at least one meat cut during the week

of the interview.

To reduce this high number of missing price observations, the meat cuts can be

aggregated according to the meat categories reported in Table 4.3. That is, instead

of having 50 meat cuts, only 6 meat commodities can be considered: beef, pork,

processed meat, chicken, other meat, and seafood. Beef including section (a) of Table

4.3; pork including section (b); processed meat including section (c) and (e); chicken

including section (d); including sections (g), (h), (i), (j), and (k); and other meat

including section (f). In order to aggregate the corresponding meat cuts in these six

new categories, the corresponding quantities of each new category are obtained by

summing all corresponding meat-cut quantities that belong to that category, while the

corresponding prices of each new category are computed by diving total expenditure

by total quantity of each category. Finally, total meat expenditure is computed by∑6
i=1 piqi, where 1 = beef, 2 = pork, 3 = processed meat, 4 = chicken, 5 = other

meat, and 6 = seafood.

Table 4.55 reports the new number of missing and non-missing observations per

stratum when six commodities are considered. Other meat category has the largest

number of missing observations. This is not surprising because only three meat cuts

are in this category (A063, A064, and A065) and mainly because these three meat

cuts represent exotic meats (lamb, goat, horses, iguana, etc.). Excluding other meat

from the analysis, notice that stratum one, two and three have in three occasions

(pbeef, pprocess, and pchicken) more non-missing than missing observations. However,

stratum four has only one occasion (pchicken) where there are more non-missing than

missing observations. Additionally, the reader may be surprised at this point that
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pork has more missing than non-missing observations in all four strata given that we

are talking about Mexicans. Going back to Table 4.3, the reader will realize that

this is because several pork cuts (A048, A049, A052, and A054) are included in the

processed meat category. The total intersection of all non-missing price observations

of the meat categories in Table 4.55 (excluding pother) is only 306 non-missing price

observations. However, if in addition we drop seafood from this total intersection

of all non-missing price observations, the number of non-missing price observations

increased to 1,008.

The number of missing observations reported in Table 4.55 can be reduced even

further by redefining the meat categories and then excluding non-relevant meat cate-

gories. Table 4.56 reports the meat categories and meat cuts used in this study. Table

4.57 reports the number of missing and nonmissing observation per stratum when this

new meat categories are used. Comparing Table 4.55 and Table 4.57, notice that pbeef

and pseafood missing, non-missing and total observations, and their means remained

the same because the beef and seafood category were not modified. However, meat

cuts A048, A049, A052, and A054 were moved from the processed meat category to

the pork category; and meat cut A062 was moved from the processed meat category

to the chicken category. Consequently, ppork, pprocess, and pchicken changed. Now, if we

consider the total intersection of all non-missing price observations of beef, pork and

chicken, there are 3,707 non-missing observations. Additionally, in this new dataset,

the means of pbeef, ppork and pchicken are 47.9163, 44.4189, and 27.5099 pesos/kg re-

spectively. Table 4.58 reports the descriptive statistics of this new dataset obtained

by computing the total intersection of all non-missing price observations of beef, pork

and chicken reported in Table 4.57. It is worthwhile mentioning that meat expendi-

ture (m) in Table 4.58 is meat expenditure on all meats (beef, pork, processed meat,

chicken, other meat, and seafood) rather than meat expenditure on only the three

meats reported in the table (beef, pork and chicken).

In order to keep it simple, this study will work with this latter dataset, which

resulted from the total intersection of the non-missing price observations of beef,
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pork and chicken. Working with this dataset has the advantage that it avoids having

to do price imputation. An alternative procedure is to impute prices in either Table

4.55 or 4.57. The author preferred the former procedure, given the large amount of

observations that would have to be imputed if price imputation were selected.

Since the dataset corresponding to Table 4.58 has 3,707 observations, we could fur-

ther analyze the information contained in this dataset by subsetting it by region (i.e.,

Northeast, Northwest, Central-West, Central, and Southeast regions)7 and urbaniza-

tion level (i.e., urban or rural).8 Figure 4.1 provides a map of the Mexican states

and the Federal District. Figure 4.2 shows the Mexican geographical regions used

in this study. The Northeast region of Mexico consists of the states of Chihuahua,

Cohahuila de Zaragoza, Durango, Nuevo León, and Tamaulipas. The Northwest re-

gion of Mexico consists of the states of Baja California, Sonora, Baja California Sur,

and Sinaloa. The Central-West region of Mexico consists of the states of Zacatecas,

Mayarit, Aguascalientes, San Luis Potośı, Jalisco, Guanajuato, Querétaro Arteaga,

Colima, and Michoacán de Ocampo. The Central region of Mexico consists of the

states of Hidalgo, Estado de México, Tlaxcala, Morelos, Puebla, and Distrito Federal.

Finally, the Southeast region of Mexico consists of the states of Veracruz de Ignacio

de la Llave, Yucatán, Quintana Roo, Campeche, Tabasco, Guerrero, Oxaca, and Chi-

apas. Table 4.59 through Table 4.68 provides the descriptive statistics of Table 4.58

when the analysis is performed by region and urbanization level.

In summary, the following outline was applied in this section. First, the variables

from the seven ENIGH datasets that are used in the study were explained (Table 4.2).

Second, details about how new variables are created or transformed from the variables

provided were given. In particular, the variable adult equivalents was created, nom-

7This study used the same five-region definitions provided by SIACON-SIAP-SAGARPA (2006),

which used ENIGH 2000, 2002 and 2004 databases. Other studies or sources such as Barrera et al.

(2008), Zepeda (2007), Arroyo (2002), and Wikipedia (2008) consider eight regions.
8Once again, following SIACON-SIAP-SAGARPA (2006), this study also considers stratum 1

and 2 as the urban sector, and stratum 3 and 4 as the rural sector. See Table 4.2 for the definitions

of stratum 1, 2, 3 and 4.
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inal prices and expenditures were transformed to real variables (equation 4.1), meat

consumption was transformed to per capita consumption, and real expenditure was

transformed to per capita real expenditure. Third, all meat cut datasets were merged

into one dataset (Table 4.54). Fourth, the number of missing price observations was

reduced by aggregating meat cuts into meat categories (Table 4.55). In particular,

we created new variables for prices, quantities, and total meat expenditure. Fifth,

the number of missing observations was reduced even further by redefining the meat

categories (Table 4.56) and excluding non-relevant meat categories (processed meat

and seafood in Table 4.57). Sixth, the total intersection of all non-missing price obser-

vations of the beef, pork and chicken datasets from the previous step was considered.

Consequently, in this manner price imputation was avoided. Seventh, the resulting

dataset is the dataset used in this study (Table 4.58). This dataset can be analyzed

by subsetting it by region (Figure 4.1) and urbanization level (urban = stratum 1

and 2, rural = stratum 3 and 4). In addition, in each step we reported the difficulties

that emerged as the data was being organized.
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Table 4.2: List of Variables Used in this Study from the seven ENIGH 2006 Datasets.

Dataset Variable
Used

Variable Description

Concentrated
(concen-
trado.dbf)

hog This is the sampling weight variable. That is, the
number of households that the interviewed household
represents nationally.

Households
(hogares.dbf)

estrato This is the stratum variable. This variable equals “1”
if household location is within a population of 100,000
people or more, “2” if household location is within
a population between 15,000 and 99,999 people, “3”
if household location is within a population between
2,500 people and 14,999 people, and “4” if household
location is within a population of less than 2,500 peo-
ple.

Members
(pobla-
cion.dbf)

folio This variable is the household id number. It is a cat-
egorical variable of 11 digits that identifies the house-
holds. From left to right digits 1 to 4 read the year,
digits 5 and 6 read the code for the Mexican state,
digit 7 reads the code of the time period in which
households were interviewed, digits 8 to 10 read the
consecutive order of household interviews. Finally,
digit 11 codifies a character variable (type of house-
hold) taking values from 0 to 9.

edad This variable is the age of each household member in
years.

folio This variable is the household id number.
Expenditures
(gastos.dbf)

clave This variable takes the values of A025, A026, . . .,
A074 which are codes for the different cuts or group
of cuts of meat. Refer to Table 4.3.

precio This variable is the nominal price of “clave” in Mexi-
can pesos per kilogram (nominal pesos/kg)

cantidad This variable is the quantity consumed of “clave” in
kilograms per household (kg).

gasto This variable is the nominal expenditure on “clave”
in Mexican pesos per household (nominal pesos).

Source: ENIGH 2006, summarized by author.
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Table 4.3: Meat Cuts Reported by ENIGH 2006.

Code Description

Beef, Pork Chicken and Other Meats

(a) Beef and Veal

A025 Beefsteak: boneless rump, bottom round, top round, etc.

A026 Brisket and fillet steak

A027 Milanesa

A028 Tore shank

A029 Rib cutlet

A030 Chuck, strips for grilling and sirloin steak

A031 Meat for stewing/boiling or meat cut with bone

A032 Special cuts: t-bone, roast beef, etc.

A033 Hamburger patty

A034 Ground beef

A035 Chopped loin, chopped top and bottom round

A036 Other beef cuts: head, udder, etc.

A037 Guts/innards/viscera: heart, liver, marrow, rumen/belly, etc.

(b) Pork

A038 Pork steak

A039 (Chopped) leg

A040 Chopped loin

A041 Ground pork

A042 Ribs and cutlet

A043 Shoulder blade

A044 Elbow

A045 Other pork cuts: head, ridge/backbone, belly, breast, etc.

continued on next page
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Table 4.3: continued

Code Description

A046 Guts/innards/viscera: heart, liver, kidney, etc.

(c) Processed Beef and Pork

A047 Shredded meat

A048 Pork skin/chicharron

A049 Pork sausage

A050 Smoked cutlet

A051 Crusher and dried meats

A052 Ham

A053 Bologna, embedded pork and salami

A054 Bacon

A055 Sausages

A056 Other processed meats from beef and pork: stuffing, smoked

meat/dried meat, etc.

(d) Chicken

A057 Leg, thigh and breast with bone

A058 Boneless leg, boneless thigh and boneless breast

A059 Whole chicken or in parts (except legs, thigh and breast)

A060 Guts/innards/viscera and other chicken parts: wings, head, neck, giz-

zard, liver, etc.

A061 Other poultry meat: hen/fowl, turkey, duck, etc.

(e) Processed Poultry Meat

A062 Chicken sausage, ham & nuggets, bologna, etc.

(f) Other Meats

A063 Lamb: sheep and ram

continued on next page
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Table 4.3: continued

Code Description

A064 Goat and goatling

A065 Other meats: horses, iguana, rabbit, frog, deer, etc.

Seafood

(g) Fresh Fish

A066 Whole fish, clean and not clean (catfish, carp, tilapia, etc.)

A067 Fish fillet

(h) Processed Fish

A068 Tuna

A069 Salmon and codfish

A070 Smoked fish, dried fish, fish nuggets and sardines

(i) Other Fish

A071 Young eel, manta ray, eel, fish/crustaceous eggs, etc.

(j) Shellfish

A072 Fresh shrimp

A073 Other fresh shellfish: clam, crab, oyster, octopus

(k) Processed Shellfish

A074 Processed: smoked, packaged, breaded, dried shrimp

Source: ENIGH 2006—Clasificación de Variables, translated into English by au-

thor.

129



Table 4.4: Descriptive Statistics of Meat Cut A025 (Beefsteak).

Source: ENIGH 2006, computed by author.

Table 4.5: Descriptive Statistics of Meat Cut A026 (Beef Brisket and Fillet Steak).

Source: ENIGH 2006, computed by author.

Table 4.6: Descriptive Statistics of Meat Cut A027 (Milanesa).

Source: ENIGH 2006, computed by author.
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Table 4.7: Descriptive Statistics of Meat Cut A028 (Beef Tore Shank).

Source: ENIGH 2006, computed by author.

Table 4.8: Descriptive Statistics of Meat Cut A029 (Beef Rib Cutlet).

Source: ENIGH 2006, computed by author.

Table 4.9: Descriptive Statistics of Meat Cut A030 (Beef Chuck, Strips for Grilling
and Sirloin Steak).

Source: ENIGH 2006, computed by author.
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Table 4.10: Descriptive Statistics of Meat Cut A031 (Beef Meat for Stewing/Boiling
or Meat Cut with Bone).

Source: ENIGH 2006, computed by author.

Table 4.11: Descriptive Statistics of Meat Cut A032 (Special Beef Cuts).

Source: ENIGH 2006, computed by author.

Table 4.12: Descriptive Statistics of Meat Cut A033 (Beef Hamburger Patty).

Source: ENIGH 2006, computed by author.
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Table 4.13: Descriptive Statistics of Meat Cut A034 (Ground Beef).

Source: ENIGH 2006, computed by author.

Table 4.14: Descriptive Statistics of Meat Cut A035 (Beef Chopped Loin, Chopped
Top & Bottom Round).

Source: ENIGH 2006, computed by author.

Table 4.15: Descriptive Statistics of Meat Cut A036 (Other Beef Cuts).

Source: ENIGH 2006, computed by author.
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Table 4.16: Descriptive Statistics of Meat Cut A037 (Beef Guts/Innards/Viscera).

Source: ENIGH 2006, computed by author.

Table 4.17: Descriptive Statistics of Meat Cut A038 (Pork Steak).

Source: ENIGH 2006, computed by author.

Table 4.18: Descriptive Statistics of Meat Cut A039 (Pork (Chopped) Leg).

Source: ENIGH 2006, computed by author.
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Table 4.19: Descriptive Statistics of Meat Cut A040 (Pork Chopped Loin).

Source: ENIGH 2006, computed by author.

Table 4.20: Descriptive Statistics of Meat Cut A041 (Ground Pork).

Source: ENIGH 2006, computed by author.

Table 4.21: Descriptive Statistics of Meat Cut A042 (Pork Ribs and Cutlet).

Source: ENIGH 2006, computed by author.
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Table 4.22: Descriptive Statistics of Meat Cut A043 (Pork Shoulder Blade).

Source: ENIGH 2006, computed by author.

Table 4.23: Descriptive Statistics of Meat Cut A044 (Pork Elbow).

Source: ENIGH 2006, computed by author.

Table 4.24: Descriptive Statistics of Meat Cut A045 (Other Pork Cuts).

Source: ENIGH 2006, computed by author.

136



Table 4.25: Descriptive Statistics of Meat Cut A046 (Pork Guts/Innards/Viscera).

Source: ENIGH 2006, computed by author.

Table 4.26: Descriptive Statistics of Meat Cut A047 (Shredded Meat).

Source: ENIGH 2006, computed by author.

Table 4.27: Descriptive Statistics of Meat Cut A048 (Pork Skin/Chicharron).

Source: ENIGH 2006, computed by author.
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Table 4.28: Descriptive Statistics of Meat Cut A049 (Pork Sausage).

Source: ENIGH 2006, computed by author.

Table 4.29: Descriptive Statistics of Meat Cut A050 (Smoked Cutlet).

Source: ENIGH 2006, computed by author.

Table 4.30: Descriptive Statistics of Meat Cut A051 (Crushed and Dried Meats).

Source: ENIGH 2006, computed by author.

138



Table 4.31: Descriptive Statistics of Meat Cut A052 (Ham).

Source: ENIGH 2006, computed by author.

Table 4.32: Descriptive Statistics of Meat Cut A053 (Bologna, Embedded Pork and
Salami).

Source: ENIGH 2006, computed by author.

Table 4.33: Descriptive Statistics of Meat Cut A054 (Bacon).

Source: ENIGH 2006, computed by author.
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Table 4.34: Descriptive Statistics of Meat Cut A055 (Sausages).

Source: ENIGH 2006, computed by author.

Table 4.35: Descriptive Statistics of Meat Cut A056 (Other Processed Meats).

Source: ENIGH 2006, computed by author.

Table 4.36: Descriptive Statistics of Meat Cut A057 (Chicken Leg, Thigh and Breast
with Bone).

Source: ENIGH 2006, computed by author.
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Table 4.37: Descriptive Statistics of Meat Cut A058 (Chicken Boneless Leg, Thigh
and Breast).

Source: ENIGH 2006, computed by author.

Table 4.38: Descriptive Statistics of Meat Cut A059 (Whole Chicken).

Source: ENIGH 2006, computed by author.

Table 4.39: Descriptive Statistics of Meat Cut A060 (Chicken Guts/Innards/Viscera).

Source: ENIGH 2006, computed by author.
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Table 4.40: Descriptive Statistics of Meat Cut A061 (Other Poultry Meat).

Source: ENIGH 2006, computed by author.

Table 4.41: Descriptive Statistics of Meat Cut A062 (Chicken Sausage, Ham &
Nuggets, Bologna, etc.).

Source: ENIGH 2006, computed by author.

Table 4.42: Descriptive Statistics of Meat Cut A063 (Lamb).

Source: ENIGH 2006, computed by author.
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Table 4.43: Descriptive Statistics of Meat Cut A064 (Goat and Goatling).

Source: ENIGH 2006, computed by author.

Table 4.44: Descriptive Statistics of Meat Cut A065 (Other Meats).

Source: ENIGH 2006, computed by author.

Table 4.45: Descriptive Statistics of Meat Cut A066 (Whole Fish).

Source: ENIGH 2006, computed by author.
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Table 4.46: Descriptive Statistics of Meat Cut A067 (Fish Fillet).

Source: ENIGH 2006, computed by author.

Table 4.47: Descriptive Statistics of Meat Cut A068 (Tuna).

Source: ENIGH 2006, computed by author.

Table 4.48: Descriptive Statistics of Meat Cut A069 (Salmon and Codfish).

Source: ENIGH 2006, computed by author.
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Table 4.49: Descriptive Statistics of Meat Cut A070 (Smoked Fish, Dried Fish, Fish
Nuggets and Sardines).

Source: ENIGH 2006, computed by author.

Table 4.50: Descriptive Statistics of Meat Cut A071 (Other Fish).

Source: ENIGH 2006, computed by author.

Table 4.51: Descriptive Statistics of Meat Cut A072 (Fresh Shrimp).

Source: ENIGH 2006, computed by author.
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Table 4.52: Descriptive Statistics of Meat Cut A073 (Other Fresh Shellfish).

Source: ENIGH 2006, computed by author.

Table 4.53: Descriptive Statistics of Meat Cut A074 (Processed Shellfish).

Source: ENIGH 2006, computed by author.
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Table 4.54: Descriptive Statistics of all Meat Cuts in one

Dataset

continued on next page
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Table 4.54: continued

continued on next page
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Table 4.54: continued

continued on next page
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Table 4.54: continued

Source: ENIGH 2006, computed by author.
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Table 4.55: Missing and Non-missing Observations per Stratum with Six Meat Cat-
egories (Meat Categories Not Modified).

Number Number Total Mean
Missing Non-missing Observations (pesos/kg)

pbeef str1 2,471 4,814 7,285 48.7186
str2 1,524 2,418 3,942 46.8417
str3 766 808 1,574 45.0591
str4 2,373 1,735 4,108 44.9205

Total 7,134 9,775 16,909 47.4047

ppork str1 5,382 1,603 7,285 40.2338
str2 2,891 1,051 3,942 39.8023
str3 1,161 413 1,574 38.3144
str4 3,195 913 4,108 36.8476

Total 12,929 3,980 16,909 39.2397

pprocess str1 2,378 4,907 7,285 42.8529
str2 1,482 2,460 3,942 40.4771
str3 756 818 1,574 41.0264
str4 2,168 1,940 4,108 40.9420

Total 6,784 10,125 16,909 41.9739

pchicken str1 2,807 4,478 7,285 27.3432
str2 1,512 2,430 3,942 25.8124
str3 575 999 1,574 24.3402
str4 1,667 2,441 4,108 25.8664

Total 6,561 10,348 16,909 26.4170

pother str1 7,274 11 7,285 51.2946
str2 3,930 12 3,942 41.6323
str3 1,570 4 1,574 89.6085
str4 4,095 13 4,108 45.4641

Total 16,869 40 16,909 52.4595

pseafood str1 5,351 1,934 7,285 47.6885
str2 2,893 1,049 3,942 45.2982
str3 1,167 407 1,574 36.0679
str4 3,124 984 4,108 36.4365

Total 12,535 4,374 16,909 43.5943

Source: ENIGH 2006 Database, computed by author.
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Table 4.56: Meat Categories and Cuts Used in this Study.

Code Description

(1) Beef

A025 Beefsteak: boneless rump, bottom round, top round, etc.

A026 Brisket and fillet steak

A027 Milanesa

A028 Tore shank

A029 Rib cutlet

A030 Chuck, strips for grilling and sirloin steak

A031 Meat for stewing/boiling or meat cut with bone

A032 Special cuts: t-bone, roast beef, etc.

A033 Hamburger patty

A034 Ground beef

A035 Chopped loin, chopped top and bottom round

A036 Other beef cuts: head, udder, etc.

A037 Guts/innards/viscera: heart, liver, marrow, rumen/belly, etc.

(2) Pork

A038 Pork steak

A039 (Chopped) leg

A040 Chopped loin

A041 Ground pork

A042 Ribs and cutlet

A043 Shoulder blade

A044 Elbow

A045 Other pork cuts: head, ridge/backbone, belly, breast, etc.

A046 Guts/innards/viscera: heart, liver, kidney, etc.

continued on next page
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Table 4.56: continued

Code Description

A048 Pork skin/chicharron

A049 Pork sausage

A052 Ham

A054 Bacon

(3) Processed Meat

A047 Shredded meat

A050 Smoked cutlet

A051 Crusher and dried meats

A053 Bologna, embedded pork and salami

A055 Sausages

A056 Other processed meats from beef and pork: stuffing, smoked

meat/dried meat, etc.

(4) Chicken

A057 Leg, thigh and breast with bone

A058 Boneless leg, boneless thigh and boneless breast

A059 Whole chicken or in parts (except legs, thigh and breast)

A060 Guts/innards/viscera and other chicken parts: wings, head, neck, giz-

zard, liver, etc.

A061 Other poultry meat: hen/fowl, turkey, duck, etc.

A062 Chicken sausage, ham & nuggets, bologna, etc.

(5) Seafood

A066 Whole fish, clean and not clean (catfish, carp, tilapia, etc.)

A067 Fish fillet

A068 Tuna

continued on next page
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Table 4.56: continued

Code Description

A069 Salmon and codfish

A070 Smoked fish, dried fish, fish nuggets and sardines

A071 Young eel, manta ray, eel, fish/crustaceous eggs, etc.

A072 Fresh shrimp

A073 Other fresh shellfish: clam, crab, oyster, octopus

A074 Processed: smoked, packaged, breaded, dried shrimp

Source: ENIGH 2006, modified by author.
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Table 4.57: Missing and Non-missing Observations per Stratum with Five Meat Cat-
egories (Meat Categories Modified).

Number Number Total Mean
Missing Non-missing Observations (pesos/kg)

pbeef str1 2,471 4,814 7,285 48.7186
str2 1,524 2,418 3,942 46.8417
str3 766 808 1,574 45.0591
str4 2,373 1,735 4,108 44.9205

Total 7,134 9,775 16,909 47.4047

ppork str1 3,015 4,270 7,285 44.9448
str2 1,656 2,286 3,942 41.7445
str3 726 848 1,574 40.4010
str4 2,213 1,895 4,108 41.7353

Total 7,610 9,299 16,909 43.3079

pprocess str1 5,451 1,834 7,285 36.6032
str2 3,039 903 3,942 37.9575
str3 1,273 301 1,574 40.0850
str4 3,410 698 4,108 36.2209

Total 13,173 3,736 16,909 37.1217

pchicken str1 2,279 5,006 7,285 29.0105
str2 1,232 2,710 3,942 27.0900
str3 521 1,053 1,574 24.8532
str4 1,487 2,621 4,108 26.5907

5,519 11,390 16,909 27.7195

pseafood str1 5,351 1,934 7,285 47.6885
str2 2,893 1,049 3,942 45.2982
str3 1,167 407 1,574 36.0679
str4 3,124 984 4,108 36.4365

Total 12,535 4,374 16,909 43.5943

Source: ENIGH 2006 Database, computed by author.
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Table 4.58: Descriptive Statistics of the Beef, Pork and Chicken Dataset.

Source: ENIGH 2006, computed by author.

Figure 4.1: Map of Mexican States and the Federal District.

Note: 1 = Aguascalientes, 2 = Baja California, 3 = Baja California Sur, 4 = Campeche, 5 =
Coahuila de Zaragoza, 6 = Colima, 7 = Chiapas, 8 = Chihuahua, 9 = Distrito Federal, 10 =
Durango, 11 = Guanajuato, 12 = Guerrero, 13 = Hidalgo, 14 = Jalisco, 15 = Estado de México,
16 = Michoacán de Ocampo, 17 = Morelos, 18 = Mayarit, 19 = Nuevo León, 20 = Oaxaca, 21 =
Puebla, 22 = Querétaro Arteaga, 23 = Quintana Roo, 24 = San Luis Potośı, 25 = Sinaloa, 26 =
Sonora, 27 = Tabasco, 28 = Tamaulipas, 29 = Tlaxcala, 30 = Veracruz de Ignacio de la Llave, 31
= Yucatán, and 32 = Zacatecas.
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Figure 4.2: Map of Mexican Geographical Regions.

Note: Northeast = Chihuahua, Cohahuila de Zaragoza, Durango, Nuevo León, and Tamaulipas.
Northwest = Baja California, Sonora, Baja California Sur, and Sinaloa. Central-West = Zacatecas,
Mayarit, Aguascalientes, San Luis Potośı, Jalisco, Guanajuato, Querétaro Arteaga, Colima, and
Michoacán de Ocampo. Central = Hidalgo, Estado de México, Distrito Federal, Tlaxcala, Morelos,
and Puebla. Southeast = Veracruz de Ignacio de la Llave, Yucatán, Quintana Roo, Campeche,
Tabasco, Guerrero, Oxaca, and Chiapas.
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Table 4.59: Descriptive Statistics of the Beef, Pork and Chicken Dataset for the Urban
Sector in the Northeast Region.

Source: ENIGH 2006, computed by author.

Table 4.60: Descriptive Statistics of the Beef, Pork and Chicken Dataset for the Rural
Sector in the Northeast Region.

Source: ENIGH 2006, computed by author.
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Table 4.61: Descriptive Statistics of the Beef, Pork and Chicken Dataset for the Urban
Sector in the Northwest Region.

Source: ENIGH 2006, computed by author.

Table 4.62: Descriptive Statistics of the Beef, Pork and Chicken Dataset for the Rural
Sector in the Northwest Region.

Source: ENIGH 2006, computed by author.
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Table 4.63: Descriptive Statistics of the Beef, Pork and Chicken Dataset for the Urban
Sector in the Central-West Region.

Source: ENIGH 2006, computed by author.

Table 4.64: Descriptive Statistics of the Beef, Pork and Chicken Dataset for the Rural
Sector in the Central-West Region.

Source: ENIGH 2006, computed by author.
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Table 4.65: Descriptive Statistics of the Beef, Pork and Chicken Dataset for the Urban
Sector in the Central Region.

Source: ENIGH 2006, computed by author.

Table 4.66: Descriptive Statistics of the Beef, Pork and Chicken Dataset for the Rural
Sector in the Central Region.

Source: ENIGH 2006, computed by author.
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Table 4.67: Descriptive Statistics of the Beef, Pork and Chicken Dataset for the Urban
Sector in the Southeast Region.

Source: ENIGH 2006, computed by author.

Table 4.68: Descriptive Statistics of the Beef, Pork and Chicken Dataset for the Rural
Sector in the Southeast Region.

Source: ENIGH 2006, computed by author.
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4.3 Model Specification

4.3.1 Estimation of One General SUR Model

In order to provide an empirical application of a SUR model, this study considers

the Mexican per capita meat consumption of beef, pork and chicken. Consequently,

we would like to estimate a system of three equations, where i = 1, 2, 3 = beef, pork,

chicken. Each equation will contain Ki = 10 regression coefficients and a data sample

of T = 3, 707 observations for each equation.

The ith equation is given by

qi = Xiβi + ui, i = 1, 2, 3, (4.2)

where qi is a (3707 × 1) vector of observations on the dependent variable of the ith

equation, Xi is a (3707 × 10) matrix containing a column of 1s and 9 columns of

observations on independent variables, and βi is a (10× 1) vector of parameters, and

ui is a (3707× 1) vector of disturbances.

Using the variables of interest for this study, equation (4.2) can be written as

qi
(3707×1)

=
(

1i1 pi2 pi3 pi4 mi5 NEi6 NWi7 CWi8 Ci9 urbani10

)
(3707×10)

×


βi1

βi2
...

βi10


(10×1)

+ ui
(3707×1)

, i = 1, 2, 3

= βi11i1 + βi2pi2 + · · ·+ βi10urbani10 + ui, i = 1, 2, 3.

However, in this study X1 = X2 = X3.9 Therefore, the subscripts of the vectors

9In Section 2.1.1 it was shown that in this case SUR will reduce to single equation least-squares.

However, for the purpose of providing an empirical application of a SUR model, we will carry on

with the system of three equations even though single equation least squares will provide the same

parameter estimates and parameter variances.
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of the Xi matrix can be omitted. This implies,

qi
(3707×1)

=
(

1 pbeef ppork pchicken m NE NW CW C urban
)

(3707×10)

×


βi1

βi2
...

βi10


(10×1)

+ ui
(3707×1)

, i = 1, 2, 3

= βi11 + βi2pbeef + βi3ppork + βi4pchicken + βi5m + βi6NE + βi7NW

+βi8CW + βi9C + βi10urban + ui, i = 1, 2, 3, (4.3)

where q1, q2, q3 equal qbeef, qpork, qchicken are (3707 × 1) vectors of observations on

the per capita consumption in kilograms (kg) of beef, pork and chicken respectively;

pbeef, ppork and pchicken are (3707× 1) vectors of observations on the real price in 2002

Mexican pesos per kilogram (real pesos/kg) of beef, pork and chicken respectively;

m is the (3707 × 1) vector of observations on the per capita real expenditure on all

meats (beef, pork, processed meat, chicken, other meat, and seafood) in 2002 Mexican

pesos (real pesos); NE, NW, CW, C, and SE are (3707 × 1) vectors formed by

“dummy” (or zero-one) variables taking the value of “1” if the observation belongs

to the Northeast, Northwest, Central-West, Central or Southeast region respectively,

“0” otherwise; and urban and rural are (3707 × 1) vectors formed by “dummy”

variables taking the value of “1” if the observation belong to the urban or rural

sector respectively, “0” otherwise. In equation (4.3) above, notice that the baseline

is the rural population of the Southeast region. In other words, we omitted the

SE and rural (3707 × 1) vectors formed by “dummy” variables to avoid perfect

multicollinearity. That is, the SE and rural vectors formed by “dummy” variables

are omitted in order to avoid a perfect linear relation between the vectors NE, NW,

CW, C, SE and the vector 13707 corresponding to the intercept. Similarly, the vector

rural is omitted in order to avoid a perfect linear relation between vectors urban,

rural and the vector 13707 corresponding to the intercept. Table 4.69 provides a

description of the dependent and independent variables used in the estimation of the
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general SUR model.

The use of dummy variables in equation (4.3) actually estimates a different inter-

cept for each observed region and urbanization level combination, while maintaining

the same slope parameters for each of the other independent variables in the model

(pbeef, ppork, pchicken, and m). For this reason, the dummy variables in models like the

former are often called “intercept shifters”.

For example, the following sub-models can be obtained from equation (4.3).

• Consumption of the ith commodity by the urban population in the Northeast

region of Mexico:

qi = (βi1 + βi6 + βi10)1 + βi2pbeef + βi3ppork + βi4pchicken + βi5m + ui, i = 1, 2, 3.

(4.4)

• Consumption of the ith commodity by the rural population in the Northeast

region of Mexico:

qi = (βi1 +βi6)1 +βi2pbeef +βi3ppork +βi4pchicken +βi5m + ui, i = 1, 2, 3. (4.5)

• Consumption of the ith commodity by the urban population in the Northwest

region of Mexico:

qi = (βi1 + βi7 + βi10)1 + βi2pbeef + βi3ppork + βi4pchicken + βi5m + ui, i = 1, 2, 3.

(4.6)

• Consumption of the ith commodity by the rural population in the Northwest

region of Mexico:

qi = (βi1 +βi7)1 +βi2pbeef +βi3ppork +βi4pchicken +βi5m + ui, i = 1, 2, 3. (4.7)

• Consumption of the ith commodity by the urban population in the Central-West

region of Mexico:

qi = (βi1 + βi8 + βi10)1 + βi2pbeef + βi3ppork + βi4pchicken + βi5m + ui, i = 1, 2, 3.

(4.8)
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Table 4.69: List of Variables Used in the Mexican Meat Consumption Empirical
Application.

Variable Description

qbeef Per capita beef consumption in kilograms (kg)
qpork Per capita pork consumption in kilograms (kg)
qchicken Per capita chicken consumption in kilograms (kg)
pbeef Real price of beef in 2002 Mexican pesos per kilogram (real pesos/kg)
ppork Real price of pork in 2002 Mexican pesos per kilogram (real pe-

sos/kg)
pchicken Real price of chicken in 2002 Mexican pesos per kilogram (real pe-

sos/kg)
m Per capita real expenditure on all meats (beef, pork, processed meat,

chicken, other meat, and seafood) in 2002 Mexican pesos (real pesos)
NE Dummy variable for the Northeast region of Mexico. This variable

equals “1” if the observation belongs to the Northeast region, “0”
otherwise. This region consists of the states of Chihuahua, Cohahuila
de Zaragoza, Durango, Nuevo León, and Tamaulipas.

NW Dummy variable for the Northwest region of Mexico. This vari-
able equals “1” if the observation belongs to the Northwest region,
“0” otherwise. This region consists of the states of Baja California,
Sonora, Baja California Sur, and Sinaloa.

CW Dummy variable for the Central-West region of Mexico. This vari-
able equals “1” if the observation belongs to the Central-West re-
gion, “0” otherwise. This region consists of the states of Zacate-
cas, Mayarit, Aguascalientes, San Luis Potośı, Jalisco, Guanajuato,
Querétaro Arteaga, Colima, and Michoacán de Ocampo.

C Dummy variable for the Central region of Mexico. This variable
equals “1” if the observation belongs to the Central region, “0” oth-
erwise. This region consists of the states of Hidalgo, Estado de
México, Tlaxcala, Morelos, Puebla, and Distrito Federal.

SE Dummy variable for the Southeast region of Mexico. This variable
equals “1” if the observation belongs to the Southeast region, “0”
otherwise. This region consists of the states of Veracruz de Ignacio
de la Llave, Yucatán, Quintana Roo, Campeche, Tabasco, Guerrero,
Oxaca, and Chiapas.

urban Dummy variable for the urban population. This variable equals “1”
if household location is within a population of 15,000 people or more,
“0” otherwise.

rural Dummy variable for the rural population. This variable equals “1”
if household location is within a population of 14,999 people or less,
“0” otherwise.
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• Consumption of the ith commodity by the rural population in the Central-West

region of Mexico:

qi = (βi1 +βi8)1 +βi2pbeef +βi3ppork +βi4pchicken +βi5m + ui, i = 1, 2, 3. (4.9)

• Consumption of the ith commodity by the urban population in the Central

region of Mexico:

qi = (βi1 + βi9 + βi10)1 + βi2pbeef + βi3ppork + βi4pchicken + βi5m + ui, i = 1, 2, 3.

(4.10)

• Consumption of the ith commodity by the rural population in the Central region

of Mexico:

qi = (βi1 +βi9)1+βi2pbeef +βi3ppork +βi4pchicken +βi5m+ui, i = 1, 2, 3. (4.11)

• Consumption of the ith commodity by the urban population in the Southeast

region of Mexico:

qi = (βi1 +βi10)1+βi2pbeef+βi3ppork+βi4pchicken+βi5m+ui, i = 1, 2, 3. (4.12)

• Consumption of the ith commodity by the rural population in the Southeast

region of Mexico:

qi = (βi1)1 + βi2pbeef + βi3ppork + βi4pchicken + βi5m + ui, i = 1, 2, 3. (4.13)

Therefore, a model like the one provided in equation (4.3) assumes that regional

or urbanization factors shift the consumption of the ith commodity in a parallel fash-

ion as shown in equations (4.4) through (4.13). Hence, the underlying assumption

of the model in equation (4.3) is that regional and urbanization-level differences in

consumption of the ith commodity can be appropriately modeled by parallel shifting

the sub-models.
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Now, writing all 3 equations in equation (4.2) into one model gives
q1

q2

q3

 =


X1 0 0

0 X2 0

0 0 X3




β1

β2

β3

+


u1

u2

u3

 (4.14)

or

q
(3(3707)×1)

= X
(3(3707)×30)

β
(30×1)

+ u
(3(3707)×1)

. (4.15)

As we explained in Section 3.5, since we are dealing with a stratified sample (see

Section 4.1), before estimating the parameters of the model in equations (4.14) or

(4.15) by equation (2.12), we need to weight all the observations by the weight variable

(see Table 4.2) as it is done in weighted least squares.10 In fact, the weighted estimator

is consistent for β (Wooldridge, 2001, p. 464).11 SAS software allows to estimate the

system of equations in equation (4.14) using Seemingly Unrelated Regressions as well

as weighting each observation by a specified weight. However, as it was explained in

Section 3.5, “[if we] use weights wi in the weighted least squares estimation, [we] will

obtain the same point estimates...; however, in complex surveys, the standard errors

and hypothesis tests the software provides will be incorrect and should be ignored”

(Lohr, 1999, p. 355). Hence, to calculate better estimates of the standard errors and

hypothesis tests for the parameter estimates, this study applies the bootstrap by using

SAS software. As explained in Section 3.5, the Bootstrap is a resampling method

that can be used to estimate standard errors where other estimation methods are

inappropriate. Shao and Tu (1995) summarize theoretical results for the bootstrap in

complex survey samples. Wooldridge (2001, p. 464) provides an alternative procedure

10Weighted least squares is a special case of generalized least squares. Assuming var[ui(t)] =

σ2wi(t), where wi(t) is the weight of observation t in the ith commodity equation, then

var
(

ui(t)√
wi(t)

)
= σ2.

11An estimator is consistent if the probability that the estimator and the true parameter differ by

any arbitrary small positive number approaches zero as the sample size approaches infinity. That

is, lim
T→∞

Pr
(∣∣∣β̂ik − βik∣∣∣ > ε

)
= 0 for any ε > 0. Or equivalently, β̂ik − βik = op(1) or β̂ik

P−→ βik.
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to the bootstrap to calculate asymptotic variances of the parameter estimates when

we use one equation instead of a system of equations (see equation (3.3)).

4.3.2 Estimation of Individual SUR Models

The SUR model in equation (4.15) will also be estimated without the vectors

NE, NW, CW, C, and urban in equation (4.3) for each corresponding dataset of

Table 4.59 through Table 4.68. That is, subsets of the dataset containing all regions

and urbanization levels (dataset corresponding to Table 4.58) are obtained for each

urbanization level within each region (datasets corresponding to Table 4.59 through

4.68); and then the model in equation (4.15) is estimated without the vectors NE,

NW, CW, C, and urban in equation (4.3). In simple words, individual SUR mod-

els will be estimated for the urban and rural sectors within each region. In stratified

sampling the elements of the same stratum often tend to be more similar than ran-

domly selected elements from the whole population; therefore, individual models will

also be estimated. Individual models are not comparable to those obtained from

equations (4.4) through (4.13). If comparisons between the individual models and

sub-models obtained from equation (4.3) are desired, in addition to the dummy vari-

ables in equation (4.3) interaction of dummy variable with the real price variables and

real expenditure variable need to be included in equation (4.3). That is, twenty more

(3707× 1) vectors (7− 2 = 5 dummy variables times 4 regular price and expenditure

variables) will have to be included in equation (4.3).
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CHAPTER V

RESULTS

In this chapter results and findings from the estimation of SUR models are pre-

sented. Section 5.1 focuses on the results of the general model for the Mexican meat

consumption presented in Section 4.3.1. In particular, it discusses the results of the

parameter estimates corresponding to the price variables, the parameter estimates

corresponding to the regional dummy variables, and the parameter estimate for the

urban dummy variable. Additionally, this section also explains how to interpret the

parameter estimates. Section 5.2 reports our findings when the individual SUR mod-

els presented in Section 4.3.2 are estimated for the urban and rural sector within each

region. In stratified sampling the elements of the same stratum often tend to be more

similar than randomly selected elements from the whole population; therefore, sev-

eral individual models that analyze tastes and preferences of consumers at different

urbanization levels within five Mexican regions are considered.

5.1 One General SUR Model

The results of the model in equation (4.14) or equation (4.15) are shown in Table

5.1. The sum of weights reported in Table 5.1 is the number of households that our

results represent nationally. That is, the 3,707 households, who reported consumption

of at lest one meat cut of beef, pork and chicken (see Table 4.56), represent 5.3 million

households nationally. A total of 22.1 million households (see Table 4.54) consumed

at least one meat cut during the week of the interview nationally. The number of

bootstrap resamples is the number of resamples that were taken in order to estimate

the standard errors and 95% confidence intervals of the estimated parameters.1 An

R-square (also called coefficient of determination) is reported for each equation. An

R-square equal to 0.3641 means that 36.41% of the total variation in the dependent

1The size of each resample was set to the size of the input data set (i.e., the number of observa-

tions).
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variable (qi) is explained by the model (Pindyck and Rubinfeld, 1997, p. 89). The

R-square of the pork equation was lower than the R-square of the beef and chicken

equation. In Section 5.2, the R-square of the individual models for the urban and

rural sectors within each region are reported. As explained in Section 4.3.2 the R-

square of the individual models is not comparable to the R-square of the general

model.

The model in equation (4.14) or equation (4.15) has three equations and thirty

parameters. In Table 5.1, fifteen parameters were insignificant at the 0.05 level and

twelve parameters were insignificant at the 0.1 level. Of the twelve insignificant

parameters at the 0.1 level, 6 parameters correspond to price variables, 3 correspond to

regional dummy variables, and 3 correspond to urbanization-level variables. However,

all “own price” parameter estimates (i.e., the corresponding parameter estimates of

the price of beef in the beef equation, the price of pork in the pork equation, and

the price of chicken in the chicken equation) came with the correct negative sign and

were statistically different from zero at the 0.05 significance level. This means that an

increase in the own price of beef, pork or chicken will decrease the consumption of beef,

pork or chicken, respectively. For example, increasing the price of beef by 1 real peso

(i.e., 1 Mexican peso expressed in the nominal value of 2002 Mexican pesos),2 holding

all other factors affecting beef consumption constant, will decrease the average weekly

per capita consumption of beef by 0.006180 kg (or 0.013624 lbs).3 Since the average

household has approximately 4 adult equivalents (which is approximately 4.14 people

on average in Mexico), the average household of 4 adult equivalents (or 4.14 people)

will decrease the average weekly consumption of beef by 0.02472 kg (or 0.0545 lbs).

However, an increase in the price of beef by 5 real pesos (holding all other factors

2The exchange rate for the second half of June 2002 is US $1 = Mexican $9.78906. This is the

exchange rate reported by Banco de Mexico and used to calculate the amount of Mexican pesos that

must be used to pay debts in U.S. dollars within Mexico (“Para Pagos”). The exchange rate for the

second half of June 2002 is reported to be consistent with the base period for the CPI of Banco de

Mexico.
31 kg ≈ 2.2046 lbs.
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affecting beef consumption constant) will decrease the average weekly per capita

consumption of beef by 0.0309 kg (or 0.068122 lbs), and the average household of 4

adult equivalents (or 4.14 people) will decrease their average weekly consumption of

beef by 0.1236 kg (or 0.2724 lbs). Similarly, increasing the price of pork by 1 real

peso (holding other factors affecting the consumption of pork constant) will decrease

the average weekly per capita consumption of pork by 0.00475 kg. Finally, increasing

the price of chicken by 1 real peso (holding other factors affecting the consumption of

chicken constant) will decrease the average weekly per capita consumption of chicken

by 0.009840 kg.

All the own price parameter estimates are the only price parameter estimates

that are statistically different from zero at both the 0.05 and 0.1 significant levels.

All other price parameter estimates in Table 5.1 were insignificant at the 0.1 level.

That is, there is not enough statistical evidence to conclude that changes in the price

of pork or chicken have an effect on the consumption of beef. In general, we would

expect that changes in the prices of pork or chicken (holding other factors affecting

the consumption of beef constant) will change the average consumption of beef. For

example, if the parameter corresponding to the variable pchicken were statistically

significant in the beef equation (see Table 5.1), then increasing the price of chicken

by 1 real peso (holding other factors affecting the consumption of beef constant) will

increase the average weekly consumption of beef by 0.000736 kg. On the other hand,

income designated to meat expenditures is statistically different from zero at the

0.05 significant level in all three equations. Hence, increasing the household income

designated to meat expenditures by 1 real peso, increases the average weekly per

capita consumption of beef by 0.005389 kg, the average weekly per capita consumption

of pork by 0.005158 kg, and the average weekly per capita consumption of chicken by

0.007507 kg while holding the price of beef, pork and chicken constant.

The parameter estimates corresponding to the regional dummy variables for the

Northeast and Northwest regions are statistically different from zero at the 0.05 or 0.1

level in all three equations (see Table 5.1). Hence, the per capita consumption of beef

172



in the Northeast and Northwest regions are higher than the per capita consumption of

beef (first equation or beef section in Table 5.1) in the Southeast region (the excluded

dummy variable) regardless of the values taken by all other variables (beef price, pork

price, chicken price and expenditures on meat). Similarly, the per capita consumption

of pork (second equation or pork section in Table5.1) or chicken (third equation or

chicken section in Table 5.1) in the Northeast and Northwest regions is lower than

the per capita consumption of pork or chicken in the Southeast region. Now consider

the parameter estimates corresponding to the dummy variable CW . There is not

enough statistical evidence to conclude that there is a difference between the per

capita consumption of beef or pork in the Central-West region and the Southeast

region. On the contrary, there is enough statistical evidence at the 0.05 significance

level to conclude that the per capita consumption of chicken is lower in the Central-

West region than in the Southeast region. The next parameter estimates corresponds

to the dummy variable C. In this case, there is not enough statistical evidence at

the 0.1 significance level to conclude that the per capita consumption of pork in

the Central region and the Southeast region are different. However, there is enough

statistical evidence at the 0.05 and 0.1 significant levels that per capita consumption

of beef and chicken are statistically different in those regions. Finally, consider the

parameter estimates corresponding to the urban dummy variable urban. There is not

enough statistical evidence at the 0.1 significance level to conclude that the urban

and rural sectors have different per capita consumption of beef, pork or chicken.

The estimate of the sub-models in equations (4.4) through (4.13) can be obtained

by replacing the true parameters in equations (4.4) through (4.13) by the correspond-

ing parameter estimates of the ith commodity (i = 1, 2, 3 = beef, pork, chicken)

in Table 5.1. However, the underlying assumption of the model in equation (4.3) is

that regional or urbanization factors shift the consumption of the ith commodity in

a parallel fashion. If this assumption is true, then there would be no need to have a

model for the urban and rural sectors because the parameter estimates correspond-

ing to the urban dummy variables are statistically insignificant at the 0.1 level in all
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three equations. For the same reason, there would be no need to distinguish between

consumption of beef or pork in the Central-West and Southeast regions (estimate

of parameter β18 or estimate of parameter β28 respectively), and the consumption

of pork in the Central and Southeast regions (estimate of parameter β29). There-

fore, if the above assumption is true, instead of having thirty sub-models (ten for

each commodity–see equations (4.4) through (4.13)), there would only be twelve sub-

models (four sub-models for beef, three sub-model for pork, and five sub-models for

chicken). However, if the above assumption is false, the estimates of the parameters

β18, β110, β28, β29, β210 and β310 may be statistically insignificant simply because the

parallel shifts do not reflect the real situation for each urban or rural sector within

each region.

In section 5.2, an individual model is estimated for the urban and rural sector

within each region. In stratified sampling elements of the same stratum often tend to

be more similar than randomly selected elements from the whole population; there-

fore, several individual models rather than one general model are considered.
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Table 5.1: SUR Parameter Estimates, All Strata.

Number of Observations 3707
Sum of Weights 5303145
Number of Bootstrap Resamples 1000
Beef-Equation R-square 0.3641
Pork-Equation R-square 0.0841
Chicken-Equation R-square 0.3208

Approx. Approx. Approx. Approx.
Parameter Bootstr. Bootstr. Bootstr. Bootstr.

Par. Variable Estimate Std. Err. 95% LCL 95% UCL p-value
Beef

β11 Intercept 0.346868** 0.03858 0.27724 0.42846 < 0.00001
β12 pbeef -0.006180** 0.00068 -0.00737 -0.00470 < 0.00001
β13 ppork -0.000090 0.00028 -0.00059 0.00051 0.88031
β14 pchicken 0.000736 0.00061 -0.00027 0.00213 0.12984
β15 m 0.005389** 0.00146 0.00206 0.00777 0.00075
β16 NE 0.114659** 0.02601 0.06388 0.16584 0.00001
β17 NW 0.103198** 0.02593 0.05430 0.15209 0.00009
β18 CW 0.027630 0.02309 -0.02295 0.06756 0.33404
β19 C 0.028585* 0.01459 -0.00174 0.05545 0.06567
β110 urban 0.010061 0.01483 -0.01786 0.04025 0.45014

Pork
β21 Intercept 0.389742** 0.12727 0.13817 0.63708 0.00232
β22 pbeef 0.000121 0.00056 -0.00095 0.00125 0.78708
β23 ppork -0.004750** 0.00188 -0.00828 -0.00091 0.01457
β24 pchicken -0.000750 0.00081 -0.00238 0.00080 0.32874
β25 m 0.005158** 0.00064 0.00378 0.00630 < 0.00001
β26 NE -0.133980* 0.07282 -0.27600 0.00944 0.06720
β27 NW -0.117400** 0.05978 -0.23586 -0.00152 0.04710
β28 CW -0.108500 0.07319 -0.25365 0.03326 0.13218
β29 C -0.089910 0.06291 -0.21515 0.03147 0.14435
β210 urban -0.057790 0.05116 -0.15761 0.04293 0.26233

Chicken
β31 Intercept 0.480953** 0.05131 0.38113 0.58227 < 0.00001
β32 pbeef 0.000157 0.00065 -0.00103 0.00154 0.69602
β33 ppork -0.000240 0.00038 -0.00097 0.00510 0.54208
β34 pchicken -0.009840** 0.00145 -0.01234 -0.00668 < 0.00001
β35 m 0.007507** 0.00123 0.00472 0.00956 < 0.00001
β36 NE -0.073920** 0.02643 -0.12630 -0.02270 0.00482
β37 NW -0.056650* 0.03209 -0.12100 0.00477 0.07011
β38 CW -0.128570** 0.02552 -0.18322 -0.08317 < 0.00001
β39 C -0.070190** 0.02095 -0.11242 -0.03028 0.00066
β310 urban 0.025974 0.01974 -0.01074 0.06665 0.15683
Note: Bootstrap significance levels of 0.05 and 0.1 are indicated by ** and * respectively.
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5.2 Individual SUR Models

Individual SUR models were estimated for the urban and rural sectors within each

region. That is, the SUR model in equation (4.15) was estimated without the vectors

NE, NW, CW, C, and urban in equation (4.3) for each corresponding dataset

of Table 4.59 through Table 4.68. Tables 5.2 through 5.11 report the parameter

estimates as well as their standard errors and 95% confidence intervals. In addtion,

the number of observations in the sample, the sum of weights, the number of bootstrap

resamples, and a R-square for each equation was reported. The sum of weights is the

total number of households that the number of households in the sample (the number

of observations) represent in the corresponding sector and region. The number of

bootsrap resamples considered was 1,000.

The SUR models estimated in Tables 5.2 through 5.11 have three equations and

fifteen parameters. Out of the total fifteen parameters estimated, there are usually

seven or six insignificant parameter estimates in each table at the 0.05 or 0.1 level

respectively. The parameter estimates corresponding to own prices are all with the

correct sign. Similarly, they are all statistically different from zero at both 0.05 and

0.10 significance levels except for the own price of chicken in Table 5.9 and the own

price of pork in Tables 5.3, 5.10 and 5.11. In the beef equation, the price of pork

is always insignificant at the 0.1 level, and the price of chicken is in three occasions

significant at the 0.05 or 0.1 level (one occasion positive and significant in Table 5.8,

two occasions negative and significant in Tables 5.2 and 5.8). In the pork equation,

the price of beef is only in one occasion significant at the 0.1 level (negative and

significant in Table 5.5), and the price of chicken is in four occasions significant at

the 0.05 or 0.1 level (four occasions negative and significant in Tables 5.2, 5.3, 5.4,

and 5.8). In the chicken equation, the price of beef is in two occasions significant at

the 0.05 level (two occasions negative and significant in Tables 5.5 and 5.9), the price

of pork is in two occasions significant at the 0.05 or 0.1 level (one occasion positive

and significant in Table 5.5 and one occasion negative and significant in Table 5.10).

Therefore, in the pork and chicken equations, when the price of beef is significant, it
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is negative. Only in the pork equation, when the price of chicken is significant, it is

negative.

Furthermore, income designated to meat expenditures is always significant and

positive in Tables 5.2 through Table 5.11. When significant, price parameter estimates

can be interpreted in the same fashion that they were interpreted in Section 5.1. For

example, if the parameter estimate of the price of the jth commodity is positive in

the ith equation; then, an increase (decrease) of one real peso in the price of the

jth commodity will increase (decrease) the average weekly per capita consumption

of the ith commodity by the value of the parameter estimate, holding other factors

affecting the per capita consumption of the ith commodity constant. Similarly, if the

parameter estimate of the price of the jth commodity is negative in the ith equation;

then, an increase (decrease) of one real peso in the price of the jth commodity will

decrease (increase) the average weekly per capita consumption of the ith commodity

by the absolute value of the parameter estimate, holding other factors affecting the

per capita consumption of the ith commodity constant.

Finally, parameter estimates from individual models are not comparable to those

obtained from the general model. If comparisons between the individual models and

sub-models obtained from the general model (equation (4.3)) are desired, in addition

to the dummy variables in equation (4.3) interaction of dummy variable with the real

price variables and real expenditure variable need to be included in equation (4.3).

That is, twenty four more (3707×1) vectors (6 dummy variables times 4 regular price

and expenditure variables) will have to be included in the general model (equation

(4.3)).
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Table 5.2: SUR Parameter Estimates, Urban Sector in Northeast Region.

Number of Observations 216
Sum of Weights 241965
Number of Bootstrap Resamples 1000
Beef-Equation R-square 0.5315
Pork-Equation R-square 0.4305
Chicken-Equation R-square 0.3903

Approx. Approx. Approx. Approx.
Parameter Bootstr. Bootstr. Bootstr. Bootstr.

Par. Variable Estimate Std. Err. 95% LCL 95% UCL p-value
Beef

β11 Intercept 0.512882** 0.11038 0.28550 0.71816 < 0.00001
β12 pbeef -0.008370** 0.00124 -0.01082 -0.00595 < 0.00001
β13 ppork -0.000310 0.00229 -0.00437 0.00461 0.95896
β14 pchicken -0.005170** 0.00200 -0.00924 -0.00139 0.00792
β15 m 0.009649** 0.00125 0.00720 0.01208 < 0.00001

Pork
β21 Intercept 0.245647** 0.05330 0.13848 0.34741 < 0.00001
β22 pbeef 0.000095 0.00093 -0.00166 0.00197 0.86806
β23 ppork -0.004650** 0.00083 -0.00618 -0.00293 < 0.00001
β24 pchicken -0.002190** 0.00111 -0.00446 -0.00011 0.03967
β25 m 0.005080** 0.00094 0.00323 0.00690 < 0.00001

Chicken
β31 Intercept 0.448229** 0.09204 0.25850 0.61928 < 0.00001
β32 pbeef -0.000210 0.00139 -0.00294 0.00252 0.87795
β33 ppork -0.000300 0.00173 -0.00339 0.00339 0.99997
β34 pchicken -0.010660** 0.00196 -0.01459 -0.00889 < 0.00001
β35 m 0.008506** 0.00108 0.00640 0.01062 < 0.00001
Note: Bootstrap significance levels of 0.05 and 0.1 are indicated by ** and * respectively.
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Table 5.3: SUR Parameter Estimates, Rural Sector in Northeast Region.

Number of Observations 65
Sum of Weights 58040
Number of Bootstrap Resamples 1000
Beef-Equation R-square 0.6279
Pork-Equation R-square 0.5093
Chicken-Equation R-square 0.1802

Approx. Approx. Approx. Approx.
Parameter Bootstr. Bootstr. Bootstr. Bootstr.

Par. Variable Estimate Std. Err. 95% LCL 95% UCL p-value
Beef

β11 Intercept 0.595225** 0.22702 0.19903 1.08895 0.00456
β12 pbeef -0.015500** 0.00505 -0.02690 -0.00710 0.00077
β13 ppork 0.002124 0.00313 -0.00409 0.00818 0.51345
β14 pchicken 0.001613 0.00520 -0.00744 0.01293 0.59759
β15 m 0.011809** 0.00373 0.00454 0.01918 0.00150

Pork
β21 Intercept 0.080998 0.12934 -0.21300 0.29402 0.75414
β22 pbeef 0.000739 0.00198 -0.00286 0.00491 0.60544
β23 ppork -0.001740 0.00171 -0.00465 0.00207 0.45221
β24 pchicken -0.005700* 0.00363 -0.01368 0.00056 0.07112
β25 m 0.008047** 0.00452 0.00040 0.01812 0.04054

Chicken
β31 Intercept 0.409135** 0.16600 0.11247 0.76318 0.00835
β32 pbeef 0.001362 0.00261 -0.00416 0.00607 0.71373
β33 ppork 0.000478 0.00218 -0.00409 0.00444 0.93420
β34 pchicken -0.009780* 0.00346 -0.01546 -0.00192 0.01193
β35 m 0.002919 0.00300 -0.00393 0.00784 0.51499
Note: Bootstrap significance levels of 0.05 and 0.1 are indicated by ** and * respectively.
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Table 5.4: SUR Parameter Estimates, Urban Sector in Northwest Region.

Number of Observations 291
Sum of Weights 465235
Number of Bootstrap Resamples 1000
Beef-Equation R-square 0.5469
Pork-Equation R-square 0.3233
Chicken-Equation R-square 0.2641

Approx. Approx. Approx. Approx.
Parameter Bootstr. Bootstr. Bootstr. Bootstr.

Par. Variable Estimate Std. Err. 95% LCL 95% UCL p-value
Beef

β11 Intercept 0.292169** 0.08414 0.13098 0.46079 0.00044
β12 pbeef -0.007570** 0.00189 -0.01146 -0.00405 0.00004
β13 ppork -0.000570 0.00051 -0.00154 0.00046 0.28679
β14 pchicken 0.001200 0.00109 -0.00089 0.00339 0.25193
β15 m 0.011655** 0.00141 0.00900 0.01451 < 0.00001

Pork
β21 Intercept 0.190671** 0.03600 0.11440 0.25552 < 0.00001
β22 pbeef -0.000970 0.00079 -0.00249 0.00062 0.23815
β23 ppork -0.002000** 0.00054 -0.00289 -0.00078 0.00067
β24 pchicken -0.001680** 0.00077 -0.00321 -0.00018 0.02850
β25 m 0.004692** 0.00079 0.00307 0.00617 < 0.00001

Chicken
β31 Intercept 0.507386** 0.10979 0.27019 0.70057 < 0.00001
β32 pbeef 0.001055 0.00255 -0.00348 0.00649 0.55455
β33 ppork -0.000006 0.00076 -0.00141 0.00156 0.91877
β34 pchicken -0.014430** 0.00407 -0.02243 -0.00649 0.00038
β35 m 0.007658** 0.00134 0.00507 0.01034 < 0.00001
Note: Bootstrap significance levels of 0.05 and 0.1 are indicated by ** and * respectively.
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Table 5.5: SUR Parameter Estimates, Rural Sector in Northwest Region.

Number of Observations 50
Sum of Weights 42828
Number of Bootstrap Resamples 1000
Beef-Equation R-square 0.5962
Pork-Equation R-square 0.4337
Chicken-Equation R-square 0.5057

Approx. Approx. Approx. Approx.
Parameter Bootstr. Bootstr. Bootstr. Bootstr.

Par. Variable Estimate Std. Err. 95% LCL 95% UCL p-value
Beef

β11 Intercept 0.740964** 0.34910 0.23082 1.59929 0.00876
β12 pbeef -0.017030** 0.00822 -0.03585 -0.00363 0.01633
β13 ppork 0.003104 0.00334 -0.00306 0.01003 0.29674
β14 pchicken 0.001602 0.00381 -0.00535 0.00959 0.57780
β15 m 0.005925 0.00455 -0.00545 0.01239 0.44581

Pork
β21 Intercept 0.481360** 0.19212 0.18076 0.93387 0.00372
β22 pbeef -0.004260* 0.00257 -0.00996 0.00013 0.05612
β23 ppork -0.004100** 0.00172 -0.00740 -0.00066 0.01908
β24 pchicken -0.000990 0.00162 -0.00437 0.00198 0.46243
β25 m 0.002762 0.00276 -0.00402 0.00678 0.61637

Chicken
β31 Intercept 0.615571** 0.22320 0.20155 1.07648 0.00420
β32 pbeef -0.007100** 0.00356 -0.01457 -0.00063 0.03256
β33 ppork 0.004984* 0.00286 -0.00038 0.01082 0.06779
β34 pchicken -0.009340** 0.00337 -0.01528 -0.00206 0.01010
β35 m 0.004909 0.00260 -0.00135 0.00884 0.15951
Note: Bootstrap significance levels of 0.05 and 0.1 are indicated by ** and * respectively.
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Table 5.6: SUR Parameter Estimates, Urban Sector in Central-West Region.

Number of Observations 887
Sum of Weights 834796
Number of Bootstrap Resamples 1000
Beef-Equation R-square 0.3265
Pork-Equation R-square 0.7230
Chicken-Equation R-square 0.4600

Approx. Approx. Approx. Approx.
Parameter Bootstr. Bootstr. Bootstr. Bootstr.

Par. Variable Estimate Std. Err. 95% LCL 95% UCL p-value
Beef

β11 Intercept 0.416511** 0.092523 0.24890 0.61159 < 0.00001
β12 pbeef -0.004720** 0.001492 -0.00733 -0.00148 0.00316
β13 ppork 0.000746 0.000975 -0.00077 0.00305 0.24346
β14 pchicken -0.000350 0.000784 -0.00170 0.00137 0.83511
β15 m 0.002697 0.002286 -0.00314 0.00582 0.55702

Pork
β21 Intercept 0.225220** 0.035018 0.15767 0.29494 < 0.00001
β22 pbeef -0.000480 0.000462 -0.00134 0.00048 0.35301
β23 ppork -0.003240** 0.000431 -0.00398 -0.00229 < 0.00001
β24 pchicken -0.000410 0.000618 -0.00160 0.00082 0.52992
β25 m 0.004338** 0.000434 0.00327 0.00497 < 0.00001

Chicken
β31 Intercept 0.381302** 0.060955 0.27297 0.51191 < 0.00001
β32 pbeef 0.000270 0.001057 -0.00166 0.00249 0.69386
β33 ppork 0.000773 0.000881 -0.00077 0.00296 0.27612
β34 pchicken -0.008480** 0.001427 -0.01114 -0.00555 < 0.00001
β35 m 0.004991** 0.001484 0.00129 0.00710 0.00471
Note: Bootstrap significance levels of 0.05 and 0.1 are indicated by ** and * respectively.
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Table 5.7: SUR Parameter Estimates, Rural Sector in Central-West Region.

Number of Observations 207
Sum of Weights 291773
Number of Bootstrap Resamples 1000
Beef-Equation R-square 0.7501
Pork-Equation R-square 0.3197
Chicken-Equation R-square 0.3562

Approx. Approx. Approx. Approx.
Parameter Bootstr. Bootstr. Bootstr. Bootstr.

Par. Variable Estimate Std. Err. 95% LCL 95% UCL p-value
Beef

β11 Intercept 0.202539 0.11252 -0.05452 0.38656 0.14010
β12 pbeef -0.004740** 0.00182 -0.00803 -0.00091 0.01396
β13 ppork -0.001520 0.00102 -0.00365 0.00033 0.10250
β14 pchicken 0.000317 0.00265 -0.00479 0.00558 0.88015
β15 m 0.010974** 0.00258 0.00694 0.01707 < 0.00001

Pork
β21 Intercept 0.235395** 0.08941 0.06927 0.41976 0.00624
β22 pbeef 0.000317 0.00124 -0.00197 0.00290 0.70979
β23 ppork -0.002560** 0.00061 -0.00358 -0.00120 0.00009
β24 pchicken -0.002030 0.00146 -0.00499 0.00074 0.14533
β25 m 0.003496 0.00169 -0.00056 0.00608 0.10329

Chicken
β31 Intercept 0.465114** 0.14459 0.22630 0.79309 0.00042
β32 pbeef 0.000017 0.00239 -0.00499 0.00436 0.89514
β33 ppork -0.000280 0.00132 -0.00299 0.00220 0.76639
β34 pchicken -0.011510** 0.00321 -0.01799 -0.00542 0.00026
β35 m 0.006863** 0000191 0.00250 0.00999 0.00109
Note: Bootstrap significance levels of 0.05 and 0.1 are indicated by ** and * respectively.

Source: Computed by author.
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Table 5.8: SUR Parameter Estimates, Urban Sector in Central Region.

Number of Observations 918
Sum of Weights 1986442
Number of Bootstrap Resamples 1000
Beef-Equation R-square 0.4607
Pork-Equation R-square 0.3615
Chicken-Equation R-square 0.2195

Approx. Approx. Approx. Approx.
Parameter Bootstr. Bootstr. Bootstr. Bootstr.

Par. Variable Estimate Std. Err. 95% LCL 95% UCL p-value
Beef

β11 Intercept 0.343246** 0.043271 0.25653 0.42615 < 0.00001
β12 pbeef -0.006400** 0.000702 -0.00783 -0.00508 < 0.00001
β13 ppork -0.000090 0.000398 -0.00087 0.00069 0.81362
β14 pchicken 0.001221* 0.000804 -0.00005 0.00310 0.05769
β15 m 0.006343** 0.000691 0.00490 0.00761 < 0.00001

Pork
β21 Intercept 0.273154** 0.035296 0.20320 0.34156 < 0.00001
β22 pbeef -0.000640 0.000543 -0.00167 0.00046 0.26182
β23 ppork -0.003830** 0.000365 -0.00456 -0.00313 < 0.00001
β24 pchicken -0.001710** 0.000496 -0.00269 -0.00075 0.00053
β25 m 0.005097** 0.000720 0.00370 0.00652 < 0.00001

Chicken
β31 Intercept 0.461323** 0.091832 0.26132 0.62129 < 0.00001
β32 pbeef -0.000920 0.001207 -0.00343 0.00130 0.37813
β33 ppork -0.001410 0.000956 -0.00332 0.00043 0.13027
β34 pchicken -0.009430** 0.002945 -0.01406 -0.00252 0.00487
β35 m 0.009350* 0.001532 -0.00628 0.01228 < 0.00001
Note: Bootstrap significance levels of 0.05 and 0.1 are indicated by ** and * respectively.
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Table 5.9: SUR Parameter Estimates, Rural Sector in Central Region.

Number of Observations 198
Sum of Weights 4415894
Number of Bootstrap Resamples 1000
Beef-Equation R-square 0.5087
Pork-Equation R-square 0.1908
Chicken-Equation R-square 0.3560

Approx. Approx. Approx. Approx.
Parameter Bootstr. Bootstr. Bootstr. Bootstr.

Par. Variable Estimate Std. Err. 95% LCL 95% UCL p-value
Beef

β11 Intercept 0.295745** 0.07597 0.14328 0.44106 0.00012
β12 pbeef -0.003700** 0.00137 -0.00626 -0.00089 0.00916
β13 ppork -0.000660 0.00097 -0.00268 0.00113 0.42396
β14 pchicken -0.003510** 0.00140 -0.00631 -0.00081 0.01124
β15 m 0.007911** 0.00103 0.00603 0.01007 < 0.00001

Pork
β21 Intercept 0.223519** 0.09089 0.04675 0.40305 0.01335
β22 pbeef 0.000245 0.00123 -0.00226 0.00255 0.90524
β23 ppork -0.003440** 0.00074 -0.00485 -0.00194 < 0.00001
β24 pchicken -0.000900 0.00147 -0.00361 0.00217 0.62465
β25 m 0.004756** 0.00101 0.00267 0.00662 < 0.00001

Chicken
β31 Intercept 0.503726** 0.19494 0.12359 0.88775 0.00949
β32 pbeef -0.007220** 0.00288 -0.01288 -0.00160 0.01190
β33 ppork 0.001672 0.00148 -0.00107 0.00475 0.21458
β34 pchicken -0.006060 0.00385 -0.01333 0.00177 0.13347
β35 m 0.009075** 0.00208 0.00452 0.01268 0.00003
Note: Bootstrap significance levels of 0.05 and 0.1 are indicated by ** and * respectively.
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Table 5.10: SUR Parameter Estimates, Urban Sector in Southeast Region.

Number of Observations 617
Sum of Weights 581798
Number of Bootstrap Resamples 1000
Beef-Equation R-square 0.2720
Pork-Equation R-square 0.1656
Chicken-Equation R-square 0.4628

Approx. Approx. Approx. Approx.
Parameter Bootstr. Bootstr. Bootstr. Bootstr.

Par. Variable Estimate Std. Err. 95% LCL 95% UCL p-value
Beef

β11 Intercept 0.404887** 0.07822 0.25235 0.55897 < 0.00001
β12 pbeef -0.008170** 0.00219 -0.01226 -0.00369 0.00026
β13 ppork 0.000025 0.00051 -0.00114 0.00085 0.77230
β14 pchicken -0.000500 0.00071 -0.00190 0.00088 0.47064
β15 m 0.007282** 0.00127 0.00476 0.00976 < 0.00001

Pork
β21 Intercept 0.201835 0.10365 -0.04589 0.36042 0.12922
β22 pbeef 0.000015 0.00122 -0.00248 0.00229 0.94012
β23 ppork -0.002890 0.00271 -0.00709 0.00353 0.51072
β24 pchicken -0.000570 0.00092 -0.00241 0.00120 0.51205
β25 m 0.005065** 0.00060 0.00391 0.00625 < 0.00001

Chicken
β31 Intercept 0.335855** 0.09966 0.13096 0.52160 0.00106
β32 pbeef 0.007250 0.00139 -0.00205 0.00342 0.62404
β33 ppork -0.001120* 0.00069 -0.00267 0.00002 0.05406
β34 pchicken -0.009470** 0.00265 -0.01394 -0.00353 0.00100
β35 m 0.011001** 0.00151 0.00809 0.01400 < 0.00001
Note: Bootstrap significance levels of 0.05 and 0.1 are indicated by ** and * respectively.
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Table 5.11: SUR Parameter Estimates, Rural Sector in Southeast Region.

Number of Observations 258
Sum of Weights 384374
Number of Bootstrap Resamples 1000
Beef-Equation R-square 0.5910
Pork-Equation R-square 0.1170
Chicken-Equation R-square 0.6817

Approx. Approx. Approx. Approx.
Parameter Bootstr. Bootstr. Bootstr. Bootstr.

Par. Variable Estimate Std. Err. 95% LCL 95% UCL p-value
Beef

β11 Intercept 0.263960** 0.07682 0.11503 0.41615 0.00054
β12 pbeef -0.006110** 0.00128 -0.00859 -0.00356 < 0.00001
β13 ppork 0.000726 0.00092 -0.00111 0.00248 0.45500
β14 pchicken 0.000167 0.00157 -0.00277 0.00399 0.84323
β15 m 0.006337** 0.00084 0.00453 0.00781 < 0.00001

Pork
β21 Intercept 1.393350 1.08052 -0.66362 3.57192 0.17837
β22 pbeef 0.005656 0.00786 -0.00960 0.02121 0.46039
β23 ppork -0.049240 0.03940 -0.12808 0.02636 0.19672
β24 pchicken 0.016849 0.01744 -0.01664 0.05172 0.31448
β25 m 0.011363* 0.00578 -0.00013 0.02253 0.05269

Chicken
β31 Intercept 0.277109** 0.12304 0.01834 0.50067 0.03494
β32 pbeef 0.001718 0.00177 -0.00176 0.00518 0.33525
β33 ppork 0.002516 0.00178 -0.00080 0.00619 0.13118
β34 pchicken -0.016720** 0.00286 -0.02242 -0.01122 < 0.00001
β35 m 0.018520** 0.00182 0.00966 0.01678 < 0.00001
Note: Bootstrap significance levels of 0.05 and 0.1 are indicated by ** and * respectively.

187



CHAPTER VI

CONCLUSION

The general objective of this research was to provide an understanding of the SUR

procedure and to explain some of its current trends. To understand SUR this study

dedicated Chapter II to explain the estimation procedure, some properties of the SUR

estimator, the efficiency gained by the SUR estimator, and how to test for aggregation

bias using SUR. With respect to the efficiency gained by the SUR estimator, Zellner

(1962) found that the regression coefficient estimators are at least asymptotically

more efficient than the least squares equation-by-equation estimators. Specifically, a

quite large gain in efficiency can be obtained when independent variables in different

equations are not highly correlated and when error terms in different equations are

highly correlated. The test for aggregation bias consists of a test for the equality

of all regression equation coefficients. Particularly, Zellner’s (1962) test can be used

to determine if aggregated data (macro-data) has an aggregation bias problem or if

disaggregated data (micro-data) can be aggregated without suffering from aggregation

bias.

Additional literature of the SUR procedure discussed in this study include SUR

with unequal number of observations, the different alternative estimators of the

variance-covariance matrix of the error term (Σ), the conditions under which one

estimator of Σ will perform better than another, and whether it is relevant to use

better estimates of Σ. SUR with unequal number of observations (i.e., the case where

one or more equations have missing observations) focuses on how to handle a set of

regression equations when the data is time-series, cross-sectional or panel data. With

respect to whether it is relevant to use better estimates of Σ, it has been found that

better estimates of Σ or Σ−1 need not imply better estimates of regression coefficients.

Furthermore, a feasible GLS estimator of the regression coefficients that ignores the

extra observations in estimating Σ (but not necessarily in estimating Σ−1 or β) com-

pares favorably to a feasible GLS estimator of the regression coefficients that seem to
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use all extra observations.

Specific objectives of this research were to provide an empirical application of

a SUR model, and to explain the relevant findings from this empirical application.

The Mexican household meat consumption was selected as the empirical application

in this research. To familiarize with the world and Mexican meat markets before

estimating SUR models, a discussion of the role meat plays in the agricultural sector

was presented in Section 1.1, a review of the meat world market was provided in

Section 1.2, and an analysis of Mexican meat production and consumption in Section

1.4. In particular, from Section 1.2, we saw that the United States, the EU-25,

Brazil, China, Mexico, and Canada were leading producing and consuming countries

of beef, pork, and chicken. Additionally, when we considered the combined production

and consumption of beef, pork, and chicken, on average for the period 1997-2006,

Mexico was a net meat consumer with excess consumption of 0.859 million MT while

Brazil, United States, EU-25, Canada, and China were net meat producers with

excess production of 2.808, 2.054, 1.664, 0.956, and 0.218 million MT respectively.

Therefore, Mexico is a very important market for all net meat producers.

To analyze the Mexican meat consumption, this study used a nation-wide Mexican

survey on household income and weekly expenditures (Encuesta Nacional de Ingresos

y Gastos de los Hogares (ENIGH)) that is published by a Mexican governmental

institution (Instituto Nacional de Estad́ısitca, Geogŕıa e Informática or INEGI). The

data used from ENIGH corresponded to the year 2006 and it was collected between

August and November 2006. ENIGH’s sampling methods are probabilistic, multi-

staged, stratified, and conglomerated. The sampling method is probabilistic because

the sampling units have a probability of being selected, which is known and different

from zero. Additionally, the sampling method is multi-staged because the sampling

units are selected in multiple stages. It is stratified because the target population

is divided into groups with similar characteristics, which form the strata. Finally,

it is conglomerated because the sampling units (households) are made up from the

observation units (household members).

189



Variables of interest were selected from ENIGH database. To organize the data,

this study created and modified new variables. Particularly, the variable adult equiv-

alents was created in order to calculate per capita meat consumption and per capita

real expenditure. Not adjusting household meat consumption and expenditures by

adult equivalents presents a problem when estimating quantity consumed (quantity

demand) as a function of prices and total meat expenditure. For example, suppose

one household demands q amount of beef and suppose a bigger household who pays

a higher price demands more beef. If we compare these two households without

adjusting by adult equivalents, price increases but does quantity decrease? On the

other hand, adjusting by adult equivalents (i.e., computing per capita beef consump-

tion) in our example, price will always increase but this time quantity will decrease.

In addition, nominal variables were transformed to real variables. Then, meat cuts

were aggregated into meat categories (Table 4.6) to reduce the excessive number of

missing observations resulting from the nature of the survey. To avoid doing price

imputations, the number of missing observations was reduced even further by exclud-

ing non-relevant meat categories (processed meat and seafood in Table 4.57) from

the analysis and considering the total intersection of the non-missing prices in the

remaining categories (beef, pork and chicken in Table 4.57). Hence, the results from

this study can only be generalized to those households who consumed at least one

meat cut of beef, pork and chicken during week of the interview. Since we are dealing

with a stratified sample, we know the beef, pork and chicken dataset, which consists

of 3,707 households, represents 5.3 million households nationally of the total of 22.1

million households (Table 4.54) who consumed at least one meat cut during the week

of the interview.

Since ENIGH is a stratified sample, any descriptive statistic or regression model es-

timated in this study incorporated the stratification variables (weight and strata). “A

data analyst who ignores stratification variables and dependence among observations

is not fitting a good model to the data but is simply being lazy” (Lohr, 1999, p. 229).

Particularly, this study weighted all the observations by the sampling weight variable
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as it is done in weighted least squares when estimating the SUR models. In fact, the

weighted estimator is consistent (Wooldridge, 2001, p. 464). Specifically, this study

used the SAS software to estimate the system of equations using Seemingly Unre-

lated Regressions as well as the sampling weight of each observation. When “[we] use

weights wi in the weighted least squares estimation, [we] will obtain the same point

estimates...; however, in complex surveys, the standard errors and hypothesis tests

the software provides will be incorrect and should be ignored” (Lohr, 1999, p. 355).

Hence, to calculate better estimates of the standard errors and hypothesis tests for the

parameter estimates, this study applied the bootstrap by using SAS software. The

Bootstrap is a resampling method that can be used to estimate standard errors where

other estimation methods are inappropriate. This approach was prefered over the al-

ternative formulae provided by Wooldridge (2001, p. 464) to calculate asymptotic

variances of the parameter estimates because SUR deals with a system of equations

instead of one equation.

SUR models were estimated for one general model and for individual models. The

general model assumes that regional or urbanization factors shift the consumption

of the ith commodity in a parallel fashion. That is, regional and urbanization-level

differences in consumption of the ith commodity can be appropriately modeled by

parallel shifting sub-models. If this assumption is false and there are differences in

consumption of the ith commodity among Mexican regions and urbanization level,

the individual SUR models provide more precise parameter estimates for each case.

Additionally, in stratified sampling elements of the same stratum often tend to be

more similar than randomly selected elements from the whole population; therefore,

individuals models were considered.

The results of the SUR general model were reported in Table 5.1. All “own price”

parameter estimates (i.e., the corresponding parameter estimates of the price of beef

in the beef equation, the price of pork in the pork equation, and the price of chicken

in the chicken equation) came with the correct negative sign and statistically different

from zero at the 0.05 significance level. Our results indicate that increasing the price
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of beef by 1 real peso (i.e., 1 Mexican peso expressed in the nominal value of 2002

Mexican pesos), holding all other factors affecting beef consumption constant, will

decrease the weekly per capita consumption of beef by 0.006180 kg (or 0.013624 lbs).

Similarly, increasing the price of pork by 1 real peso (holding other factors affecting

the consumption of pork constant) will decrease the weekly per capita consumption

of pork by 0.00475 kg. Finally, increasing the price of chicken by 1 real peso (holding

other factors affecting the consumption of chicken constant) will decrease the weekly

per capita consumption of chicken by 0.009840 kg. All other price parameter esti-

mates in Table 5.1 resulted insignificant at the 0.1 level. That is, there is not enough

statistical evidence to conclude that changes in the price of pork or chicken have an

effect on the consumption of beef. In addition, our results indicate that income des-

ignated to meat expenditures is statistically different from zero at the 0.05 significant

level in all three equations. Hence, increasing the household income designated to

meat expenditures by 1 real peso, increases the average weekly per capita consump-

tion of beef by 0.005389 kg, the average weekly per capita consumption of pork by

0.005158 kg, and the average weekly per capita consumption of chicken by 0.007507

kg while holding the price of beef, pork and chicken constant. The estimate of the

regional dummy variables and urbanization level dummy variable indicate that there

is not enough statistical evidence at the 0.1 significance level to conclude that there

are differences between consumption of beef or pork in the Central-West and South-

east regions, the consumption of pork in the Central and Southeast regions, and the

urban and rural sectors.

The results of the SUR individual models are reported in Tables 5.2 through 5.11.

The parameter estimates corresponding to own prices are all with the correct sign.

Similarly, they are all statistically different from zero except for the own price of

chicken in Table 5.9 and the own price of pork in Tables 5.10 and 5.11. In the beef

equation, the price of pork is always insignificant at the 0.1 level, and the price of

chicken is in three occasions significant at the 0.05 or 0.1 level (one occasion positive

and significant in Table 5.8, two occasions negative and significant in Tables 5.2 and
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5.8). In the pork equation, the price of beef is only in one occasion significant at the

0.1 level (negative and significant in Table 5.5), and the price of chicken is in four

occasions significant at the 0.05 or 0.1 level (four occasions negative and significant

in Tables 5.2, 5.3, 5.4, and 5.8). In the chicken equation, the price of beef is in two

occasions significant at the 0.05 level (two occasions negative and significant in Tables

5.5 and 5.9), the price of pork is in two occasions significant at the 0.05 or 0.1 level

(one occasion positive and significant in Table 5.5 and one occasion negative and

significant in Table 5.10). Therefore, in the pork and chicken equations, when the

price of beef is significant, it is negative. Only in the pork equation, when the price of

chicken is significant, it is negative. When significant, price parameter estimates can

be interpreted in the same fashion that they were interpreted for the general SUR

model.

193



BIBLIOGRAPHY

A. C. Aitken. On least squares and linear combinations of observations. Proceedings
of the Royal Society of Edinburgh, 55:42–48, November 1934-1935.

Javier Usabiaga Arroyo. Desarrollo rural en México. Technical report, Secretaŕıa
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México: Instituto Nacional de Estad́ıstica, Geograf́ıa e Informática (INEGI). URL
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Desarrollo Rural, Pesca y Alimentación (SAGARPA). Comportamiento del
gasto de los hogares en alimentos en el sector rural 2000-2004, September
2006. URL www.siap.sagarpa.gob.mx/Integracion/EstadisticaDerivada/

IndicadoresEconomicos/IndMacroeconomicos/Gastos.pdf. Accessed on May
28, 2008.

R. Sitne. An introduction to bootstrap methods: Examples and ideas. 18:243–291,
1990.

R. R. Sitter. Comparing three bootstrap methods for survey data. Canadian Journal
of Statistics, 20:135–154, 1992.

J. N. Srivastava and M. K. Zaatar. A Monte Carlo comparison of four estimators of
dispersion matrix of a bivariate normal population, using incomplete data. Journal
of the American Statistical Association, 68:180–183, March 1973.

Virendra K. Srivastava and David E. A. Giles. Seemingly Unrelated Regression Equa-
tions Models. New York: Marcel Dekker, Inc., 1987. ISBN 0-8247-7610-0.

W. E. Taylor. Small sample considerations in estimation from panel data. Journal of
Econometrics, 13:203–223, 1980.

John R. Tedford, Oral Capps, and Joseph Havlicek. Adult equivalent scales once
more: A developmental approach. American Journal of Agricultural Economics,
68(2):322–333, May 1986.

199



Lester G. Telser. Iterative estimation of a set of linear regression equations. Journal
of the American Statistical Association, 59(307):845–862, September 1964.

The World Bank and International Monetary Fund. Mexico: Financial assess-
ment program update—technical note—financing of the private sector, November,
2006. URL http://www.imf.org/external/pubs/ft/scr/2007/cr07170.pdf.
Accessed on May 12, 2008.

H. Theil. Qualities, prices and budget inquiries. Review of Economic Studies, 19(3):
129–147, 1952–1953.

H. Theil. Linear Aggregation of Economic Relations. Netherlands: North-Holland
Publishing Company, 1954.

H. Theil. Principles of Econometrics. New York: John Wiley & Sons, Inc., 1971.
ISBN 0-471-85845-5.

United States Department of Agriculture. Economic Research Service (ERS), Pro-
duction, Supply and Distribution (PSD) online database. URL http://www.fas.

usda.gov/psdonline/psdQuery.aspx. Accessed on March 17, 2007.

J. W. Vander Zanden. Human Development. New York: Alfred A. Knopf Co., 1978.
ISBN 0-394-32103-0.

T. J. Wales and A. D. Woodland. Sample selectivity and the estimation of labour
supply functions. International Economic Review, 21:437–468, 1980.

H. White. A heteroskedasticity-consistent covariance matrix estimator and a direct
test for heteroskedasticity. Econometrica, 48:817–838, 1980.
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