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PREFACE

A few words on the structure of this thesis are warranted before you
begin reading. This work is approximately equally divided into two Parts.
Part I concerns the details of white dwarf evolution and spans chapters 1
through 5. Chapters 6 and 7 make up Part I1, and in these I discuss the in-
formation obtainable from the white dwarf luminosity function; specifically,

the age and evolution of the Galactic disk and halo.

Because Parts I and II are to be submitted separately for publication
(after suitable modifications have been made) it is inevitable that there is
some measure of repetition, although I have tried to keep this to a minimum
as much as possible. While Part I is to be a multi-author paper, Part IT 1s
to be a single author paper. Because of this, the voice changes upon going

between parts from first person plural to first person singular.
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Galactic history is written in its oldest stars, the white dwarfs. Although
we are still some years away from reading the details of that history, we can
already place significant limits on both the Galactic age and star formation
history. The following is a complete analysis of the problem, starting with a
fresh exploration of the physics of white dwarf stars. I present an extensive
grid of numerical model sequences and use these to describe in detail the
behavior of the white dwarf stars as a function of mass, core composition,
surface Iayer masses and compositions, and uncertainties in the constitutive

physics.

In the second part of this work, I use these model sequences to decode
the information contained in the white dwarf luminosity function. I establish
a theoretical context for current and future observations by presenting lumi-
nosity functions computed with differing choices for the input white dwarf

evolutionary sequences, the assumed age of the local disk, the star formation

vii



rate as a function of time, and the possibility of scale height inflation of the
disk with time. The results suggest that the star formation rate over the
history of the Galaxy has been constant to within an order of magnitude,
and that conservatively, the disk age lies in the range 6-13.5 Gyr. The prin-
ciple uncertainties are the core composition and surface helium layer mass,
which seismological observations will remove in the near future. Using the
best current estimates as input, the disk ages range from 8-11 Gyr — s.e.,
substantially younger than most estimates for the halo globular clusters but
in reasonable agreement with those for the disk globular clusters and open
clusters. Within the next decade, luminosity functions will be determined
for the halo white dwarfs, and comparison with the theoretical halo lumi-
nosity functions herein will determine the relative ages and star formation

histories of the two populations.

Finally, I discuss white dwarf cosmochronology within the context of
other, conflicting, methods of cosmochronology. I show how this work can
help resolve these conflicts and shed light on fundamental problems in galaxy

formation and cosmology.
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1. ThePhysicsof
White DwarfStars

1.1 INTRODUCTION

Considerable strides have been made in recent years in our understand-
ing of the evolution of white dwarf stars and their importance to the overall
picture of stellar and Galactic evolution. Ever improving observational and
theoretical studies have allowed us to determine that these cooling embers
of prior nuclear burning are a remarkably homogeneous class. It at first
appears that there is a clear division by spectral type, as ~80% have spec-
tra dominated by strong hydrogen lines in the absence of helium (type DA,
using the nomenclature of Sion et ¢l. 1983) and most of the remaining
~20% show lines of helium in the apparent absence of hydrogen (type DB,
or more generally type non-DA). However, the mass functions derived for
both spectral classes are similarly narrow (¢ ~ 0.1) and peak at a mass of
rpughly 0.55 Mg (Koester, Shultz and Weidemann 1979; Shipman and Sass
1980; Weidemann and Koester 1984; Oke, Weidemann and Koester 1984;
McMahan 1989; Bergeron, Saffer, and Liebert 1990). Further, the observed
ratio of DAs to non-DAs is a strong function of effective temperature (e.g.,
Greenstein 1984, Fontaine and Wesemael 1987), leading some to suggest
that a significant fraction of the white dwarf stars have their dominant pho-

tospheric constituent change as they evolve along the cooling track — a
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process that has come to be known as spectral evolution (see Fontaine and

Wesemael 1987).

The discovered turndown in the white dwarf luminosity function near
log(L/Ls) ~ —4.5 (Liebert 1979; Liebert, Dahn, and Monet 1988, 1989)
reflects the beginning of Galactic star formation history (Winget et al.
1987). Preliminary fitting of theoretical luminosity functions to the turn-
down suggest that the onset of sustained star formation occurred approxi-
mately 9 x 10° years (9 Gyr) ago (Winget et al. 1987; Iben and Laughlin
1989; Yuan 1989; Wood 1990). Although nominally this age is determined
for a sample of nearby white dwarf stars, the ellipticity of stellar orbits
in the Galactic potential (see, for example, Carney et al. 1990) essentially
guarantees that this age is in fact representative of a wide annulus of the
Galactic disk at our galactocentric radius. The recent broad-based surge
of interest in white dwarf evolution stems largely from its application to
the problem of the age and evolution of the Galaxy. The method of using
white dwarfs as cosmochronometers is particularly appealing because ob-
servations of rates of period change in the pulsating white dwarf stars will
provide solid observational constraints to the problem at the temperatures
of the two white dwarf instability strips, as has already been obtained for

the pulsating pre-white dwarf PG1159-035 (Winget et al. 1985).

A primary component of these studies is the theoretical model sequences
against which the observations can be compared. A number of researchers
have published their numerical model sequence results, including: Vila
(1971); Koester (1972); Lamb and Van Horn (1975); Kovetz and Shaviv
(1976); Sweeney (1976); and more recently Iben and Tutukov (1984); Iben
and MacDonald (1985, 1986); Koester and Schonberner (1986); Mazzitelli
and D’Antona (1986); D’Antona and Mazzitelli (1989); Wood, Winget, and
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Van Horn (1987); Wood and Winget (1989); and Tassoul, Fontaine, and
Winget (1990). The physics of white dwarf evolution has been reviewed
most recently by D’Antona and Mazzitelli (1990) and Koester and Chan-
mugam (1990). The variety among the calculated sequences is wide enough
that a meaningful comparison is difficult to make. However, Winget and
Van Horn (1987) determined the differential effects of the various constitu-
tive physics and input model parameter choices on the ages of the models at
the luminosity function turndown. Using a simple first-order perturbational
approach, they found that the differences among research groups are un-
derstandable and are attributable to the different assumptions that people
made in constructing their models. This suggests that we are well on our

way towards converging to an agreed-upon cooling theory.

In this work, we present the results of an extensive numerical exploration
into the details of white dwarf evolution. We hope to provide a complete
and varied picture of all stages of evolution, and further hope that through
your perusal of the numerous figures your intuition into the physics of the
fundamental cooling process will be sharpened and invigorated. Our method
is perturbational in that we sample each input parameter over the range
that it is uncertain or unknown and then intercompare the results of a large
number of sequences to shape our working model for the overall picture of
white dwarf evolution. In the model sequences that we present, we vary
the stellar masses between 0.4 Mg and 1.2 Mg, vary the core composition
between carbon and oxygen, and vary the masses of the surface helium and
hydrogen layers over the ranges of plausible values. In addition, we also
explore the effects on the age-luminosity relation of uncertainties in the
opacities (radiative and conductive) and in the process of crystallization.

To fill a long-standing void in the literature, we include a large set of these
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evolutionary summary results in tabulated form in the Appendix. As a
prelude to planned major observational surveys it is our hope that these
calculations may be of some use to guide them. Finally, as the observational
constraints tighten-up, the parameters nature has selected will be a subset
of our calculations, and this work will provide a context within which to

interpret them.

1.2 HisTORICAL BACKGROUND

1.2.1 Discovery Observations

As discussed by Schatzman (1958), it was in 1910 that H. N. Russell
and his benefactor E. C. Pickering first noted the peculiar nature of the star
40 Eridani B, which had been observed as part of a parallax program. They
found that although the star was of spectral type A, it had the luminosity
of an M dwarf. It was not until 1915 that this information was published as
a footnote by Hertzsprung (1915), and in the intervening time the spectrum
of Van Maanan 2 (Van Maanan 1913) and that of Sirius B (Adams 1914,
1915) were published. Adams, knowing the distance to Sirius and the surface
temperature of Sirius B, was able to derive a radius for the object of order
109 cm — nearly two orders of magnitude smaller than the Sun. This radius
estimate when combined with the mass determined from the orbit, lead
Eddington to write in The Internal Constitution of the Stars, “Adams ...
has confirmed our suspicion that matter 2000 times denser than platinum is
not only possible, but is actually present in the Universe.” Eddington further
realized that although only three white dwarf stars were then currently

known, their proximity to the Sun and their intrinsic faintness suggested
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that their total space density was likely to be quite high (contemporary
estimates are Nwp ~ 3.2 x 1073 pc—3; Liebert, Dahn, and Monet 1988).
These first three objects, all with surface temperatures a few times Solar
and luminosities roughly one-onehundredth Solar, initially defined the class

and gave rise to the somewhat misleading name white dwarf stars.
1.2.2 The Electron Degeneracy of the White Dwarf Stars

The theoretical explanation of the nature of the white dwarf stars was
presented by Fowler in his landmark 1926 paper entitled “Dense Matter,”
Fowler used the Fermi-Dirac statistics (Dirac 1926) to solve the puzzle of
the white dwarf support mechanism by suggesting that it arises from the
degenerate pressure of electrons. In presenting the equations describing
electron degeneracy we follow Chandrasekhar (1984), but also recommend
Chandrasekhar (1939), Clayton (1968), and Hansen and Kawaler (1990) for

more detailed discussions.

In a completely degenerate gas (the idealized “zero-temperature” degen-
erate gas), all energy states up to a threshold momentum pg (called the Fermi
momentum) are occﬁpied as described by the Pauli exclusion principle: two
electrons only (one for each spin orientation) can occupy each phase-space
cell of volume A2 in any isolated quantum mechanical system. Under terres-
trial conditions atoms are themselves largely isolated quantum-mechanical
systems. Their electron clouds are composed of discrete energy levels called
orbitals, and each orbital is occupied by at most two electrons. In contrast
to terrestrial standards, the conditions in white dwarf interiors are extreme.
The atoms are compressed so tightly that they become completely pressure

ionized: nearly all of the electrons are shared equally among nearly all of
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the nuclei, and the entire star becomes an 1solated quantum-mechanical sys-
tem. Even though the separation between “energy levels” is of the order of
order Plank’s constant h = 6.626- 10727 erg s, the sheer number of electrons
(~10%8) insures that those with the highest energies are moving at near light
speed and carrying considerable momentum, and so are able to provide sup-
port against collapse through a balancing of the gravitational and electric
fields. As Fowler wrote in summing up his 1926 paper (see Chandrasekhar
1984):

The black-dwarf material is best likened to a single gigantic molecule in its

lowest quantum state. On the Fermi-Dirac statistics, its high density can be

achieved in one and only one way, in virtue of a correspondingly great energy

content. But this energy can no more be expended in radiation than the energy

of a normal atom or molecule. The only difference between black-dwarf matter

and a normal molecule is that the molecule can exist in a free state while the

black-dwarf matter can only so exist under very high external pressure.

More quantitatively, if n(p)dp is the number of electrons per unit volume
which have momenta between p and p + dp, then the condition of complete
degeneracy is expressed by

8
52 0% p<po;

n(p) = (1.1)

0 P > Po-
where the Fermi momentum pgy is determined by the total number n of

electrons per unit volume

87

PO 3 .
n 2/0 n(p) dp = 335 Po- (1.2)

In the completely-degenerate gas, the pressure is given by

8r rpo

P=35,

p31)pdp, (1.3)



where in general

OFE
= — 1.4
v =% (1.4
and where in the non-relativistic regime we can use v = p/m to find
8t 4
4Pnr = Wpo, (15)
or,
B2 3 2/3 5/3
P = 50 (?) e (16)
5/3
= 1.004 - 10" <£> dynes cm™? (1.7)
He

where m is the rest mass of the electron and where . is the mean molecular
weight per electron (p. = 2 for everything but hydrogen). In the extreme-
relativistic limit, v, &~ ¢ and equation (1.3) becomes

8me [P0 4 2we 4

p _ o7¢ _ 27 1.
Pr=cp5 | Prdp = gp5p0, (1.8)
which, through equation (1.2) gives
1/3
p-1 (§-> hent/? (1.9)
8 \n
4/3 .
= 1.244-10% <ﬁ> dynes cm™2. (1.10)
He

Both of these relations are independent of temperature, and are poly-
tropic equations of state of order n = %— and 3 (see Chandrasekhar 1939, or

Shapirio and Teukolsky 1983):
P = Kptw (1.11)
such that the non-relativistic and relativistic relations become, respectively,

P = K193, (1.12)
P. = Kyp*/?, (1.13)



where
1 3 2/3 h2
Ky=—|{— S S —— 1.14
1720 <7r> m(peH )5/ (1.14)
1/3\'3 e
Ky ==-[— S d

Note that the extreme relativistic expression is a polytrope with

dln P 4

I'= ==
dlnp 3’

(1.16)

which implies neutral stability against perturbation. In other words, if the
star is compressed while in this precarious state (say by accretion), the elec-
tron degeneracy will not be sufficient to halt the contraction. The mass at
which this occurs is termed the Chandrasekhar mass in honor of 1ts discov-
erer, S. Chandrasekhar, who in 1931 constructed the first (zero-temperature
polytropic) models of white dwarf stars and found the maximum mass to be
Mey =~ 1.44 M g (Chandrasekhar 1931a,b). Recently, Chandrasekhar (1984)
used the forum of his Nobel lecture to provide a very readable account of

the pioneering early efforts in the study of white dwarf evolution.

It is difficult to predict the details of white dwarf collapse — some
models predict a nearly homologous collapse until the degenerate pressure of
the recombined neutrons provide support at neutron star radii while other
predict total collapse to the black hole stage. Although the endpoint of this
collapse is not known with certainty, it is perhaps suggestive that for the

neutron stars whose masses we can estimate, the masses are clustered about

1.4 Mo.



1.3 A GENERALIZED MESTEL COOLING RELATION

The next major theoretical contribution to our understanding of the
evolution of white dwarfs dates from the work of Mestel (1952; see also
Mestel and Ruderman 1967). He derived the now well-known log(#)
—2log(L/Lg) relation in terms of a simple, physical model wherein the
thermal energy of the degenerate, (nearly) isothermal core gradually radiates
away through the blanketing non-degenerate surface layers. The Mestel
cooling theory contains a number of concepts fundamental to the study of
white dwarf cooling, and we begin with a somewhat generalized derivation
of the cooling law before discussing the numerical model results (see also

Van Horn 1971; Iben and Tutukov 1984).

We begin by writing the four basic equations of stellar structure and

evolution (cf. Clayton 1968, p. 436):

dﬁfr = 47r7'2p, (1.17)
%1; = _pG:\;IT, (1.18)
‘_g: _ _%.’jﬂ_ﬁ%, (1.19)
‘%ﬁ = 4nr?p(e — T—g% : (1.20)

Here M, is the mass interior to a sphere of radius r; L, is the lumi-
nosity passing through that sphere; k, e, and s are the opacity, net nu-
clear minus neutrino energy production rate, and entropy, respectively;

a = 7.565 x 1071° erg cm™3 deg™ is the radiation constant (Allen 1973);
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and the remaining symbols have their usual meaning (all units are c.g.s. un-
less otherwise noted). Equation (1.19) yields a useful approximation for the
thermal structure of the envelope, although we note that in adopting it, we
are implicitly assuming, as Mestel did, that the energy transport processes
are radiative transfer and electron conduction. We have known since the
work of Schatzman (1958) and later Bohm (1968) that a convection zone
develops on the surface of a star as the effective temperature drops below
the dominant species’ ionization temperature, and that this convection zone
lowers the temperature gradient between surface and core, and hence short-
ens the evolutionary timescale. However, because this does not occur until
Teff = 15,000 for the majority of white dwarf stars, the derivation using
equation (1.19) is not only instructive but also widely applicable. The set of
equations (1.20) through (1.17) take on different forms in the interior and

envelope, and we consider each in turn.
1.3.1 The Interior

Matter in the interiors of white dwarf stars is highly-degenerate, and
because degenerate electrons are excellent conductors of heat — just as they
are in a normal metal — the interiors are nearly isothermal, and the core
temperature approximately equals the temperature at the core/envelope
boundary. Furthermore, because the pressure of degenerate matter is nearly
independent of the temperature, we may use the zero-temperature density-
pressure relation P = Kp%/3 [cf. equations (1.12) and (1.14)] and equations
(1.17) and (1.18) to derive the mechanical structure of the star in the form
of an Emden polytrope. Within these approximations, equation (1.19) is
superfluous, and we are left with equation (1.20) to solve. Two additional

approximations allow us to solve this equation analytically.
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The conditions in typical white dwarf cores (temperature, density, and
composition) are such that nuclear reactions do not occur. In addition, for
the purpose of this derivation, we assume that neutrino losses are negligible
[note that detailed models suggest that this assumption only holds true
below a luminosity log(L/Lg) &~ —1.5]. Within these approximations, we
may write ¢ = (. Furthermore, because to a good approximation the white
dwarf stars evolve at constant radius, we can ignore gravitational contraction

as a luminosity source, and write for the time rate of change of entropy:
0s dTl'"  0s, dp dT
=T (0T|” IR T dt) sV

Here C'y 1s the specific heat at constant volume. For a plasma of strongly

(1.21)

degenerate electrons plus an ideal gas of ions of atomic mass A, this is given
by
3 k

Cy =0 (1.22)

With these approximations, equation (1.20) can be integrated over ra-

dius to obtain

Re dL
L, = / r 1.23
o dr ( )
Ry d
= —-/ dr - 47rr2pCVE€- (1.24)
==, dM C’Vg (1.25)

Within the approximations given above, the integrand is independent of

position in the star, and we have

3 k dT
= M2 2 1.26
L M2AH dt (1.26)

Equation (1.26) gives the expression for the luminosity of the star in terms
of the changing core temperature. Next, we need to derive the equations
of energy transport through the non-degenerate envelope to derive the age—

luminosity relation for the model.
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1.3.2 The Non-Degenerate Envelope

The non-degenerate envelope which surrounds the core has a mass of
typically Meyw ~ 107%, and so to a good approximation we can neglect
the fractional envelope mass. We can also neglect energy production and
loss in the envelope (nuclear shell burning sources, if present, are important
only the hottest white dwarfs). Thus, we can write for equations (1.17)
and (1.18),

M, ~ M,, (1.27)
L, = Ly, (1.28)

where M, and L, are the white dwarf mass and luminosity, respectively.

With these approximations, the ratio of equations (1.18) and (1.19) can

be written in the form

dT 3 L. K

9P = Tac G T (1.29)

Note that all of the terms on the right-hand side except the opacity « and
temperature T are constants. Mestel chose for the opacity the form given
by the Kramers’ Law, x o p/T5, but because the Kramers’ law opacity is
not a good approximation if the envelope is convective at the core/envelope
(i.e., degeneracy/non-degeneracy) boundary, we generalize this somewhat

and write

K = ko PY)TP. (1.30)

We are now in a position to solve equation (1.29) by integrating using the

“radiative zero” surface boundary condition, T = 0 and P = 0, to obtain

T = ﬂCP““J', (1.31)
14«



13

where

"7 4ac4rGM,’

These two equations give approximately the run of temperature and pressure

(1.32)

in the envelope.

The non-degenerate envelope behaves as an ideal gas

k
Pieal = —=pT, 1.33
deal = — 7P (1.33)

where k = 1.38 x 10716 erg K~! is Boltzmann’s constant, x is the mean
molecular weight of the gas [ ~ 2/(1 + 3X + 0.5Y)], and H = 1.66044 x
10724 gm is the unit of atomic mass. Conversely, in the non-relativistic
outer part of the electron degenerate core, the pressure is independent of

temperature and is related to the density by the expression
Py = K/)S/g’ (1'34)
using K = K, from equation (1.14).

In the spirit of the approximations of the Mestel model, we define the
degeneracy boundary as the point at which expressions (1.33) and (1.34)
are equal. Solving both for p and setting them equal yields the following
approximate relationship between the pressure and the temperature at the

degeneracy boundary:

5/2
kT ) : (1.35)

KuH

We use this relation to eliminate P from equations (1.31) and (1.32), we

Pk

may then write

L, = ATG+28=52)/2 (1.36)
where s(14
A= 14+ adac4rGM, K-+ (Ku.H 2 (1.37)
T 44 ﬁ 3 K0 k o
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For a Kramers’ Law opacity, we have a = 1 and 8 = 4.5, giving from (1.36)

the relation L, oc T35,
1.3.3 The Mestel Age-Luminosity Relation

Now we are in a position to combine equations (1.36) and (1.26) to
obtain the age—core temperature relation and the age-luminosity relation.

We consider each in turn.

Writing equations (1.36) and (1.26) in terms of the core temperature,
we can integrate analytically to obtain the time ¢ required for the model to
cool from an initial core temperature Tj to a final core temperature T'. We

obtain

(1.38)

32 M, k[ 1 1
Tv—1AAH

A Tv—1 "~ Té/-—-l
where v — 1 = (1 — 5a + 283)/2. If we assume a Kramers’ Law opacity, the
exponent is v — 1 = 2.5, and this dependence is sufficiently steep so that the
age of the star rapidly becomes independent of the initial core temperature

Ty as the star cools.

On the other hand, if we write the equations in terms of the stellar

luminosity L., we obtain the age-luminosity relation

_3/2 M, k (1/v)—1 (1/v)~1
R aerd AU A S B (1.39)

Typically, the initial luminosity Lo is assumed to be large compared to
the current luminosity L, of the white dwarf. Again, if we consider the
specific Kramers’ Law opacity, we have the steep relation given by v = 3.5

1 _ 1 =-3), and again the star rapidly “forgets” its initial luminosity.
v 7 g g

If we assume that we are several e-folding timescales away from the

initial models, then we can neglect the terms in equations (1.38) and (1.39)
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resulting from the initial conditions, and obtain simple power law relations
between the temperature or luminosity and the age of the white dwarf.
These then allow us to obtain a remarkably accurate expression for the
white dwarf luminosity function. If we write for the luminosity function of

white dwarfs ® = dNwp/dlog(L./Lg), then we can rewrite this as

dNwp/dt

¢ = dlog(L./Lg)/dt’

(1.40)

where dNywp/dt is the birthrate of white dwarfs. If the birthrate has been
constant in time, then equation (1.40) shows that the luminosity function
is inversely proportional to the white dwarf cooling rate. Using the results
from above, we find

:d.NWD 3/2 M. k _(1/v)-1

d %
dt vlogeAl/v AH

(1.41)

With a Kramers’ Law opacity, we have (1/v) — 1 = —5/7 — remarkably

close to the observed form of the white dwarf luminosity function.

To summarize, we have shown that using the standard equations of stel-
lar structure and evolution along with a number of simplifying assumptions,
we can derive an age-luminosity relation which is an excellent match to
detailed numerical-model results over the luminosity range where the ap-

proximations are valid, approximately —1 » log(L/Lg) 2> — 3.
1.3.4 A Mestel Relation for Crystallized White Dwarfs

The Mestel age-luminosity relation doesn’t get used much these days
because we have available the results of detailed model calculations over the
entire range in which the Mestel relation is applicable. However, because
the model sequences that we compute do not include crystallization in the

envelope equation of state, our sequences necessarily stop shortly after the
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crystallization front crosses the core/envelope boundary, and because these
white dwarf sequences will be used in studies of the white dwarf luminos-
ity function which may require extensions of the mass-dependent cooling
curves to arbitrarily low luminosities, we must be able to extrapolate these
sequences in a physically self-consistent manner. We can derive just such a
relation using an approach similar to the above, although now we must use

information from the last computed model to make the extrapolation.

We begin with the general relation

0
L, = —E(Ethem,), (1.42)

where approximately, Eiperm =~ CyTM,, as we saw above in equation (1.25).
Here we assume that our models are fully crystallized and evolving in the
Debye cooling regime, where the heat capacity behaves like that of a metal
near zero temperature (see Reif 1965, p. 411; Landau and Lifshitz 1980, p.

195):
o2miT3V
5(hwa)3

For the derivation of the extrapolation formula for the fully-crystallized

CV ~ (1.43)

models, we can write this as

T

y
Cy = Cyyp (ﬁ) , (1.44)

where nominally v = 3 in the Debye regime, and where Cy ( and Ty are the

mass averages over the final model in a sequence:

1
M.

M
Cyo = / Cy dM, (1.45)
0

M,
1
T = 5 0/ T, dM. (1.46)
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Note that in equation (1.46) we use “T,” as distinct from “I” which in this
section denotes the mean temperature. Within this approximation, we can

substitute into equation (1.42) and solve to obtain

T>7 4T (1.47)

L* ~ ——.M*CV,()(-I + "}’) <—rf(;' E,

similar to equation (1.26) above. This equation, together with equa-
tion (1.36), forms a system of two ordinary differential equations which

we can solve as above.

We first solve for the age as a function of core temperature by setting
equations (1.47) and (1.36) equal and integrating analytically to obtain

M, Cypl+vy

T 5o @ - T (1.48)

t—tg =

where we have defined § = (3 + 28 —5«)/2 for convenience. If, for example,
we assume a Kramers’ Law opacity is appropriate and that we are in the
Debye cooling regime (i.e., v = 3), then equation (1.48) simplifies to

M*(’V 0

T (T2% T/, (1.49)

t—ty=8

We note first that the dependence on T is much shallower than in the
standard Mestel model [see equation (1.38)]. Second, and more importantly,
note that the form of the equation is such that the star cools to invisibility
in a finite time (cf. Mestel and Ruderman 1967, Van Horn 1971, Iben and
Tutukov 1984). Finally, note that in this regime, the Kramers’ Law opacity
is not the best choice, because the base of the surface convection zone is
degenerate and hence the controlling opacity is the conductive opacity at

the base of the envelope.
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As above, we can also use equations (1.47) and (1.36) to solve for the
age-luminosity extrapolation relation of a fully crystallized model. Solving

equation (1.36) for T and substituting into (1.47), we obtain the relation

+1
M*Cvo1+~r(1>%ﬂFT o

t -ty = —gm—— | — Lyt — LY 1.50

0 T(;Y 7_{_5 A 0 * ) ( )

which, using the Kramers’ opacity law in the Debye cooling regime, reduces
fo 8/7

8 M,Cyq /1 1177 11/7
t—ty = ———> | — L - L, . 1.51
T T (A) ( 0 ) (151)

Again, the form of the equation is such that the luminosity goes to zero in a
finite time as a result of the T3 dependence of the specific heat in the Debye
cooling regime. Further, note again that in practice we typically fit the last

two models with a relation of the form

tu=afi-(£)]

where A and B are free parameters which are typically A =~ 3 Gyr and

B = 1 (see §6.2 below).

In this section we have presented a generalized derivation of Mestel cool-
ing theory, and extended it into the crystallized regime where our detailed
numerical models cannot go. This extrapolation relation should be partic-

ularly useful in studies of the white dwarf luminosity function.



2. The White Dwarf
Evolution Code and

Related Topics

2.1 THE EvoLuTioN CODE

To construct our numerical white dwarf models we use an updated
version of the Rochester/Texas White Dwarf Evolution Code (WDEC);
this has been described most thoroughly in Lamb and Van Horn (1975).
The envelope integrator in WDEC is an updated version of that developed
by Fontaine (1973; see also Fontaine and Van Horn 1976). Although we
discuss our improvements here, we refer the reader to these papers for the
details of the basic codes. In brief, WDEC uses a Newton-Raphson iterative
method to solve the four differential equations describing the structure and
evolution of a spherically-symmetric stellar model. The models are non-
rotating, non-magnetic, and do not include nuclear shell burning sources.
They can have essentially arbitrary carbon/oxygen (C/O) mixtures in the
core and hydrogen (H) and helium (He) layer masses in the envelope. We use
the method of triangles developed by Kippenhahn, Weigert, and Hofmeister

(1967) to provide the surface boundary conditions for the evolving cores.

In the Fontaine envelope code the calculation begins with a gray atmo-

sphere integration from optical depth 7 = 10™* to either a depth 7 = 10 or

19
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to the point at which convection begins, whichever comes first. The calcula-
tion proceeds inward from this point using a Runge-Kutta-Gill integration
of the four stellar structure equations for the static case, assuming the lu-
minosity to be constant throughout the envelope. Because our envelopes
are static, the gravitational contraction of the envelope with time does not
contribute to the luminosity in the form of released gravitational potential
energy. We computed two parallel sequences to test the magnitude of this
effect. Comparing the two pure-C, 0.6 Mgmodels, one which had the fitting
mass set t0 Mepy = 107%M, and the other which had Meyy = 0.05 M, (our
deepest, used for models with 10~% M, He layer mass), we find that the age
differences are typically less than 5 percent. This corresponds to an abso-
lute age difference on the order of 0.5 Gyr at the Galactic WDLF turndown
luminosity, which is non-negligible but not a great concern because it is a
monotonic and calculable effect. In general, we try to keep our envelope

masses as small as possible.

2.2 STELLAR EvOLUTION PRECEDING THE WD PHASE

White dwarf stars are the remnants of main sequence stars with masses
ranging from less than 1 Mg to about 6-8 Mg (Romanishin and Angel 1980;
Anthony-Twarog 1982, Weidemann and Koester 1983). The evolution of
these low- to intermediate-mass stars is a topic which is central to a number
of textbooks (see Schwarzchild 1958; Cox and Guili 1968; Clayton 1968;
Hansen and Kawaler 1990) and review papers (Iben 1967; Iben and Renzini
1984; Mazzitelli 1989), and so we will be mercifully brief here.

Lower-mass stars are thought to form primarily in the cold, dense cores

of interstellar molecular clouds (e.g., Shu, Adams, and Lizano 1987; Boss
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1989). Because proto-stellar collapse involves processes with distance scales
and timescales each spanning several orders of magnitude and because the
cores themselves are currently observationally unresolvable, the details of
star formation are quite uncertain. Newly on the main-sequence, the star
will quietly burn hydrogen to helium in the core until roughly 10% of
the stellar mass is consumed. The reaction 4H — He proceeds by either
the p—p chain or the CNO cycles, depending on the total stellar mass (or
availability of CNO species, if born in the first ~10° years after the onset
of star formation in the Galaxy). With the exhaustion of hydrogen in
the core after some 1010 (ﬁ%)um years comes the ascension of the giant

branch as hydrogen burns in a shell and builds a degenerate helium core

(see Figure 2.1).

At the tip of the giant branch, the helium core ignites under degenerate
conditions, and in a flash the star moves onto the horizontal branch, possibly
losing a substantial fraction of its mass in the process. Horizontal branch
evolution is characterized by core helium burning and shell hydrogen burn-
ing. Following helium exhaustion in the core comes an epoch of double-shell
burning as the star ascends the asymptotic giant branch (AGB; see Iben
and Renzini 1984; Mazzitelli 1989). The C/O profile in the core is deter-
mined during the core-He and double-shell burning epochs, as some fraction
of the carbon created through the triple-a process burns on to oxygen in
the reaction 12C(a,7)'%0 (Fowler et al. 1975, Harris et al. 1983, Caughlan
and Fowler 1988, D’Antona and Mazzitelli 1990). When the C/O core mass
grows large enough (~0.5-0.6 Mg; see, for example, Mazzitelli 1989), the
helium burning can no longer be continuously sustained, and the late stages
of AGB evolution are characterized by thermal shell flashes (also called ther-

mal pulses). In addition to the shell flashes which occur on timescales of
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Figure 2.1: Theoretical Hertzsprung-Russell Diagram Including White Dwarf Cooling
Track. In this schematic H-R diagram we show the white dwarf cooling track in relation
to the main sequence stars, giants, and supergiants. Along the pre-white dwarf track we
have indicated the approximate locations of the PNNV and DOV instability strips, and
on the white dwarf cooling track we show the locations of the DBV and DAV instability
strips. The densities of the boundaries to these regions is a loose indicator of the precision

to which we believe we know the temperatures of the boundaries.
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order 10% years, these stars are also often pulsationally unstable in the form
of Mira variables, irregular variables, and OH-IR sources. Schild (1989) has
suggested that these objects in fact form an evolutionary sequence, and that
the mass-loss rate builds from 10~% Mg yr~! to 10~* Mg yr~! along the
sequence (see also Kwok 1987; Knapp 1990).

Because mass loss is a dynamical process and therefore extremely diffi-
cult to model, our knowledge of the details of the process and its termination
is sparse (see, for example, Barkat and Tuchman 1980). Evidence obtained
from stars further on down the white dwarf cooling track suggests that
the hydrogen layers remaining after the planetary nebula (PN) ejection are
quite small in mass — less than roughly 10~% Mg and possibly as small
as ~10~13 Mg (see below). The best estimate for the helium-layer mass
is given by Pelletier et al. (1986) as log(Mue/Me) = —3.5 £ 0.5. These
hydrogen- and helium-layer masses are much smaller than the maximum
masses which could remain unburned (a few x 10~* Mg and 1072 Mg, re-
spectively) and could suggest that the final episode of mass loss occurs as
a direct result of a helium shell flash instead of the usual picture wherein
mass loss stops with the extinguishing of the hydrogen-burning shell (see

e.g., D’Antona and Mazzitelli 1979).

To summarize, we believe that main sequence stars with masses up to
about 8 Mg evolve to become carbon/oxygen white dwarf stars with thin
hydrogen and helium surface layers. Gravitational settling and ordinary dif-
fusion quickly sort out the envelope, leaving any remaining hydrogen “float-
ing” on top of helium, itself surrounding the carbon/oxygen core. Most
evolutionary models suggest that there is also a trend for oxygen enrich-
ment with depth in the star, although the uncertainties in the >C(a,7)!0

reaction rate suggest that specific predictions are not likely to be unique.
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2.3 STARTING MODELS

We start our sequences as polytropes of order n = —g— (i.e., P o p*/3).
The early evolution of these objects is characterized by a contraction phase
at a constant luminosity of order 10%2Lg before rounding the “knee” in the
cooling track. The growing degeneracy in the core halts the contraction
and the surface temperature reaches a maximum of Teff > 100,000 K (see
Winget and Cabot 1980, Wesemael et al. 1982). In contrast, researchers who
have modelled the mass loss using phenomenologically within evolutionary
codes find that the cores of asymptotic giant branch models typically evolve
across the H-R diagram at a luminosity of order 10° to 104, and reach a
peak surface temperature well in excess of Teg ~ 100,000 K (Schénberner

1981, 1983; Wood and Faulkner 1986).

The question naturally arises: how do sequences with polytropic start-
ing models compare with those which start as evolved post-AGB cores? The
answer is that as we would have suspected, the thermal structures of mod-
els in the two sequences are very similar by the time they have cooled to a
luminosity of 1 Lg because the neutrino energy losses dominate the early
evolution (Kawaler 1986). The assignment of the “time of zero” for theoret-
ical white dwarf sequences is always fairly arbitrary, but is usually chosen
to be somewhere near the knee in the pre-white dwarf cooling track. In
this as in previous publications (Wood, Winget, and Van Horn 1987; Wood
and Winget 1989) our ages are computed relative to the polytropic starting
model. As we discuss below in §4.3, our age-luminosity relations merge with

those of other researchers at a luminosity of log(L/Lg) = —1.
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2.4 THE COMPOSITION TRANSITION ZONES

The high surface gravities of the white dwarf stars (log g =~ 8) leads to a
rapid gravitational segregation of the elements in the envelope (Schatzman
1958; Fontaine and Michaud 1979; Vauclair, Vauclair, and Greenstein, 1979;
Muchmore 1982, 1984, Pelletier et al. 1986). Any hydrogen remaining in the
stellar envelope after the expulsion of the planetary nebula bubbles to the
surface on a timescale of order 10° years. Similarly, the helium will feather
into the C/O core which it overlays. Thus, realistic models of white dwarfs

must include compositionally-stratified envelopes.

Most of our sequences have been computed with the composition transi-
tion zones idealized as discontinuities because this reduces computing time
and has a relatively small effect on the evolution of the interior. Models
with discontinuous transitions between compositional layers are too crude
for meaningful pulsational analyses, however, and so we have included in
WDEC the ability to compute models with the composition transition zones
approximating the equilibrium diffusion profile as determined by the grav-
itational and electric forces and the forces induced by the concentration
gradient. The timescale for this process is a strong function of depth in the
models such that we do not expect that the helium tail will have time to
penetrate below a depth of order 5 x 1072M, in the stars. The detailed
derivation of the equilibrium profiles is presented in Arcoragi and Fontaine
(1980). Briefly, the derivation assumes that the stellar plasma consists of
two ionic species of average charge Z; and Z; and of atomic weight 4; and

.Ag, respectively. Proceeding under the assumption that one element is trace
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in the other, we find that the abundance profile of element 2 in the back-
ground of element 1 is given by (see Tassoul, Fontaine and Winget 1990,

Equation 26): . o1
nCy ng

o o

(2.1)

where

A
ay=2(1+ Zy) ~ Zo — 1. (2.2)
Ay

The relations for the trace abundance of element 1 in the background of
element 2 are of course symmetric to these relations. In these relations,
¢i is the fractional abundance of element 7 by number [¢; = n;/(n1 + n2)]
and q is the mass fraction. We next assume that the trace approximation
holds over the entire transition region. This is obviously inconsistent, but
gives profiles with a minimum amount of computation which are reasonable
approximations to those resulting from recent time-dependent calculations
(Pelletier et al. 1986, Vennes et al. 1988). Within this approximation,
the abundance profiles are given by the solutions to equation (2.1) and

its symmetric partner, giving
o = k2q”?, (2.3)

C = qual. (24)

The system of equations is closed by requiring that at a given mass, ¢p, the
abundances of the two elements will both be X7 = X3 = 1/2, where ¢, 1s
determined by specifying that the integral over the abundance profile of the

element must equal the specified layer mass.

In our models we can only treat carbon and oxygen in the interior calcu-
lations, and so to avoid discontinuities in composition at the core/envelope

boundary, we must force the helium abundance to zero there. Because we
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also want to have our core/envelope boundary as far out in mass as pos-
sible, we often will set the He/C transition zone to be much thinner than
the equilibrium profile (see Figure 2.2). This configuration may actually
be more representative of the real stars, because the helium-burning shell
should have left a sharp transition zone, and the diffusion timescales at this
depth are of the order of the evolutionary timescale (Paquette et al. 1986).

We discuss our detailed comparisons below in §5.1.5.

1 _:-—] | i | 1 | ] 1 i l ] { i IJ—g

5 8F =
g .6 —
Lt - c/0 He H _E
o HE -
= 2F E
0 - T =

0 -10 -15

Log(1—M,/Mo)

Figure 2.2: Two Approximations to Diffusive Equilibrium Composition Profiles. We
show the nominal equilibrium composition profile (dashed line) for a sequence with
log(Mye/Mx) = —4 and log(My/Mi) = —10 calculated in the trace approximation
as described in Arcoragi and Fontaine (1980). Also shown is the profile we used in

practice (solid line) for reasons described in the text.
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2.5 SPECTRAL EVOLUTION

The relative fraction of DAs to non-DAs is a function of effective temper-
ature, suggesting that the dominant photospheric constituent may change
with evolution as a result of the competition between gravitational settling
and convective mixing (Strittmatter and Wickramasinghe 1971, Baglin and
Vauclair 1973, Winget and Fontaine 1982, Fontaine and Wesemael 1987). In
particular, at a temperature below ~10,000 K, the surface convection zone
in DA models begins to move inward into the star in step with the base
of the partial ionization zone. If the hydrogen layer is sufficiently “thin”
(My < 108 M,) then the base of the convection zone digs below the H/He
transition layer as the star cools (Koestér 1976; Vauclair and Reisse 1977,
and D’Antona and Mazzitelli 1979; Tassoul, Fontaine, and Winget 1990).
Are the hydrogen layers so thin? The answer appears to be a qualified yes.

Winget and Fontaine (1982) showed unambiguously that models with
hydrogen-layer masses greater than My = 10~% M, were not pulsationally
unstable at the observed temperatures of the DA instability strip. On the
basis of these calculations, they suggested that the observed narrowness
of the instability strip combined with the observational fact that most, if
not all, stars in the strip are photometric variables (Fontaine et al. 1982,
1985) probably indicates that most, and possibly all, DA variables have
thin hydrogen layers. The fact that the DAVs differ from the entire pop-
ulation of DAs only in effective temperature further suggests that all DA
stars have thin hydrogen layers. The “yes” above must be qualified, how-
ever, because the stars in the instability strip are only ~0.5 Gyr old, as

compared with the ~9 Gyr age of the white dwarf stars at the luminosity of
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the turndown in the white dwarf luminosity function. It is possible that the
initial-final mass relation has evolved with the metallicity increase over the
history of the Galaxy, and also possible that the details of the separation
between the asymptotic giant branch stars’ expanding envelopes and the
pre-white dwarfs that live within them have changed as well. The observa-
tional/theoretical results of Bergeron et al. (1990), however, indicate that
the photospheres of essentially all of the coolest DA stars have a significant
helium content, with log N(He)/N(H) spanning ~1072 (the detection limit)
to 1014, compared to the more typical limit of 10~5. These authors suggest
that essentially all cool white dwarfs have hydrogen layers thin enough to
allow convective mixing with the subsurface hydrogen layer at an effective
temperature of T, ~ 11,500. This suggests that the initial-»final mass re-
lation has not changed dramatically, nor have the details of the planetary

nebula separation process.

2.6 CONSTITUTIVE PHYSICS

A number of theoretical calculations have been published over the years,
and the more-recent of these have included quite detailed treatments of the
microscopic physics of both the envelope and interior. A representative
subset of such calculations includes Iben and Tutukov (1984), Iben and
MacDonald (1985, 1986), Koester and Schonberner (1986), Mazzitelli and
D’Antona (1986), D’Antona and Mazzitelli (1989), Winget et al. (1987),
and Wood, Winget, and Van Horn (1987). Although the age-luminosity
relations from these studies appear at first glance to be incommensurate,
Winget and Van Horn (1987) showed through a first-order perturbation

analysis that if everyone had adopted the same constitutive physics relations
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and had computed the same model, they likely would have arrived at the
same age-luminosity relationship. We compare our results against the above
in detail in §5.3; for the remainder of this section, we discuss the specific
choices we have made for our equation of state (EOS), opacities, neutrino

rates, and convective treatment.
2.6.1 Interior Equation of State

We will maintain consistency with the calculation of Lamb and Van Horn
(1975) and use the same expressions for the various physical properties. We
use the equation of state (EQS) generator of Lamb (1974) to compute the
carbon and oxygen interior EQS tables, and interpolate in composition to
a specific C/O mixture using the additive-volume technique described in
Fontaine, Graboske, and Van Horn (1977). The EOS incorporates contri-
butions from the kinetic energies of the electrons (which may be arbitrarily
degenerate and relativistic — see Eggleton, Faulkner, and Flannery 1973)
the radiation field, electron exchange interactions (Kovetz, Lamb, and Van
Horn 1972) and Thomas-Fermi contributions (Salpeter 1961). In the ion
liquid phase we add to this the ions’ ideal gas contribution, the Coulomb
1ivquid term (Hansen 1973; Slattery, Doolen, and DeWitt 1982), and the
quantum liquid correction (Wigner 1932). Alternatively, in the ion solid
phase we include the Madelung energy of the body-centered-cubic (bec) lat-
tice and the corresponding phonon contributions (Carr 1961; Cohen and
Keffer 1955; Kugler 1969), with screening of the optical modes of the lattice
treated similarly to Kovetz and Shaviv (1970) but using a semirelativistic

Thomas-Fermi model.

For each of carbon and oxygen, we compute the transition between

the liquid and solid phases using exact thermodynamics (see Landau and
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Lifshitz 1980, p. 257), given our expressions for the EOS. The value of

I' = (Ze)%/akT, the ratio of Coulomb to thermal energies, varies somewhat
along the crystallization curve marking the boundary between the liquid
and solid phases but is in the range I'y, = 160 % 15. Here [(47/3)a3]"! =
n; = p/AH is the ion number density. The most accurate Monte Carlo
calculations of the fluid/solid phase transition in the one-component plasma,
a hypothetical system closely related to white dwarf matter, have recently
given I'y, = 178 £ 1 (Slattery, Doolen, and DeWitt 1982) and ', = 180+ 1
(Ogata and Ichimaru 1987).

Recently, Ichimaru et al. (1983) have raised the possibility that the white
dwarfs may not freeze into a bec lattice, which is the lowest energy state, but
instead form a metastable, amorphous, glassy state. Because the state is
metastable, it eventually makes the transition to the bec configuration. For
example, Ichimaru et al. compute that for 56Fe at ' = 210, the transition
should take of order 10° years, which is negligible compared to white dwarf
cooling times. Thus, the maximum effect this suggested state might cause
is to delay the release of latent heat of crystallization by at most a few 108
years, which is small compared to other uncertainties in the calculations.

Thus, we do not consider this state further in our calculations.

We compute our crystallizing models by assuming that the liquid phase
undergoes a first-order phase transition to the bcc solid. Our treatment of
the crystallization front advancing through pure-C or pure-O interiors is as
described in Lamb and Van Horn (1975). When the temperature and pres-
sure of a given mass shell j are on the solid side of the pre-computed crys-
tallization boundary, the thermodynamic quantities corresponding to that
shell are interpolated from the solid portion of the EOS table. Alternatively,
if the (P,T) point indicates that the material has not yet crystallized, we
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interpolate in the liquid portion of the EOS table. Our EOS tables are on a

(log P,logT') grid, and we use a two-dimensional, 4-point Aitken-Lagrange
interpolation procedure to extract the needed thermodynamic quantities.
To insure that each interpolation uses (P,T) points from only one or the
other portion of the EOS table, no matter how close to the crystallization
boundary, the table includes a 16-isotherm overlap region in which ther-
modynamic quantities have been calculated for both states, regardless of
which state is formally applicable. In the case of C/O mixtures we assume
that the matter crystallizes as an alloy if, for the temperature that it is at,
Pg}}) > Xc- Pgit + Xo - P(C)’it, where Pt is the pressure at crystallization

for a given temperature.

It was suggested by Stevenson (1980) that C/O ionic mixtures might be
immiscible in the solid phase. In this picture, the white dwarf stars would
start with some C/O profile before freezing and end with an oxygen core
surrounded by a carbon mantle, itself surrounded by the surface helium and
hydrogen layers. The release of gravitational potential energy associated
with the restructuring could in principle be large and have a significant
effect on the age of the Galactic disk as inferred from the white dwarf stars
(Mochkovitch 1983, Garcia-Berro et al. 1988). However, as discussed by
Ichimaru et al. (1988), Stevenson made some unwarranted (and incorrect)
assumptions in deriving his phase diagram. Recently, two groups have
calculated the C/O phase diagram using the density functional approach,
and concluded that although the phase diagram is either of the spindle
(Barrat, Hansen, and Mochkovitch 1988) or azeotropic (Ichimaru et al.
1988) kind, they do not expect there to be a chemical separation of the

elements upon freezing. We consider the matter thus to be settled.
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2.6.2 Envelope Equation of State

The physical conditions in white dwarf envelopes are quite complex and
the demands on the equation of state are substantial. In our envelope
integrations, we used the tabular equation of state developed by Fontaine,
Graboske, and Van Horn (1977) for pure H, He, and carbon compositions
and which includes the effects of incomplete ionization, electron degeneracy,
pressure ionization, and other non-ideal-gas effects. Although it does not
include the crystallization transition, we regard this equation of state as the
best currently available for matter under such conditions. Thermodynamic
quantities used in the envelope calculation are obtained by two-dimensional,
three-point, Aitken-Lagrange interpolation, which tests have shown to yield
fractional errors less than 10™3 in the interpolated quantities. As suggested
by Fontaine, Graboske, and Van Horn (1977), we have used the additive
volume prescription to interpolate in composition in the non-discontinuous

transition zones.
2.6.3 Opacities

The total opacity is given by the relation:

1 1 1
. 2.
=+ (2.5)

K Ke

where k; is the radiative opacity and «. is the conductive opacity. We have
used the conductive opacities of Itoh et al. (1983, 1984) and supplemented
them below log p = 1.6 with the older Hubbard and Lampe (1969) opacities
as fit by Lamb (1974; for C) and Fontaine and Van Horn (1976; H and He).
In practice, we use the Itoh et al. opacities exclusively above log p = 1.8, the

Hubbard and Lampe opacities below log p = 1.5, and interpolate linearly in
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the logarithm in the transition region (the fitting formulae they give extend
to only log p =~ 1.6).

The Itoh opacity calculation includes the best understanding of the
structure factor of the ions in the high-temperature, classical limit, and the
dielectric screening due to degenerate electrons. They are in good agreement
with the calculations of Yakovlev and Urpin (1980) and Nandkumar and
Pethick (1984) in the high-density regime, but differ in the low-density
regime as a result of the inclusion of the relativistic dielectric screening
function. Yakovlev and Urpin set the dielectric function to unity, which
is invalid in the low-density limit. In the calculation of the electrical and
thermal conductivities of matter in the crystalline phase, Itoh et al. (1984)
included the Debye-Waller factor, resulting in a reduction of the opacities
by a factor of ~2-4 near the melting curve. To determine the effects
of switching to the newer opacities from the Hubbard and Lampe (1969)
opacities, we include a pair of parallel sequences which differ only in the
conductive opacities used. As discussed in §5.2.1 below, we find that the
Itoh et al. opacities are somewhat less than a factor of two larger than those

of Hubbard and Lampe in regions of interest (see Figure 4.18).

The radiative opacities we use are those provided by Huebner (1980)
supplemented below 12,000 K with the opacities of Cox and Stewart (1970).
The mixtures we have used are Iben I (Xy = 0.999), Iben V (X g, = 0.999),
and Weigert V (X¢ = 0.999). We interpolate in the tables using a two-
dimensional, two-point logarithmic interpolation and extrapolation, yield-
ing accuracies of 20-30 percent. We interpolate the opacities in composition
linearly by mass fraction for each of the radiative and conductive contribu-

tions, and then obtain the total opacity using equation (2.5).
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D’Antona and Mazzitelli (1989) have recently suggested that differences
in the interpolated or extrapolated radiative opacities between their models
and ours account for the differences in ages between our sequences and theirs
(their sequences are generally younger at a given luminosity). We show
in Figures 2.3, 2.4, and 2.5 our opacities for comparison with D’Antona
and Mazzitelli’s Figure 1. The hydrogen opacities compare quite favorably,
whereas the helium opacities show some differences. The primary difference
between their helium opacities and ours appears as a ridge in their opacity
table at a density near log p = 1. Our radiative opacity tables do not go to
such high densities for these low temperatures, and we extrapolate off the
table linearly in the logarithm of the variables. Although it is difficult to
read specific values off the D’Antona and Mazzitelli opacity plots, it seems
that if anything, our helium opacities are of the same order or smaller than

those they used.
2.6.4 The Treatment of Convection

We computed our convective transport properties using the standard
mixing-length theory of Béhm-Vitense (1958). We set the mixing length £

to be equal to one pressure scale height,

dr P
D e —— o 2.
Hp= i = (2.6)

or the geometric depth of the convection zone (whichever is less). When
integrating the envelope the step size is typically %H p, which is sufficient to
give the pressure at the base of the envelope to better than a few percent.
As we discuss below, an accurate treatment of the envelope physics is
essential in computing accurate cooling times for the models — the envelope

controls the outflow of heat from the stellar interior. The sensitivity of
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envelope models to differences in the treatment of the microscopic physics

has previously been discussed by Fontaine et al. (1974).

Most of our sequences do not include convective mixing, and in those
that do the treatment is extremely crude. The question of mixing is only
relevant for the DA models and occurs at temperatures below Tef < 11,500
(see Bergeron et al. 1990). Having computed a number of sequences with-
out regard to mixing considerations, we found that hydrogen layers with
masses of interest should mix completely at low luminosities. Because our
envelopes are static, we could not compute the compositional mixing case
accurately. We switch straight to a DB composition when the surface and
subsurface composition zone boundaries touch (see Figure 4.16 below). Al-
though this may not be correct in detail, we do expect it to be a reasonable
approximation, because the fractional hydrogen abundance in the mixed
convective region is several orders of magnitude less than the fractional he-
lium abundance, and the mixing occurs on a timescale short with respect

to the subsequent evolution.
2.6.5 Neutrinos

Neutrino energy losses in the hottest models can exceed the photon
luminosity by a factor of up to 50 or more. We have included neutrino energy
losses for the photon, plasmon, pair, and recombination processes from
Beaudet, Petrosian, and Salpeter (1967) and for the bremsstrahlung process
from De Zotti (1972). We have not included the modifications necessary for
consistency with the recently confirmed “electroweak” theory (see Dicus
1973; Weinberg 1974); however, they introduce only moderate reductions in
the neutrino rates in the hottest models (D’Antona and Mazzitelli 1990),

and quickly become unimportant. Neither did we include URCA process
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neutrino losses, because these are negligible in the regimes we encounter

(Beaudet, Salpeter, and Silvestro 1972).



3. TheFiducial Model
Sequence: X6400B

3.1 MODEL PARAMETERS

Having finished discussing the code and the constitutive physics that
goes into it, we are now ready to begin discussing the results. Space
constraints prohibit a detailed accounting of all of the sequences which
we have computed, but as a point of reference we describe in detail one
model sequence. This fiducial model sequence is intended to represent a
reasonable approximation to the structure of real white dwarf stars as we
currently understand them, yet is still simple enough that we may draw
meaningful conclusions when comparing it with other model sequences. The
choices for the input parameters which characterize the sequence are as
follows. We chose to compute a 0.6 Mg sequencé, consistent with the mean
mass determination of Weidemann and Koester (1984). The particular C/O
profile that we used in the core was guided but not dictated by the full
MS — WD evolutionary calculations of Mazzitelli and D’Antona (1986; see
their Figure 4) and D’Antona and Mazzitelli (1989; see their Figure 4). We

chose for the oxygen abundance profile

0.8, 0.0 < ¢<0.5,
Xo=1408~-2(¢g—05) 05<¢<0.9, (3.1)
0. 0.9 <q¢<1.0,

41
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where X¢ = Xo — 1 for all but the outermost 10~ M,, which is helium.
Because the 2C(a,7)'®0 reaction rate is larger at lower temperatures, the
products of core-helium burning are more oxygen-rich than are the products
of shell-burning, which occurs at higher temperatures and lower pressures
(D’Antona and Mazzitelli 1990). Another consequence of this temperature
dependence is that we expect larger total mass fractions of oxygen in lower
mass main sequence stars. The total oxygen mass fraction specified by
equation (3.1) is ~56% (see Figure 3.1), and is probably representative of a
remnant of a main sequence progenitor in the mass range 1.5-4 M. Because
helium photospheres are in the majority at low effective temperatures, we
decided to compute a DB model sequence with the helium-layer mass of
log( Mue/M,) = —4, consistent with the results of Pelletier et al. (1986).
We treated the helium/carbon composition transition as a discontinuity to
minimize the numerical noise introduced by interpolating in composition
and so that we could set the core/envelope fitting point M, to be as close

to the surface as is practical M, = 5Mpye.

We evolved the sequence from a maximum luminosity of log(L/Lg) ~ 2
to a minimum luminosity of log(L/Lg) =~ —5.4 in 78 timesteps (see Ta-
ble A.l in the Appendix). In the interest of saving space, we have interpo-
lated the summary listing onto a uniform luminosity grid using splines. Dur-
ing crystallization, certain models would not converge because of numerical
oscillations at the crystallization boundary (see Lamb and Van Horn 1975
for details). In these cases, we found that if we temporarily lengthened the

timestep, the new model usually converged without further problems.

In the following sections, we explore the detailed results of the fidu-
cial sequence through plots of the evolutionary quantities. We begin with

the global results and show log(age), log(7;), and the crystallization mass
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Figure 3.1: Mass Fraction of Carbon (dashed line) and Oxygen (solid line) as a
Function of Mr/My. The adopted C/O profile is intermediate between the results of the
detailed numerical calculations of Mazzitelli and D’Antona (1986) and D’Antona and
Mazzitelli (1989). We have made no attempt to represent the surface helium layer in

this Figure.

fraction Myta /M, versus log(L/Lg). We then discuss the evolution of the
envelope structure with cooling, before showing and discussing the evolution
of the interior and envelope quantities using surface plots similar in form to

the opacity plots above.
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3.2 GLOBAL RESULTS

In Figure 3.2, we show the logarithm of the age 7, the logarithm of
the core temperature T, and the crystallization mass fraction My¢a)/Mx
versus decreasing luminosity. Before discussing the curves themselves, we
should discuss our choice of independent variable. We believe that the in-
dependent variable should be an observable quantity instead of time. The
two choices are then log(L/Lg) and log(7es), and we chose log(L/Lg) over
log(T.) because the former is used in the presentation of the observed white
dwarf luminosity function (Liebert, Dahn, and Monet 1988), and because
the theoretical luminosity function is in the simplest approximation given
by equation (1.40). The choice is of course arbitrary, and to the extent
that §log(L/ L) = 46 log(Teg) (i.€., to the extent R, is constant), inconse-
quential. However, because the two representations do differ appreciably in
the high-luminosity phase, we include Figure 3.3 for comparison. Further,
the sequence summary Tables below contain redundant information in the
form of log(L/Lg), log(Teg), and log(R.), in addition to the age, log(T¢),

neutrino luminosity log(L,/Lg), and crystallization mass fraction.

Figure 3.2 shows the effects of neutrino energy losses at high luminosi-
ties and of crystallization effects at low luminosities, but is in reasonable
agreement with the Mestel prediction between these two extremes. Note
that in the crystallization regime the models are much closer together be-
cause the release of latent heat slows the evolution (the timesteps, though
monotonically increasing with decreasing luminosity, are nevertheless ap-
proximately constant over small luminosity intervals). The core tempera-

ture is initially held relatively flat with time from the neutrino emission,
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Figure 3.2: Evolutionary Summary Plot of the Fiducial Sequence x6400b. The
points which correspond to the converged models in the sequence are also shown here
connected. In addition. to showing the age, core temperature, radius, and crystallization
mass fraction as functions of luminosity, we also include in this Figure a line segment
that has the Mestel age-luminosity relation slope [log 7 = --5; log(L/Lg) + cst.]. To the

extent possible, we put all of our plots on one scale to simplify intercomparison.

but begins to decline more steeply near log(L/Lg) ~ —1.0 as neutrinos be-
come less important. The slope in the log(7;)-log(L/Lg) relation during
first the crystallization process and then again early in the Debye cooling
regime [log(L/Lg) ~ ~3.9 and --4.5, respectively] is slightly less steep than
the norm because of the T%—j— luminosity source associated with the jump in
entropy at the crystallization phase transition and later from the decline of
the heat capacity in the interior in the Debye cooling regime. We can see

the composition profile from Figure 3.1 reflected in the progression of the



46

I | l
10— —
-, | 1 1.00
"81’ 9 I Log(r
i 8 |— —1 0.75 .
" =
’g: 7 L Log(Age) —1 0.50 \g
<
T 6 loz2s =
‘-j 5 __ Mxtul/Ma . 0.00
| | I I l

5 45 4 35 3
Log(L/Le)

Figure 3.3: Similar to Figure 3.2, but here log(T.q) is the independent variable.

crystallization front. At the half-mass point, the slope of the curve changes

abruptly as the mass fraction of carbon changes.

With cooling the radii of the models (see Table A.1) asymptotically ap-
proach the radius of a fully-degenerate (zero temperature) object (Hamada
and Salpeter 1961), but they do so on a long timescale. At log(L/Lg) = 2,
the radius of the 0.6 Mg, fiducial model is nearly a factor of 3 larger than its
final radius, and it is still ~5% larger than its final radius at a luminosity
of log(L/Lg) ~ —2 (Teff = 16,000 K; teool = 0.18 Gyr). As discussed by
Koester and Schonberner (1986), it is important that observers use these
radii instead of the Hamada and Salpeter radii when dealing with hot white
dwarfs. We discuss this further in the next Chapter when covering the

behavior of the models as a function of mass.
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3.3 ENVELOPE EVOLUTION

In Figure 3.4 we show the evolution of the envelope on the same lu-
minosity scale as in Figure 3.2. Here, we have plotted log(l — ¢) on the
ordinate (where ¢ = M, /M,) to resolve the envelope and de-emphasize the
core. We show the He/C composition transition zone as a dashed line at
log(l — q) = —4 and the convective regions as hatched areas. From left
to right, the curves running from lower central to upper right are the loci
of n = 0, 10, and 20, respectively. We see that at high luminosities the
material is fully ionized out to the photosphere, and there is no surface
convection zone. As the temperature drops below that of second and then
first helium ionization, the convection zone digs deep into the envelope, flat-
tening the true temperature gradient, and so enhancing the rate of energy
loss. Shortly thereafter, at a luminosity log(L/Lg) ~ —2.7, the degenérw
acy boundary (n = 0) reaches the base of the convection zone. With no
radiative buffer zone between the degenerate interior and the convective en-
velope, the controlling opacities become the conductive opacities at the base
of the convection zone — the temperature structure is adiabatic from that
point outward. This change in efficiency in the energy transport through
the envelope at log(L/Lg) = —2.7 is reflected in Figure 3.2 in both the age-
luminosity relation and in the T,~luminosity relations, as was first noted in

Winget and Van Horn (1987).

3.4 A DETAILED LOOK INSIDE
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Figure 3.4: Evolution of the Envelope versus Log(L/Lg) for x6400b. Here we show
the dependence of the envelope structure on the luminosity of the fiducial model. We
show the He/C transition mass as a long-dashed line, the photosphere (r = 2/3) as a
short-dashed line, and the convective regions as hatched areas. We also include in the
envelope region the curves for n = 0 (medium/short dashed line), n = 10 (long/medium
dashed line), and 7 = 20 (medium dashed line) as a function of luminosity, showing the
degeneracy boundary reaches the base of the surface convection zone at a luminosity of
log(L/Le) = —2.7 for this model. Looking back at Figure 3.2, we see a change in the

age-luminosity relation at this luminosity.
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3.4.1 A Few Words on Presentation

We will compare these results with those of other sequences in the
following section, but for the remainder of this section we focus on the
details of the evolution of the thermodynamic quantities throughout the
models. In looking at these quantities, we will be using surface plots similar
to those used in Figures 2.3, 2.4, and 2.5. We show the variables in two
different ways using these surface plots. First, we show them as functions
of both ¢ and log(L/Lg), and define our coordinate system such that ¢
increases in the +z direction, log(L/Lg) decreases in the +y direction, and
the dependent quantity increases in the +z direction. These plots emphasize
the evolution of the interiors. In fact, only the interiors are plotted on these
plots: ¢ runs from a minimum of ~10~* (the innermost mass shell) to the
core/envelope boundary, which in the fiducial model sequence is at a depth in
the star Meyy = 5 x 10™% M,. Not including the envelope has the effect that
quantities which peak in the envelope (e.g., the opacity or the heat capacity)
are misrepresented. The other method of presentation picks up where the
first leaves off. Again we plot the dependent variable along the z-axis and
log(L/Lg) along the y-axis, but here instead of using linear mass along the
z-axis, we use log(1 — ¢), thus emphasizing the envelope (see also Tassoul,
Fontaine, and Winget 1990). We call these two methods of representation
the “interior” and “envelope” surface plots of the thermodynamic quantities,

respectively.

Although there is the potential for confusion between the two methods
of display, we felt it better to keep the Figures grouped by thermodynamic
quantity rather than by method of presentation. We do not use both displays

for all the variables, because in most cases one or the other is sufficient.
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To maximize the usefulness of these figures and to minimize confusion, we
have provided reference coordinate systems, labels for the z and y axes,
and contour levels in the z direction. To plot these values, we first used
splines to interpolate each model to a specified mass grid [i.e., one with
equal steps in either g or log(1 — q)]. We chose to use 51 grid points in the
mass interpolation in ¢ (for 50 mass steps of 0.02 M, ), and 69 grid points
in the interpolation of log(1l — ¢) spanning the range 0 > log(1 — ¢) > —17
(for 68 mass steps of 0.25 dex). We include lines tying the grid points of one
evolutionary model to the next to make it possible to read numerical values

easily from the figures.

Finally, we note that in the lower-luminosity models, the starting mass
in the envelope routine as given by the gray atmosphere routine can be as
large as 10~'% from the compression with cooling in the envelope. In the
highest luminosity models, the starting mass can also be larger than our
boundary at log(1l — q) = —17 because the envelope is radiative and the
gray atmosphere routine integrates to the mass where the optical depth is
10. For the purpose of the figures plotted against log(1 — ¢), we simply set
the height outside the interpolation region to the level of the skirt drawn

around the base.
3.4.2 Temperature

We first show the evolution of the interior temperature as a function of
both mass and decreasing luminosity in Figure 3.5. The Figure shows the
core temperature inversion at high luminosities resulting from the neutrino
energy losses. Depending on the stellar mass, the neutrino luminosity
can exceed the photon luminosity by a factor of ~5-10 in this luminosity

regime (see Figure 3.6). The dominant reaction involves losses by the
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Note the core

q and log{L/Lp).

temperature inversion at the highest luminosities (back corner) caused by neutrino energy

Interior Surface Plot of log(T) wvs.

Figure 3.5

losses. Once the core is cool enough that neutrinos are no longer a factor, the interior

temperature structure becomes nearly isothermal for the remainder of the evolution. In

this Figure which does not include the envelope, we can only see the beginnings of the

sharp temperature drop in the last mass shell (but see Figure 3.7).
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plasmon neutrinos; contributions by bremsstrahlung neutrinos and pair-
process neutrinos, however, are non-negligible, especially at the highest
luminosities. After the neutrino regime, the interior temperature is nearly
cénstant for most of the mass of the star, but drops precipitously through

the envelope (we see only a hint of this in this interior plot).

Figure 3.6: Fractional Contributions of the Various Energy Loss Mechanisms for the
Hottest Models. We see that for our models, the plasmon neutrinos provide the largest

contribution to the neutrino emission.
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We next show the envelope surface plot of log(T) in Figure 3.7. A
number of features are notable in this Figure. Again we start at the high-
luminosity end where we clearly see the core temperature inversion as a
folding over of the surface at the back corner. We see in the contour lines
the growth of the isothermal core. In the outer envelope, we see effects of
the second and first ionizations of helium moving inward in mass as the
luminosity drops below log(L/Lg) =~ 0. These ionization zones merge at
log(L/Lg) =~ —1.7 as the result of increased pressure ionization. As we
would expect, these ionization fronts coincide with regions of convective in-
stability, and efficient convection causes a steeper temperature gradient —
the convective region is clearly visible as a depressed region in the Figure
(cf. the envelope evolution plot in Figure 3.4), and the post crystallization
models show the effects of the degeneracy boundary pushing out the base
of the convection zone. Because the base of the convection zone becomes
(weakly) degenerate at log(L/Lg) ~ —3, the temperature gradient flattens
somewhat as a function of the increasing degeneracy. Noting the behavior of
the contour lines in the coolest models, we find that they follow the behavior
of the core temperature T, as we discussed above (cf. Figure 3.2); specifi-
cally, the overall decline in the temperature profile is slowed up first in the
crystallization process and second as the heat capacity begins to drop and
the thermal energy is in effect forced out. In the last few models the tem-
perature profile again drops rapidly with luminosity as the core moves well
into Debye cooling regime and as the base of the convection zone becomes
more strongly degenerate. These effects are most easily seen by looking first
at the feature caused by the temperature depression corresponding to the
inward-moving convection zone base [near log(L/Lg) = —2] and then at the

cool end of the sequence.
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Figure 3.7: Envelope Surface Plot of the Logarithm of the Temperature. The core
temperature inversion is apparent in the cores of the high-luminosity models, the growth
of the isothermal cores is reflected in the contour lines, and the convection zone is

apparent as the large depressed region in the outer envelope (cf. Figure 3.4).
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3.4.3 Density, Pressure, and Radius

In the next two Figures, we show the behavior of log(P) and log(p) in
the envelope surface plots in Figures 3.8, and 3.9, respectively. We see that,
as expected, the pressure and density structures change very little during
the evolution of the model. The initial contraction causes the pressures and
densities to increase globally at high luminosities. Once the contraction
phase is over, the subsequent evolutionary changes in the plot of pressure
are small, as we would expect for a constant-radius object in hydro-static
equilibrium; there is only a modest increase in the outer envelopes of the
cool models. Because the outer envelopes are well approximated by an i1deal
gas equation of state, it follows that for the pressure to remain relatively
constant while the temperature decreases (as we saw in Figure 3.7), the

density must increase. We see just such an increase in Figure 3.9.
3.44 Entropy

Itself proportional to the logarithm of the number of states in the sys-
tem, the entropy and specifically its change with time reflect the evolution
through stellar structure equation (1.20) relating the luminosity of the star
L, to T% (recall the discussion in the Mestel section above). We show the
interior surface plot of the logarithm of the entropy in Figure 3.10. The
entropy is relatively constant over the degenerate interior but increases in
the outer few percent (in mass) of the model where the degeneracy is lower.
The entropy is also only slowly declining with evolution until the onset of
crystallization. The freezing is a first-order phase transition from liquid
metal to solid, and acts as a luminosity source through equation (1.20).

The crystallization front proceeds out through the model with only a slight
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Figure 3.8: Envelope Surface Plot of the Logarithm of the Pressure. This Figure

emphasizes that the structure of these models changes very little over the course of the

evolution. There is a slight increase in the pressure in the cool models’ outer envelopes.
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Figure 3.9: Envelope Surface Plot of the Logarithm of the Density. The dominant
feature in this plot is the density enhancement in the convection zone. The density

structure of the degenerate interior is only a weak function of luminosity, as expected.
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only slowly declining with luminosity until the crystallization jump. This jump and the

subsequent overall decline in the Debye cooling phase act as luminosity sources through

(1.20). Note the change in axes.
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increase in the local entropy, and as the front advances outward in the mod-
els, the size of the entropy discontinuity across it increases and the rate
of advancement slows, both reflecting the transition to a pure-C composi-
tion. After crystallization, the material enters the Debye cooling regime
where the heat capacity drops dramatically with temperature, and because
the thermal energy is in effect forced out from the model, this too acts to
slow the evolution and we see the effect as a small secondary bump in the

age-luminosity relation, following the crystallization bump (cf. Figure 3.2).
3.4.5 Heat Capacity

The quantity CyT is a measure of the thermal energy stored per gram
of material. In Figure 3.11 we show the interior surface plot of the logarithm
of the heat capacity. Not surprisingly, the plot looks similar in form to the
entropy surface plot (recall that C, = 3-1‘?;;’171| ,)- At high luminosities (hence
high temperatures) the dominant term in the calculated heat capacity is the
electronic contribution. At the high-luminosity end near the half-mass point
and evolving outward in cooler models, we see the effect of the transition
from gas to dense liquid near I = 1. The transition between the two states
is smooth, and Figure 3.10 shows that it occurs at approximately constant
entropy. The transition is therefore not a first-order phase transition and
causes no overt modifications to the evolution of the models through the

release of latent heat, as is the case when the models crystallize.

In the dense liquid regime, which spans the largest luminosity interval,
the heat capacity is relatively constant, changing slowly from that charac-
teristic of an ideal gas (Cy =~ %k per ion) to that of a high-temperature solid
(Cy = 3k) (see, for example, Van Horn 1968, 1971). Upon crystallization,

Cy decreases by about 5 percent. Afterwards, the heat capacity continues to
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Figure 3.11: Interior Surface Plot of the Logarithm of the Heat Capacity. Near the
surface of the high-luminosity models, we see the effect of the gas-to-dense liquid tran-
sition near I' = 1 as an outward-moving bend in the surface plot which falls between
the second- and third-highest contour lines. In the dense liquid regime, which spans
the largest luminosity interval, the heat capacity is relatively constant, and rises slightly
before crystallization. There is a discontinuity in the heat capacity across the crystalliza-
tion boundary reflecting the discontinuity in the entropy. Once a solid, the heat capacity

begins declining as the model enters the Debye cooling regime.
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Figure 3.12: Behavior of the Integrated Average Heat Capacity Over the Evolution

of the Sequence. In this Figure we show the behavior of (Cy) over the evolutionary
sequence as a function of (T") (inset), and in the coolest models only (main panel). The
integrated heat capacity plummets for temperatures approaching zero. Note however
that because we are plotting the integrated average, even in the coolest models the heat

capacity is not falling as :r?, but more nearly as Te.

decline as excitation of the higher phonon energy levels becomes impossible,
but note that in contrast to the entropy (Figure 3.10), the heat capac-
ity remains relatively constant during the crystallization epoch, and does
not begin its rapid decline until crystallization is nearly complete. As we
discussed above, the temperature dependence in the Debye cooling regime
formally goes as T3. We show the behavior of the integrated average heat
capacity, (Cy), of the fiducial model as a function of the integrated average

temperature, (T'), in Figure 3.12, and find that as the temperature goes to
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zero, the integrated heat capacity falls more as a linear function of T' than

as T3.
3.4.6 Opacity

The rate at which the internal energy is released from the surface of
the star is intimately related to the opacity of the stellar material over the
structure of the model. The interiors of the models are strongly degenerate
and the material therefore highly conductive; hence, the conductive opacities
(Itoh et al. 1983, 1984; Hubbard and Lampe 1969) determine the interior
temperature structure. The envelope is non-degenerate and the controlling
opacities are the radiative opacities (Huebner 1980, Cox and Stewart 1970).
We show the interior surface plot of the logarithm of the total opacity
in Figure 3.13. Although flaring up in the envelope, log(x) is relatively
constant (and low) in the degenerate interior, increasing with decreasing
density and increasing temperature. The controlling opacity in the interior
is the conductive opacity, and as we noted above we are using the fitting
formulae of Itoh et al. (1983) for the dense liquid regime and those of Itoh et
al. (1984) for the solid regime. There is a factor of ~2-4 drop in the opacities
at the crystallization front as a result of accurately taking into account the
Debye-Waller factor (see Itoh et al. 1984 for details). Further, the opacities
continue to decrease in the Debye cooling regime as the Coulomb parameter

T’ increases.

In Figure 3.14, we show the envelope surface plot of the total opacity. We
see here the steep rise in the opacities in the non-degenerate envelope. In the
outer layers of the hottest models the helium is fully ionized and the opacity
is dominated by electron scattering processes. In slightly cooler models, we

see the opacity ridges corresponding to the two ionization stages of helium.
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Figure 3.13:
Model Sequence. As discussed in the text, we see the opacity increasing for decreasing
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crystallization front.
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Figure 3.14: Envelope Surface Plot of the Logarithm of the Opacity. At the highest
luminosities the opacity in the envelope is relatively constant. The opacities are largest
at the ionization front as it begins progressing inward in mass in slightly cooler models,

and the opacity maximum digs deep when the model get to log(L/Lg) = —2.
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The opacities are at their largest and the adiabatic temperature gradients
are at their lowest in regions of partial ionization, and as is well known,
matter in this state violates the Schwarzschild convective stability criterion
that V < V,q4 in regions of convective stability. It is the resulting surface
convection zone that is the cause of the plateaus we discussed in the envelope
temperature plot above (Figure 3.7). Near log(L/Lg) = —2, the opacity
maximum digs deep into the star and brings the convection zone with it.
Once the material is convective, the temperature gradient is adiabatic and
the magnitude of the opacities only matters in determining the convective
velocities. Note that in the low-luminosity models, the envelope opacities
are lower, suggesting that convection may be somewhat less efficient there,
although the temperature structure remains fully adiabatic and convection
still carries 100% of the flux. Tassoul, Fontaine, and Winget (1990). plot
convective velocities in their evolutionary models and in their Figures 19a
and 19b show that the convective velocities are relatively small in the the
envelopes of the coolest models. Look back at Figure 3.4 and note that the
photosphere in the cool models is formally outside the convective region.
Although we expect that some mixing should occur from overshooting (in
particular, the densities are high), and that the in a non-gray atmosphere
the photosphere would be further out in mass, it is interesting to speculate
that some fraction of the remaining (or accreted) hydrogen can exist in this
radiative region, unmixed with the convection zone below. This may help
explain the observations of Bergeron et al. (1990) who found that all the
cool DA stars they observed show spectral evidence for a significant helium
mass fraction. Their observations further support the idea that most if not

all white dwarf stars have hydrogen-layer masses log(My /M) < - 11.
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3.4.7 Temperature Gradients V and V4

By examining the behavior of the true (V = %{;‘1‘—%) and adiabatic
(Vg = % N d) temperature gradients in the envelope we learn of the
convection zone structure of the models. As the well-known Schwarzschild
criterion states, regions where V,q < V5.4 are convectively unstable and
through convective energy transport rapidly establish an adiabatic tem-
perature gradient. We show the evolution of V and V,4 in the envelope
surface plots in Figures 3.15 and 3.16, respectively. The core temperature
inversion causes negative values of V and so has a dramatic effect in the
cores of the highest luminosity models (however note that in the interior
Viad < Vad, always). Also in the interior region, we see a plateau in Vg
after crystallization resulting from the near equality of C'p and C'y in solids
(see Landau and Lifshitz, 1980, p. 195). The progression of the front does
not continue into the envelope because crystallization is not included in the
envelope equation of state. Indeed, in models cooler than this, the mass
shells at base of the envelope use thermodynamic quantities which are ex-
trapolated off the envelope EOS table, and as a result are correspondingly
noisy. This extrapolation is relatively stable when we compute models with
discontinuous He/C transitions, but gives unsatisfactory results when com-
puting models with composition transition zones that approximate diffusive

equilibrium, because these must rely on interpolations in the extrapolated

quantities (see §5.1.5 below).

In the outer envelopes of the hottest models in Figure 3.15 the helium
is fully-ionized to the photosphere and V is relatively constant throughout,
but with a ridge corresponding to the transition between He and C. Note

that this ridge decreases in size as the He/C boundary becomes strongly
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Figure 3.15: Envelope Surface Plot of V. The true temperature gradient is relatively

constant in the envelope at high luminosities. The base convective region is easily

discerned as the plateau in the Figure, and the He/C transition discontinuity is also
readily apparent in the hotter models.
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Figure 3.16: Envelope Surface Plot of V,q. The adiabatic temperature gradient
is relatively constant in convectively stable regions. In regions of partial ionization,
however, V.4 drops significantly. Compare with the envelope surface plot of the opacity

(Figure 3.14).
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degenerate, thus flattening the temperature profile. The partial ionization
regions begin moving inward in mass and are reflected as ridges in the
temperature gradient. The outline of the convective region is clear as is the
ridge corresponding to first ionization. Although the vertical scales in the
two Figures are very different, we can see that the ridges and depressions in
the convective region of Figure 3.15 correspond to the the depressed region in
the envelope surface plot of V,q (Figure 3.16). The adiabatic temperature
gradient is low in regions of partial ionization because small increases in
pressure act more to increase the ionization fraction than to increase the
temperature. In the plot of V4, we find a plateau near the surface of
the convective region. This region is fully convective, but not strongly
because the atoms are only incompletely ionized. Because of this, the
convective velocities are very low and the temperature gradient is essentially
the radiative temperature gradient (V & V ,4). As the models cool further,
the densities increase (at a fixed mass envelope mass) thus pushing the

ionization front out towards the surface again.



4. Variation ofModel
Parameters and
Constitutive

Physics

4.1 VARIATION OF THE MODEL PARAMETERS

In this chapter we intercompare the results of our sequences. In the
sections below, we discuss the effects of variations in stellar mass, core
composition, surface layer masses, composition transition zone profiles, and
the effect of convective mixing. In particular, we are interested in the effects
that these variations have on the age-luminosity relations for the models.
The large number of sequences preclude an exhaustive intercomparison, but
we have included summary listings of most of the sequences we discuss in the
Appendix. We also include a brief discussion of our nomenclature there, and

suggest that you may wish to review this discussion now before proceeding.
4.1.1 Variations in Stellar Mass

We now discuss the effects on the evolutionary time scale of variations
in the stellar mass, and begin by showing in Figure 4.1 the H-R diagram

of these sequences including age contours. In this Figure, we see that as a
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log(L/Le)

|Og (Teff)

Figure 4.1: Hertzsprung-Russel Diagram of the C/O Model Sequences. We show in

this Figure the luminosity—effective temperature tracks of C/O core sequences calculated
with the fiducial C/O profile for masses of 0.4-1.0 M@, sampled at intervals of 0.1 Mg.

Also shown are age contours (in units of 10° yr) spanning the range 0.1 Gyr to 15 Gyr.

function of luminosity, the low-mass models initially evolve the most quickly
because of their lower neutrino luminosities, larger radii, and lower total

thermal heat content. The age contours show that this trend reverses once
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the more massive models begin crystallizing, and we see clearly the effects

of Debye cooling in these models.

In Figures 4.2 to 4.4, we show the evolutionary summary diagrams of
DB sequences of masses 0.4, 0.8, and 1.0 Mg calculated with the fiducial
interior composition profile [see equation (3.1) and Figure 3.1], helium layer
masses of 10™* M and discontinuous He/C transition zones. In addition to
the Figures, we present evolutionary summary listings in the Appendix for
sequences of mass 0.4 to 1.0 Mg sampled at intervals of 0.1 Mg (Tables A.2
to A.7).

—{1.00
—10.75
—0.50
—10.25
| Mea/M _lo.oo
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Log(Age), Log(T,)

O O N 00 © O
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Figure 4.2: Similar to Figure 3.2, but for a 0.4 Mg model sequence.

As we inspect the Figures, we see that the core temperature at a given
luminosity is a function of mass. At high luminosities, the more massive

models have lower core temperatures at a given luminosity resulting from
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Figure 4.3: Similar to Figure 3.2, but for a 0.8 My model sequence.
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Figure 4.4: Similar to Figure 3.2, but for a 1.0 Mg model sequence.
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enhanced neutrino emissions. At log(L/Lg) ~ —0.8, all the sequences have
approximately the same effective temperature (~30,000-40,000 K) as the
neutrino luminosity becomes negligible. Below this luminosity, the models
are in the Mestel regime, and the core temperatures of the lower-mass
models are again larger at a given luminosity as a result of both the lower
overall degeneracy (and hence larger conductive opacity), and also the larger
fractional mass of the non-degenerate, high-radiative-opacity surface layers.
These opacity effects are also apparent in the T, —T.g relation (see the Tables
in the Appendix) where we find that the contrast between the core and
surface temperatures is larger in lower-mass models. The core temperatures
of the higher-mass models remain below those of the lower-mass models

through the Debye cooling regime.

Because higher-mass models have both greater neutrino and photon lu-
minosities, they evolve very quickly at high luminosities, and so are younger
at a given luminosity than the lower-mass models. There is a general cross-
over in the age-luminosity relations at log(L/Lg) ~ —1.5 (t.e., for a white
dwarf cooling time t.oo & 7x 107 Gyr) as the neutrinos cease to be an impor-
tant energy-loss mechanism. In the Mestel regime, the more massive models
are older at a given luminosity because first their greater mass means that
their thermal reservoir is larger, and second because their radius is smaller

and hence their luminosity at a given effective temperature is less.

Because the central pressures are higher and the core temperatures
lower, the more massive model sequences begin (and finish) crystallizing at
significantly higher luminosities than lower-mass sequences. For example,
the 1.0 Mg sequence x10400b begins crystallizing at log(L/Lg) ~ —2.5
(Teff = 15,100 K; tco0 = 0.6 Gyr) and is nearly completely crystallized at
log(L/Lg) ~ —4.2 ( Teff = 5800 K; tco0 = 5.6 Gyr). The 0.4 Mg sequence,
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on the other hand, begins crystallizing at log(L/Lg) ~ —4.0 (Teff =~ 4750 K;
teool & 3.7 Gyr) and is nearly completely crystallized at log(L/Lg) =~ —5.2
(Teff ~ 2380 K; teool = 16 Gyr. At the luminosity corresponding to the
onset of crystallization in the 0.4 Mg model, the 1 Mg sequence is already
greater than 90% crystallized and bound for the Debye cooling regime. As
a result, although the total latent heat released in the two sequences is
comparable — scaling approximately with mass — the effect on the age-
luminosity relation is greater in the lower-mass models because the energy
is released at a significantly lower luminosity. In general, we find that the
parameter which controls the effect of crystallization on cooling times is the

luminosity at which it occurs.

Finally, we discuss the radii of the models as a function of mass. In de-
termining mass distributions observationally, it is standard procedure to as-
sume that the stars follow the mass-radius relation of the zero-temperature
(completely degenerate) Hamada and Salpeter (1961) carbon-configurations.
In general, the models all asymptotically approach the radius of a zero-
temperature configuration, but on a timescale which is a function of the
mass. The higher mass models have smaller radii, of course, and approach
their final radii more quickly. To give a specific example the 1 Mg model
compresses to within ~5% of its minimum radius by log(L/Lg) =~ —0.5
(Teff = 47,000 K; teool =~ 4 % 108 yr) whereas the 0.4 M model doesn’t com-
press to within 5% of the zero temperature radius until log(L/Lg) ~ —2.4
(Teff ~ 11,700 K; teool = 0.3 Gyr). To show the importance of finite temper-
ature effects, consider that for an object at 15,000 K with a gravity measured
to be log g ~ 7.7 (i.e., characteristic of a 0.4 Mg object), neglecting the fi-
nite temperature effects will cause the derived mass to be systematically

low by a few hundredths of a solar mass — quite significant given that the
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model-independent scatter in the observed mass distributions is of order
o = 0.10 (Bergeron, Saffer, and Liebert 1990; McMahan 1989; Weidemann
and Koester 1984; Oke, Weidemann, and Koester 1984). The mass distribu-
tion is now being determined with such precision that these deviations from
the zero-temperature radii must be taken into account when converting an

observed gravity distribution into a mass distribution.
4.1.2 Variations in Core Composition

As we discussed above, the 12C(a, )80 reaction rate is not well de-
termined (Caughlan and Fowler 1988) and so the core C/O profile is not
well determined. Given this situation, we felt it best to compute parallel
sequences with pure-carbon cores and pure-oxygen cores to insure bracket-
ing the true composition. We show carbon- and oxygen-core sequences of
masses 0.4, 0.6, 0.8, 1.0, and 1.2 Mg, in Figures 4.5 through 4.9, respectively.
In addition, we include the evolution summary Tables in the Appendix for
masses 0.4 Mg to 1.0 Mg, inclusive, sampled at mass steps of 0.1 Mg, and
also for the 1.2 Mg sequences. These are in Tables A.8 through A.23.

In both families of sequences, we see the general behavior as a function of
mass which we discussed in the previous section. The core temperatures of
the high-luminosity oxygen-core sequences are slightly lower than compara-
ble carbon-core sequences because in general the neutrino losses are greater
for higher Z at a given temperature and density. After the neutrino losses
cease to be important, the trend reverses, and the oxygen-core sequences

have the higher core temperatures below log(L/Lg) ~ —0.5.

Because of neutrino losses, the oxygen core sequences in general initially

evolve more quickly and are younger at a given luminosity. This trend also
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Figure 4.5: Evolutionary Summary Plot for 0.4 Mg Carbon-Core and Oxygen-Core
Sequences. These models include surface helium layers of mass 10™* Mg have the He/C
and He/O transitions idealized as a discontinuities. In this and the following Figures, the
carbon-core quantities are represented with a solid line, and the oxygen-core quantities

with a dotted line.

reverses with the decline of the neutrino luminosity, and the carbon-core
sequences remain the older until crystallization. The oxygen-core sequences
crystallize at luminosities higher than those with carbon cores, and the
release of latent heat slows the evolution enough that they can for a time be
older than the others. The trend reverses for the final time shortly after the
onset of crystallization in the carbon-core sequences. Although the energy
released in carbon and oxygen crystallization is comparable, it is released
at a lower luminosity in the carbon-core sequences (by a factor of ~ §lg
in the 0.6 Mg models), and so has a correspondingly larger effect on the
age~luminosity relations. For example, the age difference between 06400

and ¢6400 at log(L/Lg) = —3.4 (just before the onset of crystallization
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Figure 4.8: Similar to Figure 4.5, but for stellar mass of 1.0 Mg. The oxygen-core

sequence has a surface helium layer mass of My, = 107% Mg.

in 06400) is ~2.5 x 10® yr for a fractional age difference of ~15%. At a
luminosity of log(L/Lg) = —5.0 both are fully crystallized and the age

difference is ~2.5 x 10% yr for a fractional age difference of ~20%.

We discussed in the previous Chapter the particularly central réles that
the entropy s and heat capacity Cy played in the cooling of the models. To
show the variations in these quantities as a function of mass, we present the
interior surface plots for log(s) and log(Cy ) for the 0.4 and 1.0 Mg carbon-
core sequences (i.e., c4400 and c10500). We show the interior surface plots
of log(s) and log(Cy) for the carbon-core 0.4 Mg sequence in Figures 4.10
and 4.11, and for the 1.0 M@ carbon-core sequence in Figures 4.12 and
4.13, respectively (comparable plots for the oxygen-core sequences look quite

similar to these).
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Figure 4.9: Similar to Figure 4.5, but for stellar masses of 1.2 Mg and a helium layer

masses of My = 1073 Mgy

Looking first at the run of entropy for the 0.4 My sequence c4400 in
Figure 4.10, we see many similarities with the fiducial sequence entropy plot
shown in Figure 3.10. The entropy is only slowly decreasing with cooling in
the neutrino and Mestel regimes, and crystallization again causes the jump
in entropy from the release of latent heat, although here the luminosity at
crystallization onset is lower and the crystallization process spans a smaller
luminosity interval. In the Debye cooling regime, the entropy begins to fall
off rapidly with decreasing luminosity. Up to this point we have shown only
the well-behaved models in a given sequence, but in Figures 4.10 and 4.11
we show all the models down to the coldest converged. In particular, you
will note the small discontinuity in the entropy near the end of the sequence
(3 models from the last). This jump is non-physical and is most likely the

result of the extrapolation off the equation of state for the mass shells at



81

TSR

\\\\ R

R R R R ARRAIIIIIRIIA

R s Tt

““,\-\&\\\\3%\2;\:.\\:\\\:\‘:\:‘::\\“:\\::\?\‘“ R 3 RS
KRR
R
AR

S SCEOCD
ORI QO ORSREICEICS
RSN
R RSO SSRESOSSCS
ARSI ITOOSES
SRR
RIS

‘s‘ .
g =
RIS
Il 05
¥ R ORORRN
PR RSN
T RREIELERRS
N ,' ""'..'«0" X
LTI
= U]
N

—
7
Ié'
\ 74
\
S
LSS
2R
LK%
ol

2>
(X
S
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Figure 3.10, but for the 0.4 Mg carbon-core sequence.
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the base of the envelope [the extrapolation can cause spikes in log(Cy)].
A discontinuity such as this one causes a corresponding step up in the
age-luminosity relation which in turn implies a bump on the luminosity
function similar to the crystallization bump. All of this is to say that the
evolutionary summary listings which went into making the Tables in the
Appendix were truncated to avoid these non-physical features. Next, the
plot of the heat capacity of sequence c4400 is shown in Figure 4.11. We
find many of the same features as are in the plot of the entropy. Compared
to higher-mass models the contraction phase is long-lived, and because of
this the heat capacity remains high to lower luminosities. In addition, the
smooth gas-liquid transition — visible as an outward-moving depression
on the surface in between the two highest contour lines — has also moved
to lower luminosities (cf. Figure 3.11). As before, the heat capacity rises
before crystallization from that characteristic of an ideal gas to that of a

high-temperature solid.

The plot of the evolution of the entropy for the 1.0 Mg sequence ¢10500
is shown in Figure 4.12, and there we see again that crystallization begins at
a high luminosity and spans a larger luminosity interval than for the lower-
mass sequences. The jump in entropy is larger than we just saw in the
0.4 Mg sequence, but because the release of latent heat is at a significantly
higher luminosity, the effect of crystallization on the evolutionary timescale
is smaller. Note the smooth decline into the Debye cooling regime. The heat
capacity of sequence c10500 is shown next in Figure 4.13, and we notice first
that there is little flare-up in the heat capacity in the most luminous models
except for the outermost ~10% of the hottest models where the Coulomb
parameter I' & 1. When the core begins to crystallize, there is little or no

change in the heat capacity of the very-strongly degenerate interior. There
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Figure 3.11, but for the 0.4 Mg carbon-core sequence.
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is a small change in the heat capacity as the crystallization front passes

through the outer ~50% of the model, but the change is small.

4.1.3 Variation of the Helium-Layer Mass
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Figure 4.14: Age vs. Helium Layer Mass at Three Selected Luminosities for Carbon-
Core and Oxygen-Core Sequences. Using model sequences ¢6200, ¢6300, c6400, and
¢6500, we show in panel A the effect on the age of the logarithm of the fractional
helium layer mass log(Mye/Mx) at the three luminosities log(L/Lp) = —4.2 (circles),
log(L/Lg) = —4.4 (squares), and log(L/L@) = —4.6 (iriangles). Because the carbon
opacities are greater than those of helium, thinner helium layers yield older models at a
given low luminosity. Panel B is similar to panel A, but for the oxygen core sequences

06200, 06300, 06400, and 06500. Note that the slopes of these fits are shallower.

The mass, or thickness, of the helium layer has a large effect on the
evolutionary time scales of the model sequences (see also Wood and Winget
1989). Carbon is in general more opaque than helium, as we saw above in the

opacity surface plots of He and C in Figures 2.4, 2.5, respectively, and also
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in the envelope surface plot of opacity for the fiducial model in Figure 3.14).
Evaluated at a luminosity typical of the turndown in the luminosity function
[log(L/Le) ~ —4.4], we find that the thinner the helium layer, the older a
model sequence will be at a given luminosity. To demonstrate this point,
we plot the ages (in units of 1 Gyr) of 4 carbon-core and oxygen-core
sequences at 3 selected luminosities in the two panels of Figure 4.14. The
eight sequences all have masses of 0.6 Mg, and the fractional helium layer
masses are log(Mye/M,) = -2, —3, —4, and —5 in each of the two groups
— 1.e., they are ¢6200, ¢6300, c6400, c6500, 06200, 06300, 06400, and 06500
(of these, we provide abbreviated evolutionary summary Tables for the
sequences c6200, c6300, 06200 and 06300 in Tables A.24 through A.27
in the Appendix).

The luminosities we have selected are in the regime of the turndown
in the observed white dwarf luminosity function; specifically, they are
log(L/Lg) = —4.2, —4.4, and —4.6. This range in luminosity nearly spans
the uncertainty in the determination of the absolute bolometric magnitudes
of the coolest observed white dwarf stars (see the discussion in Liebert,
Dahn, and Monet 1988), and so provides some measure of the uncertainties
in the Galactic age determination. At the outside, the helium layer masses
in the stars are probably not much greater than ~2 x 10™2 Mg (D’Antona
and Mazzitelli 1979), and recent determinations by Pelletier et al. (1986)
suggest it is likely to be 1073® Mg, plus or minus 0.5 in the exponent.
To the extent that our 0.6 Mg models are representative of the masses of
the coolest stars — still a topic open for debate — we find that the ages
could potentially range from a minimum of 5.3 Gyr [for sequence 06200

at log(L/Lg) = —4.2] to a maximum greater than 11.3 Gyr [for sequence
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c6400 at log(L/Lg) = —4.6. We discuss this further in the summary sec-

tion below, but note here that these two effects combined — helium layer
mass and core composition — are the two major theoretical uncertainties
in using the white dwarf stars as Galactic chronometers. We find that even
in the most conservative picture, the uncertainties in the age determination
are only roughly a factor of two. The fact that the core composition and
helium-layer mass are known more accurately than we have assumed means
that more detailed analyses will provide a stringent constraint on the length

of time since the onset of star formation at our galactocentric radius.

Probably as important as the ages themselves are the trends in age as a
function of helium layer mass for a given core composition and luminosity; a
straight line fits the results extremely well at a given luminosity. At a fixed

luminosity we fit the relation
tcool|[, =S5 - log(.MHe/.M*) + 1, (4.1)

using linear least squares on the theoretical data to obtain the magnitude
of these trends. In relation (4.1), S; is the age shift per decade change in
log(Mue/M,). Starting first with the carbon-core sequences (panel A in
Figure 4.14), we see that at log(L/Lg) = —4.2, the age shift per decade is
0.63 Gyr. At log(L/Lg) = —4.4, the age shift is 0.83 Gyr per decade, and
at log(L/Lg) = —4.6, 1.2 Gyr per decade (note that these three luminosi-
ties are chosen to span the observational uncertainty in the luminosity of
the WDLF turndown). The oxygen-core sequences are younger, and corre-
spondingly, the age differences are smaller. At the same three luminosities,
the age differences per decade in log( Mue/M.) are 0.50 Gyr, 0.69 Gyr, and
0.95 Gyr, respectively. The rule of thumb that we use is that the age shift
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per decade of helium layer mass is roughly ;i- Gyr at the luminosity function

turndown.

Although we do not include summary tables for any of ¢5300, 05300,
¢7300, 07200, 07300, or 07500, we have used them to examine the effects
of the helium-layer masses on sequences of masses 0.5 Mg and 0.7 Mg.
We find the age shifts in the 0.5 Mg sequences at log(L/Ly) = —4.4
to be 0.57 Gyr and 0.47 Gyr for the carbon- and oxygen-core sequences,
respectively. For 0.7 Mg, the corresponding age shifts per decade at the same
luminosity are 0.51 Gyr and 0.75 Gyr for carbon and oxygen, respectively.

The carbon age is anomalous because the sequence ¢7400 is still crystallizing

at log(L/Lg) = —4.4.

To review, we find remarkably linear trends in the variations of age with
the logarithm of the mass of the helium layer for a given stellar mass and
core composition evaluated at a specified luminosity. These age variations
are a direct result of the helium conductive opacities being lower than those
of carbon. We find that there is a trend towards larger age shifts when
evaluated at lower opacities, but the rule of thumb we apply is that there is
a N% Gyr age shift towards shorter ages for a factor of 10 increase in the

fractional helium-layer mass.

414 DA Models, No Mizing

4.1.4.1 The Effects of Varying the Hydrogen-Layer Mass

As we discussed above, our primary concern is to publish a complete
and homogeneous set of sequences for use in Galactic age studies. Because

a number of studies have shown that white dwarf spectra below ~10,000 K
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are dominated by the non-DA type, we have only discussed DB models so
far. However, most of the observed white dwarfs are of spectral type DA,
and so we would be remiss if we did not include discussion of these models

as well.

We begin here by discussing the effects of varying the hydrogen-layer
mass in compositionally stratified models that do not mix convectively with
the subsurface helium layer, and which have the transition zones idealized
as discontinuities. The hydrogen-layer masses that we will consider span
the range log(Mu/M,) = —4 to —12. The specific sequences we consider
are c6204, c6305, c6308, c6310, c6312, and c6410 (we include evolutionary
summary Tables for sequences c6204, ¢6310, and c6410 in Tables A.28,
A.29, and A.30 in the Appendix).

Before intercomparing the various DA sequences, we will first compare
c6410 against c6400. We show the evolutionary summary plot of c6410 in
Figure 4.15, and repeat in that Figure the curves from c6400 (z.e., from
Figure 4.6) for comparison. The first thing that we notice is that the two
sequences are more similar than dissimilar. Above log(L/Lg) ~ —3.1, the
ages of the sequences are always within ~1% of each other. For the hydrogen
layer thickness that we chose, the surface convection zone digs inward and
touches the subsurface helium convection zone at log(L/Lg) ~ —3.1 (see
Figure 4.16). The layers almost certainly mix when they touch, and the
appropriate age-luminosity relation below this point will be that of the DB
sequence. We note that this luminosity corresponds to an effective temper-
ature of Teff ~ 8,800 K and an age of t,0 & 1.2 Gyr and occurs well before
the onset of crystallization. In other words, the observations suggest that
models with thin hydrogen layers should be appropriate to most DA stars.
Not only are such models indistinguishable from DB models at high effective



91

temperatures, they become DBs at lower effective temperatures Because the
convection zone doesn’t dig deep until log(L/Lg) ~ —3.5, it is not until
this luminosity that the base of the convection zone and the degeneracy
boundary meet. At high luminosities, both the DA and DB envelopes have
their photospheres at about the same fractional mass, because the main at-
mospheric components in the two cases are both fully ionized, and electron
scattering is the dominant opacity source. Once the temperatures are cool
enough, there exists a partial ionization regime coinciding with the convec-
tion zone. The photosphere roughly follows the top of this convection zone
for the remainder of the evolution. Note that if we had allowed the layers
to mix when the convection zones touched, then the plot would resemble

Figure 3.4 below the mixing luminosity.

Next, we discuss the effects of varying the hydrogen layer masses over
the range log(My/M,) = —4 to —12. Because the surface convection zone
extends below the H/He interface in all but the thick hydrogen layer models
[i.e., log(Mu/M,) = —-4], and because convection is adiabatic, we find that,
excepting the case of a thick hydrogen layer, the hydrogen-layer mass itself
is not likely to be a great source of uncertainty in the ages of the models.
For example, comparing c6305 against c6310, we see that the age differences
at log(L/Lg) = —4.4 amount to roughly 0.5 Gyr. Recall that for the helium
layer, a change of a single order of magnitude caused a ~0.75 Gyr age shift at
this luminosity. In summary, we find that the hydrogen-layer mass has only
a small effect on the evolutionary time scale compared to core composition

and helium-layer mass effects.
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Figure 4.15: Summary Plot for Sequence c6410. We show here the summary plot for
c6410 (solid lines) and for comparison also show the relations for c6400 (dashed lines).
The two sets of curves are nearly indistingnishable before the onset of crystallization.

The sequence c6410 would mix at log(L/Lg) = —3.1 if we allowed it to.

4.1.4.2 Mass Dependent Cooling Curves

In §4.1.1 above we discussed the dependence on mass for DB model
sequences with carbon and oxygen cores. Here we extend that discussion
to DA sequences. We have calculated a series of models with surface hy-
drogen layers of log(Mg/M,) = —10 and subsurface helium layers of mass
log(Mye/M.) = -4, both overlying the fiducial C/O core profile (see Fig-
ure 3.1). The sequences by name are x4410b, x6410b, x8410b, and x10410b,
and are summarized in Tables A.32 through A.35 in the Appendix. The
evolutionary summary plots are similar enough to the DB sequences that we

do not show them. Furthermore, as we noted above, evidence suggests that
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Figure 4.16: Envelope Plot for Sequence ¢6410. Similar to Figure 3.4. Hydrogen
remains fully ionized to lower temperatures than helium, and so we see the surface
convection onset shifted to much lower luminosities than in Figure 3.4. The surface
convection zone touches the H/He subsurface convection zone at log(L/Lp) = —3.1. We
did not mix the two in the models that we used to generate this Figure, but if we had, it
would have caused the convection-zone structure to look as it does in Figure 3.4 below

the mixing luminosity.

most if not all of the coolest white dwarfs have a significant-to-dominant

helium abundance at the photospheres.

We included these Tables for completeness because some researchers

may prefer working from DA sequences. The radii are dependent on the
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surface layer masses and composition, of course, but at 20,000 K the radii
of the lower mass DA models (0.4, 0.5, 0.6) are larger than comparable
DB sequences only by about 1% for these thin hydrogen layers. Thicker
hydrogen layer masses do inflate the radii substantially. Sequences ¢6300
and ¢6305 suggest a radius increase of order 5% and sequences ¢6200 and
c6204 suggest a radius increase of order 6%, again at roughly 20,000 K
[log(L/Lg) = —1.6]. Because thin hydrogen layers hardly affect the radii of
the models, and because the evidence suggests the hydrogen layers in the
stars themselves are thin, it should be sufficient to use the DB radii as a

function of effective temperature for both DA and DB stars.
4.1.5 Variations in the Composition Transition Zone Profiles

Although we remarked that WDEC includes the ability to compute
models with the H/He and He/C transition zones approximating diffusive
equilibrium, all of the evolutionary summary Figures and Tables discussed
so far have been computed with the composition transition zones idealized as
discontinuities (for convenience, we call these “diffusive” and “discontinuity”
model sequences, respectively). Figure 4.17 is the evolutionary summary
plot for sequence ¢6400d, and shows at a glance why we chose not to use
the diffusion models as the benchmark calculations. The cool models in
this sequence show much larger fluctuations in the age-luminosity and T¢-
luminosity relations than do the discontinuity models of ¢6400. The bases
of the envelopes in the cool models have temperatures and densities off the
EOS tables of Fontaine, Graboske, and Van Horn (1976). In this regime, we
must extrapolate to obtain the necessary thermodynamic quantities. In the
discontinuity models, the extrapolation is off a single table and so is tolerably

stable; however, in the diffusive sequences, we are extrapolating off both the
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helium and carbon EOS tables in the He/C transition region, and then
interpolating between them to obtain the thermodynamic quantities for the
mixture. This interpolation in quantities which are themselves interpolated
is the dominant source of numerical noise in these cool models. The problem
is exacerbated because the diffusive models must have the core/envelope

boundary set deeper in mass to accommodate the deep tail of the helium

layer.
10
x
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Figure 4.17: Evolutionary Summary Plot for Sequence ¢6400d. In the neutrino
regime, this sequence (solid line) is nearly identical to c6400 (dashed line). In the
Mestel regime, c6400d has a higher core temperature resulting from the higher opacities
of the carbon tail which extends into the helium layer. The ages of the c6400d models
are slightly younger at the beginning of the Mestel regime but are older before the onset
of crystallization. The sequence c6400 crystallizes first because it has the lower core

temperature.
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Having discussed the problems of the cool diffusive models, we know
not to rely on them below log(L/Lg) ~ —4.4, depending upon the model’s
mass. Above this luminosity, however, the diffusive sequences are not only
adequate, but also are more nearly representative of the real stars. In
comparison with ¢6400 (see Tables A.10 and A.31), we see that the two are
nearly indistinguishable during the neutrino epoch. In the Mestel regime,
c6410d has core temperatures slightly higher than c6400 because of the
greater integrated opacities which result from extending the carbon tail into
the helium layer. Because of this, ¢6400 begins and ends crystallization at
luminosities higher than c6400d, and so is younger by approximately 3% at
log(L/Lg) = —4. In summary, we find that the diffusive model sequences
are quite similar to comparable sequences computed with discontinuous
composition transition zones before the core is completely crystallized. In
particular, the age-luminosity relations of the two sequences differ by at

most a few percent over the lifetime of the model.

4.2 VARIATION OF ADOPTED CONSTITUTIVE PHYSICS

4.2.1 Uncertainties in the Conductive Opacity

In the course of this investigation, we have had the opportunity to switch
from the “workhorse” conductive opacities of Hubbard and Lampe (1969)
to those of Itoh et al. (1983, 1984). In Figure 4.18 we show a total of four
parallel 6400 sequences. Sequence c6400h!l was computed with the Hubbard-
Lampe opacities, and sequence c6400, one of our standards, was computed
with the Itoh et al. opacities. The remaining two sequences are numerical

experiments, and were computed with the Itoh et al. opacities multiplied
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by a factor of two throughout (c6400itx2) and divided by a factor of two
(c6400it/2), respectively. Our attention focuses first on the substantial
differences among the curves at the cool end. The opacities of Itoh et al.
are larger than those of Hubbard and Lampe by a factor of somewhat less
than two in the region of interest, and this results in an overall trend toward
higher core temperatures, delayed crystallization, and older model ages as
a function of luminosity. At luminosities near the observed turndown in
the white dwarf luminosity function, we find that there is a 6-12 percent
shift to larger ages for the Itoh et al. opacities, and this translates to a
~0.5 Gyr difference at log(L/Lg) = —4.2 and a ~1.3 Gyr difference at
log(L/Lg) = —4.6.

The behavior at cool luminosities is understandable — models with
greater opacities have higher core temperatures and are older as a function
of luminosity — but the behavior observed at higher luminosities is not
so straightforward to understand. In the neutrino regime, we see that the
sequences with higher conductive opacities have lower core temperatures,
and this we might not have guessed. It is the core temperature inversion
that is responsible. As we discussed above, in these hot models, the neutrino
energy losses are a significant part of the total energy lost per unit time, and
because these losses are from the interiors of the models, they cause a core
temperature inversion. Because thermal energy flows from hotter to cooler
regions, there is a net thermal flux inward in these models to compensate
for the neutrino energy losses. In models with lower conductive opacities
the temperature gradients are smaller as a general rule, and so the core
temperatures will be higher compared to models with higher conductive

opacities and hence steeper temperature gradients.
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Figure 4.18: Variations in the Conductive Opacity. In this Figure we show the evolu-
tionary relations for the sequences c6400hl (dotted lines), c6400 (solid lines), c6400it/2
(long-dashed lines), and c6400itx2 (short-dashed lines). Sequence c6400 we have already
shown in Figure 4.6. Sequence ¢6400hl is computed using the Hubbard and Lampe (1969)
conductive opacities exclusively, and comparisons between these two sequences show the
upper limit to the uncertainty in the conductive opacities. Sequence c6400it/2 is com-
puted using the standard recipe for conductive opacities, but divided arbitrarily by a
factor of 2 before use to illustrate the effects of increased opacities. Sequence c6400itx2

is similar, but here the opacities are multiplied arbitrarily by a factor of two.

In the intermediate regime, near log(L/Lg) ~ —1.6, we see that al-
though the sequence with the highest conductive opacities (c6400itx2) al-
ready has the highest core temperature, it also has the youngest age —
again contrary to what we might have naively guessed. The explanation

again involves the neutrino energy losses. In this regime where neutrino
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luminosities are declining rapidly as a function of the core temperature, the
higher conductive opacities allow the neutrino processes to persist to lower
photon luminosities. The enhanced energy losses cause the models to evolve
more quickly through this luminosity regime than do models with lower con-
ductive opacities. Once the neutrino energy losses become negligible in all
sequences at about log(L/Lg) =~ —2.0, the models with the larger opacities

evolve more slowly than the others, and make the crossover to older ages at

log(L/L@) 2 —2.5.
4.2.2  Uncertainties in the Radiative Opacity

The radiative opacities that we use are those of Huebner (1980) for
the Tben I [X(H) = 0.999], Iben V [X(He) = 0.999], and Weigert V
[X(C) = 0.999] compositions. These have been supplemented with the
older Cox and Stewart (1970) opacities below Teff = 12,000. For our
sequences, we have used a simple bi-linear interpolation (in the logarithms
of all variables) on the opacity grid to determine the opacity at a particular
(p, T) point, giving an accuracy of roughly 20%. Note that models to be used
in pulsation studies provide smoother results if the opacity interpolation is
smooth at the grid points, as it is if for example splines are used (see Tassoul,

Fontaine, and Winget 1990).

D’Antona and Mazzitelli (1989) have suggested that the differences
between the age-luminosity relations that they obtain and those that we
obtain (their ages are substantially smaller, as discussed in §4.3, below)
are the result of differing choices for the radiative opacities. It is therefore
interesting to investigate the effects of large changes in the assumed radiative
opacities. We decided to test the importance of the radiative opacities with

an extreme test. We ran 4 sequences from the same starting model and with
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Figure 4.19: Variations in the Radiative Opacity. This Figure shows the evolutionary
summary curves for sequence c6400 (solid lines), and for three parallel sequences. Two of
these have the radiative opacities decreased, by one order of magnitude (dotted lines), and
two orders of magnitude (short-dashed lines), respectively. The third has the radiative
opacities increased by an order of magnitude (long-dashed lines). These results show that
uncertainties in the radiative opacities are not likely to be the dominant uncertainty in

the cooling calculations.

the same size timestep, all four ¢6400 sequences with discontinuities between
the helium and carbon layers. The only differences between the sequences
were the radiative opacities which were used in the calculations. The first
sequence used the straight radiative opacities as we normally calculate them.
The second had the radiative opacities increased by an order of magnitude,

and the third and fourth had the radiative opacities decreased by one and
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two orders of magnitude, respectively. We show the results in Figure 4.19.
Although there are differences apparent among the sequences, the surprising
result is that they are, in fact, small considering the extreme perturbation
given the opacities. We find that the age differences between the sequences
at the luminosity of the turndown in the white dwarf luminosity function
log(L/Lg) = —4.5 are approximately A7_45 = £1.4 Gyr for Alog g =
+1. Put another way, the fractional effect on the age is about 14% [the age of
the ¢6400 model is 10.4 Gyr at log(L/Lg) = —4.5]. The uncertainties in the
opacity are probably more on the order of 30% or less, and straightforward
scaling leads us to conclude that the real uncertainty in the ages at the

turndown is roughly +0.4 Gyr from uncertainties in the radiative opacity.
4.2.3 Crystallization Effects

We explore the effects of crystallization by artificially suppressing it in
WDEC. We can evolve for a time after the material is formally crystallized
because our equation of state includes a broad region of overlap between
the solid and liquid EOS regimes. In sequences c¢6400nx and 06400nx we
suppressed crystallization, and we compare these against ¢6400 and 06400,
respectively. We find that the models which suppress crystallization have
only a small rise in the age-luminosity relation at the luminosity of the
crystallization bump. In the carbon-core sequences, the maximum age
difference is about 2 Gyr and occurs near log(L/Lg) =~ —4.5. The oxygen-
core sequence is 50% crystallized at a luminosity which is roughly twice that
at which the carbon-core sequence is 50% crystallized. Accordingly, the

maximum age difference is about 1 Gyr at a luminosity log(L/Lg) ~ —4.2.
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More relevant than exploring the effects of suppressing crystallization
entirely was our next experiment. Recent one-component plasma calcula-
tions results by two independent groups suggest I'y, = 178 + 1 (Slattery,
Doolen, and DeWitt 1982) and I';, = 180 £ 1 (Ogata and Ichimaru 1987).
As we remarked above, when calculating the interior equation of state ta-
ble, we compute the melting curve that we normally reference during the
evolution to determine which portion of the EOS table (solid or liquid) is
to be used to obtain the thermodynamic quantities at a given (P,T) point.
This pre-computed melting curve is characterized by the critical value of
the Coulomb parameter I'y, & 160 (Lamb 1974, Lamb and Van Horn 1975).
We also compute a broad overlap region in which we calculate the thermo-
dynamic quantities for both the solid and liquid states, so that when inter-
polating the thermodynamic quantities, we reference only the solid, or only
the liquid, portion of the table. To test the sensitivity of the age-luminosity
relation to uncertainties in I'y,, we modified the evolution code to read in
I'yn on startup, and to then use this value to determine which portion of the
EOS table to reference, instead of using the pre-computed melting curve.
We calculated a sequence where we artificially set I'y, = 180 (i.e., consis-
tent with the recent determinations) and find that although the onset of
crystallization occurs at a core temperature approximately 12% below the
nominal value, the age difference at log(L/Lg) = —4.4 (tcool =~ 8.8 Gyr) is
~1% (with the T'y, = 180 sequence the older, as expected). The maximum
age difference is only ~7%, and occurs at log(L/Lg) ~ —4.0, where the
I';n = 160 sequence is the older because it is ~50% crystallized, while the
I'm = 180 sequence is only ~30% crystallized at the same luminosity.
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4.3 CoOMPARISON WITH OTHERS

Having discussed in detail how our models intercompare, we discuss
in this section how our models compare with those of other researchers.
We discuss our models in comparison to those of Mazzitelli and D’Antona
(1986; hereafter MD86), D’Antona and Mazzitelli (1989; DMS89), Iben and
Tutukov (1984; IT84), Iben and MacDonald (1985, 1986; IM), Koester and
Schénberner (1986; KS86), and Tassoul, Fontaine, and Winget (1990). We
begin by highlighting the main characteristics of the sequences in question

(see also D’Antona and Mazzitelli 1990):

¢ Mazzitelli and D’Antona (1986) compute the evolution of 5 white dwarf
sequences all with masses ~0.68 Mg. All start with a C/O core (~75%
O) evolved from a 3 Mg main sequence progenitor, but differ in their
surface layer masses and metallicities. Of the five, their sequences D and
E are the most physical. The metallicity of these two sequences is set to
be Z = 10~%, and we would classify the sequences as “7200” and “7207.”
The authors use a Newton-Raphson scheme (see Mazzitelli 1979) and
integrate from M, = 0 to the photosphere (optical depth mp = 2/3)
using ~800-1000 shells. The thermodynamics included are from Magni
and Mazzitelli (1979); crystallization and the release of latent heat are
included following Hansen (1973) and Pollock and Hansen (1973), with
' = 155, and they use the conductive opacities of Hubbard and Lampe
(1969). The ages of the two sequences D and E at log(L/Lg) = —4.4
are 4.9 Gyr and 6.47 Gyr, respectively.
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e D’Antona and Mazzitelli (1989) compute the evolution of 4 parallel white
dwarf sequences of mass M = 0.564 M. Using the same evolution
code but now using the Itoh et al. conductive opacities, they evolve a
1 M Population I progenitor from the main sequence to the knee in
the cooling track, where they branch to a total of 4 sequences, 3 with
Z = 1075 (Mg ~ 3 x 107%, 1078, and zero) and one with X = 0.75,
Z =0.02 (Mg ~ 3 x10™%). All 4 sequences have My, ~ 2 x 1072 M,.
The ages of the three models with Z = 10~ at log(L/Lg) = —4.4 are
5.94 Gyr, 4.49 Gyr, and 3.36 Gyr, respectively [note that the sequence
with My = 10~ mixes at log(L/Lg) ~ —3.6].

e Iben and Tutukov (1984) compute the evolution of a ~0.6 Mg white
dwarf models of type DA and DB from PNN to fully-crystallized config-
urations. The input physics are the same as used in earlier publications
by Iben and collaborators (Iben 1975, 1976, 1984). Although they in-
clude an analytic fit to the behavior of a Coulomb liquid after Hansen
(1973), the authors do not include the release of latent heat of crystalliza-
tion and more importantly do not include detailed convective envelopes.
In the IT84 DA model, the helium and hydrogen shells are thick, and a
hydrogen nuclear shell burning source persists well into the white dwarf
regime. The ages of their DA and DB models at log(L/Lg) = —4.4 are
8.04 Gyr and 9.33 Gyr, respectively.

e Iben and MacDonald (1985, 1986) use essentially the same microphysics
as Iben and Tutukov; however, because here the investigation focus is
the effect of diffusion on the models’ evolution, the authors included
detailed envelope structures with convection zones that were lacking in
the calculations of IT84. Again the mass of the sequences are ~0.6 Mg

and the hydrogen and helium layers are thick. The initial metallicity in
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the envelope is taken to be Z = 1073 or 0.02, and after 5 x 107 years,
diffusion has reduced the metallicity to Z < 1075 over the outer 5 x
10~* M,. Using the polynomial fit that Iben and Laughlin (1989)
give for the Iben and MacDonald (1986) cooling curve gives an age at
log(L/Lg) = —4.4 of 6.8 Gyr.

e Koester and Schénberner (1986) compute the evolution of white dwarf

" models of masses 0.598 Mg and 0.546 Mg both with and without thick
hydrogen layers, for a total of four sequences. Although nuclear burning
is included, the hydrogen layer masses are roughly a factor of two lower
than those of IT84, and burning contributions to the luminosity are
small. The core composition is 50/50 carbon and oxygen, and the
release of latent heat of crystallization is not included. The ages of
the 0.598 Mg DA and DB sequences at log(L/Lg) = —4.3 are 4.78 and
5.24 Gyr, respectively.

e The work of Tassoul, Fontaine and Winget (1990) is quite thorough, but
the models were constructed specifically for pulsation (not evolution)
studies, and do not include neutrino energy losses or crystallization.
These authors explicitly compare their models against those computed

by WDEC in detail, and we will not repeat the exercise here.

We show the age-luminosity relations for the DA and DB sequences in
KS86, MD86, and DM89 as presented in Table 2 of D’Antona and Mazzitelli
(1990) in Figures 4.20 and 4.21. Also in the DA plot, we include the IM86
age-luminosity relation given by the polynomial fit presented by Iben and
Laughlin (1989). We also include our sequences x6400a and x6402a (“a”
= 50/50 C/O in the core) in the Figures. In both we see that our ages

are considerably larger in the neutrino regime. The other three all used
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evolutionary starting models whereas our models started as polytropes, and
we strongly suspect that this is the origin of the age differences in this high
luminosity regime. Whatever the origin, the neutrino epoch is the great

reset, and our models merge completely with the others by log(L/Lg) ~ —1.
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Figure 4.20: DA Age-Luminosity Relations of Various Research Groups. All mod-
els are approximately characterized as 6204 models, although there are factor-of-two
differences in the layer masses. The IM86 curve (dot-dashed line) lies away from the
relations from DMB89 (short-dashed line), KS86 (long-dashed line), and our model (solid
line). This is a result of the model’s nuclear shell burning source (as an aside, note
how the polynomial fit smooths the age-huminosity relation compared to the others). In
the neutrino regime, our model is older than the others, probably because of the non-
evolutionary starting model. Crystallization and the release of latent heat has a large

effect on our models, but only a2 much smaller effect on the others.
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Figure 4.21: DB Age-Luminosity Relations of Various Research Groups. All models
are approximately characterized as 6200 models, although again there are factor-of-two
differences in the helium-layer masses. Again, in the high-luminosity regime, the ages of
our models (solid line) are not in agreement with those of DM89 (long-dashed line) or
KS86 (short-dashed line). All the models are in good agreement in the Mestel regime.
The sequence of DM89 crystallizes much earlier than the others (it is mostly oxygen),
and the ages at the luminosity of the turndown are several 10° yr younger than the other

three.

In Figure 4.20 we find that the curve of IM86 lies away from the other
three in the Mestel regime — their models have a significant luminosity from
a hydrogen burning shell source, and this delays the cooling and lengthens
the ages of the models at a given luminosity. These models were computed

with the maximum hydrogen layer mass allowed by the phenomenological
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Reimers’ mass loss formalism. The models of KS86 and DM8&9 both have
hydrogen layers roughly half that of the the IM86 models, and in both
sets of sequences the luminosity of the shell burning source is negligible
after the earliest phases of evolution. The current comsensus is that the
hydrogen-layer masses of the field DA white dwarfs are significantly less than
log(Mu/M,) ~ —8 — they may in fact be as low as log(My/M,) =~ —14
— and so we can feel confident that nuclear shell burning sources do not

provide significant luminosity over the white dwarf lifetime.

At low luminosities our models are the oldest of those shown in Fig-
ures 4.20 and 4.21. IM86 and KS86 did not include the release of latent
heat as a luminosity source, but we all accounted for the change in internal
energy as a function of the Coulomb parameter I', and all of the sequences
are held up in their evolution when I' = T',, as a result of this change.
Because KS86 do not include the release of latent heat, their models devi-
ate only slightly from the Mestel slope as the I' in the core passes beyond
' =~ 180.

MD86 and DM89 include crystallization and the release of latent heat
in their models, and although their DA model begin crystallizing at approx-
imately the same luminosity as our model in Figure 4.20, we find that the
effect of the phase transition on their model ages is evidently smaller than
on ours. The result of this is that their models are much younger than ours
at the luminosity of the turndown in the WD luminosity function. The
disagreement between the DB sequences is worse as shown in Figure 4.21,
where at log(L/Lg) = —4.4 our models are a factor of 2.3 older than theirs.
D’Antona and Mazzitelli (1989, 1990) have suggested that these age dif-
ferences are the result of the opacity differences between their models and

ours. They calculate using a metal abundance Z = 10~ compared to our
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use of Z = 1073, As we noted in the previous section, however, our model
ages are larger than theirs even when we reduce our radiative opacities by a
factor of 100. Therefore, we believe that differences in opacity probably do
not explain the age discrepancy. We suspect instead that it is the result of
differences equation of state, although no quantitative comparison has been

made.



5. Summaryof WD

Evolution

51 AN ITEMIZED SUMMARY

In the preceding chapters we have discussed in detail the evolution of
white dwarf model sequences. Qur goal in this work was to impart a solid
working “feel” for the behavior of white dwarf model sequences, and to pro-
vide a complete and homogeneous set of evolutionary sequences for use in
further studies of white dwarf stars. Because there exist a number of out-
standing uncertainties in the input quantities appropriate to these cooling
embers, we have proceeded by computing an extensive grid of sequences
which, to the extent possible, spans these uncertainties — z.e., we believe
that the parameters nature has chosen are embraced among the sequences
presented here. We highlight our main findings as an itemized list which
follows approximately the structure of the paper above, regrouped to pro-
vide a sense of continuity within the list itself. We note that the position
of a given item within the list does not indicate the relative importance of
that item (chances are excellent that if you are still reading this, you are
familiar enough with the subject to know the major points), but we do give
more space to those points we consider especially important. We highlight

oﬁr results as follows:

110
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¢ The starting models which begin the evolutionary sequence are cru-
cial in determining the early evolution of the object — in particu-
lar the age-luminosity relation. The epoch of neutrino energy losses
smooths over differences in the starting models, however, and our se-
quences, which begin with non-evolutionary polytropes, merge with
those of other researchers who use evolutionary starting models well

before log(L/Lg) ~ —1.

e Neutrino luminosities can exceed the photon luminosities by factors of
5-10 in the high-temperature models. Because the neutrinos radiate
from the center of the star instead of the surface, the core cools below
the temperature of the surrounding material and a core temperature
inversion is set up. The peak in the neutrino luminosity profile closely
tracks the temperature maximum out through the star as thermal flux
flows into the core. Once the neutrino epoch is over, the low conductive
opacities in the core and the large radiative opacities in the outer percent
(by mass) of the models cause the cores to become remarkably isothermal

for the remaining evolution.

¢ Finite temperature effects on the radii are important down to rela-
tively low surface temperatures for low-mass white dwarfs (e.g., for
Teff > 15,000 K in a 0.4 Mg model). We strongly recommend that
future studies which require the use of white dwarf radii as input (e.g.,
the derivation of a mass distribution from an observed gravity distribu-
tion) use these detailed model results instead of the zero-temperature
C-configuration results of Hamada and Salpeter (1961). Adopting the
zero-temperature results has become standard practice over the years,
but the precision and accuracy of the new observations demand that the

theoretical inputs be state-of-the-art as well. The current consensus is
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that the surface hydrogen layers are thin, because and differences be-
tween DA and DB radii are small for thin surface hydrogen layers, the
DB radii should be representative of all white dwarfs.

In the luminosity regime where the Mestel assumptions are most closely
satisfied (approximately over the range —1 » log(L/Lg) 2 —3), all the
sequences have the same (approximately-Mestel) slope independent of
core composition, surface composition, surface-layer mass, stellar mass,

or research group.

The heat capacity rises in the Mestel regime from the value characteristic
of an ideal gas (Cy ~ g—k per ion) to that of a high-temperature solid
(Cy ~ 3k per ion) before the onset of crystallization. The higher phonon
energy levels are increasingly unexcitable in the Debye cooling regime,

resulting in the general decline in Cy after crystallization.

The neutrino dip in the age-luminosity relations is larger for more mas-
sive models, but these models enter the Mestel cooling regime at a higher
luminosity than lower mass models. Because higher-mass models crys-
tallize and enter the Debye cooling regime at relatively high luminosities,

they are the youngest at luminosities log(L/Lg) =~ —4.5.

Although the total latent heat released through crystallization of less
massive models is lower than that released by higher-mass models, the
effect on the ages is greater because the energy is released at a substan-

tially lower luminosity.

Oxygen-core sequences evolve more quickly than the comparable carbon-
core sequences at all stages of evolution because of slightly higher neu-

trino rates, lower global heat capacity, and higher crystallization tem-
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perature; our models suggest that a 1.2 Mg oxygen-core star will evolve

to invisibility in less than 6 Gyr.

The discontinuity in entropy at crystallization acts as a luminosity source
through the energy generation equation relating L, to T%}g— [see equa-
tion (1.20)], and slows the evolution of the models substantially. As the
heat capacity drops in the Debye cooling regime, the thermal energy is
necessarily lost from the star, resulting in the drop in entropy observed

in the coolest models.

The melting curve in our equation of state corresponds to 'y, = 160,
but recent, more sophisticated determinations of I'y;, put the critical
Coulomb parameter at 'y, = 180. We used the broad overlap region be-
tween the solid and liquid portions of our equation of state to artificially
force I'y, = 180, and found that the age differences between this se-
quence and the an otherwise parallel sequence computed with "), = 160

are typically of order 1% [i.e., for log(L/Lg) < — 4.4].

In §1.3 we presented a generalized Mestel derivation, including an exten-
sion "into the fully-crystallized regime. The latter should be particularly
useful for studies of the white dwarf luminosity function which require
the age-luminosity relations to be extended to luminosities lower than

the converged models reach.

The envelope evolution in the DB sequences is dominated by surface
convection zones for temperatures lower than ~30,000 K. At a luminos-
ity of log(L/Lg) = —2.7 (for a 0.6 Mg model) the degeneracy bound-
ary reaches the base of the convection zone. After this point, the en-
ergy transport from core to photosphere is more efficient, and the age-

luminosity relation is depressed compared to the Mestel slope.
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e The helium layer mass has a strong influence on the evolutionary
timescale. Roughly speaking, every decade increase in the helium layer
mass changes the derived age by % Gyr at the luminosity of the white
dwarf luminosity function turndown. For carbon-core sequences the age
shifts per decade over the luminosity interval log(L/Lg) = —4.2 to —4.6
span the range 0.63 to 1.2 Gyr, and the age shift per decade for the
oxygen-core sequences spans 0.50 to 0.95 Gyr over the same luminosity

interval.

e In the surface convection zones of these nearly-constant radius objects,
pressure as a function of mass depth is in hydrostatic equilibrium and
so changes little with cooling. The temperature drops in the convec-
tion zone because of the reduced temperature gradient, and there is a

corresponding density increase and radius decrease.

e The DA envelopes are radiative to much lower luminosities than the
DB envelopes because of the lower ionization potential of hydrogen.
Hydrogen layers less massive than ~10~% M, should convectively mix
with the subsurface convection zone at log(L/Lg) ~ —2.7. Bergeron
et al. (1990) report convincing observational evidence that this mixing

does occur, and find it to be at a temperature of Tef ~ 11,500 K.

e Although the thickness of the helium-layer mass strongly influences the
ages of the models, variation of the hydrogen-layer mass affects the ages
only marginally for layer masses of interest. Because we now believe that
the stars’ hydrogen layers are thin enough to mix at low luminosities, the
DB age-luminosity relations are the sequences of choice for luminosity

function studies.
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e Although diffusive transition zones are clearly the choice for pulsation
studies, the assumption of discontinuous transition zones affects the age—
luminosity relation by only a few percent at luminosities characteristic of
the luminosity function turndown. Because our goal here was to produce
models which will be useful in studies of the white dwarf luminosity
function, and because our models with diffusive composition profiles go
bad at a significantly higher luminosities than the discontinuity models,

we focussed on the latter.

e Artificially scaling the radiative opacities over three orders of magnitude
does not affect the ages as much as varying the conductive opacity by
only a factor of only four. In the low-luminosity regime where the models
do most of their aging, the base of the convective envelope is degenerate:
the energy transport is by conduction in the interior and by adiabatic
convection in the envelope. The radiative opacities are important only
at the photosphere. This result suggests that the differences between
our models’ ages and those of D’Antona and Mazzitelli (see DM90) are
not the result of the radiative opacities. We suspect that the origin of

the differences lies in the equation of state tables used.
5.2 APPLICATION: THE WD LUMINOSITY FUNCTION

The models that we have presented should provide working numbers
for researchers in the field for some time to come. These models will be
particularly useful in studies of the white dwarf luminosity function, as
the major lack in these studies has been a large, internally-homogeneous
set of theoretical white dwarf evolutionary sequences. These studies of

the luminosity function promise to provide the age and star formation
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history of the Galaxy at our galactocentric radius. Using only the 0.6 Mg
carbon-core and oxygen core models, we derived above (see Figure 4.14 and
naearby text) conservative upper and lower limits to the age of the local
disk of 5.3 and 12 Gyr. Wood (1990) using a subset of these models,
has suggested that using our best values for the structures of the stars,
the ages of the stars at the turndown are in the approximate range 8-
10.5 Gyr. The major theoretical uncertainties in this determination are the
core composition, helium-layer mass, and the mean white dwarf mass at the
turndown luminosity. The observational determination of the location of the
turndown is uncertain both because of small number statistics and because
the bolometric correction appropriate to the few stars that are observed is
itself quite uncertain (the latter is of course really a theoretical problem,

and a tough one at that).

5.3 OBSERVATIONAL FEEDBACK AND FUTURE DIRECTIONS
Whatever the ultimate resolution to these uncertainties, the real promise
in the technique is that through asteroseismological studies of the white
dwarf stars, we will eventually calibrate the theoretical sequence at the
temperatures of the DA and DB instability strips (the pulsating stars are
classified as type DAV and DBV, respectively. See Sion et al. 1983). As
the stars cool, the thermodynamic structure changes, and the periods at
which the star resonates changes in response. If there exists in the Fourier
transform of the light curve of a given variable an isolated, single, and stable
(in amplitude) peak, then evolutionary changes in the star will be observed
as a secular change of phase with time relative to ephemeris time, reflecting

the period change.
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The hot, pulsating DOV star PG1159 was the first (pre) white dwarf
object to have its rate of period change measured (Winget et al. 1985).
Curiously, although the magnitude of the results suggests an evolutionary
e~folding timescale of order 1 million years, the sign of P = dP/dt disagrees
with that suggested by pulsation studies of evolutionary PNN models, and
agrees in sign and magnitude with the contracting polytropic models of for

example (Winget and Cabot 1980).

Kepler et al. (1990) report that the 15 years of time-series photometric
data from the DAV G117-B15A is insufficient to give a 30 detection of P,
and estimated that if additional data were gathered only from a single site,
then it should be another 10 years before a detection is reached. In March,
1990, S. O. Kepler and collaborators observed the star with the Whole Earth
Telescope (Nather 1989, Nather et al. 1990), and because the data density
from the Whole Earth Telescope is roughly a factor of ten greater than is
typical of single-site data, they were able to make the measurement this
year. The measured value is P = (12.0 £ 3.5) x 10~%%ss™! (S. O. Kepler,
personal communication), and is roughly a factor of 4-10 larger than was
predicted by pulsation studies of carbon-core DA models (see, for example,
Wood and Winget 1988, Bradley, Winget and Wood 1989). The Whole
Earth Telescope network of observers has been working as a team for only
three years, but already it is clear that the new observations allow detailed
seismological studies of the white dwarf stars. For an example of the wealth
of information obtained using the Whole Earth Telescope on PG1159, see
Winget et al. (1990).

The models we present here should serve the community until we have
results from the next generation of white dwarf models which will include

explicitly the time-dependent mixing and sorting out of the hydrogen and
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helium in the envelope — our goal is to merge our interiors with the Montréal
convective/diffusive envelopes into the “ultimate” white dwarf evolution
code, probably using a finite element numerical formalism. The observa-
tional and theoretical advances that are currently being made by the white
dwarf community are impressive, and the next 10 years should be a golden

age in the study of white dwarf stars.



6. A ProbeofGalactic

Evolution

6.1 BACKGROUND

Time began with the Big Bang, and shortly thereafter the new matter
began fragmenting on progressively-smaller mass scales: from superclusters
to clusters of galaxies to the galaxies themselves and eventually to the
individual stars which brought it all to light. The stars and their parent
structures have evolved over time to become the universe as we observe it
today, and it is from this current picture that we try to reconstruct the past
history of it all. Our own Galaxy is the only one in which we can study the
constituent stars in three spatial dimensions (plus velocity space in many
cases), and our understanding of it largely defines how we think of all large
spirals, which as a class contain a large fraction of the luminous mass in
the universe. Since the onset of star formation at our galactocentric radius,
stars have formed, evolved, and died. The vast majority have left behind
white dwarf remnants with masses of typically M = 0.55 M after shedding
most of their mass in the giant and asymptotic giant phases preceding the

final planetary nebula separation.

The mass loss process is dynamical and one of the least-well-understood
processes in astrophysics, but for all the diversity of the upper right hand

of the H-R diagram, the white dwarf stars are a remarkably homogeneous

119
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class. Although stars of up to approximately 8 Mg evolve to become white
dwarfs (Romanishin and Angel 1980, Weidemann and Koester 1983), the
observed gravity distribution (and hence mass distribution) of these stars
has a central peak that is quite narrow. Over 75 percent have derived masses
tightly clustered about (M/Mg) =~ 0.50-0.55 according to two recent stud-
ies (McMahan 1989; Bergeron, Saffer, and Liebert 1990). This clustering is
mfortuitous for our purposes here because it effectively removes an impor-

tant degree of freedom from the problem.

Because the total thermal energy in an average white dwarf star is
large enough and the rate of energy transport through the non-degenerate
(insulating) surface layers meager enough, even white dwarf remnants of the
earliest generation of stars formed in the local disk are still visible. These,
the oldest stars in the local disk, have written in them the Galactic age
and star-formation history. All but the hottest white dwarfs are necessarily
nearby — certainly at the turndown luminosity the white dwarfs sample
a small volume of the local disk — however, by symmetry arguments the
local sample should be representative of an annulus at our galactocentric
radius of Ry = 8 kpc. Furthermore, because the ellipticities of most stellar
orbits in the Galactic gravitational potential are fairly high at (typically) a
few tenths (Carney, Latham, and Laird 1990), the annulus should have a
breadth, of order % Ry.

It has been suspected for some time that there could be a turndown
in the white dwarf luminosity function resulting from the finite age of the
Galaxy (Schmidt 1953, Weidemann 1967), and D’Antona and Mazzitelli in
1978 laid out the mathematical formalism for calculating theoretical white
dwarf luminosity functions within the context of a galactic evolutionary

model. However, it was as recently as 1979 that Liebert demonstrated the
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reality of the turndown (see also Liebert 1980) and 1987 that Winget et

al. presented theoretical luminosity functions corresponding to ages of 6, 9,
and 12 Gyr over a further updated observed luminosity function. Although
their stated aim was more to demonstrate the viability of white dwarf
cosmochronology than to derive a precise value for the age, they did report
that their curves suggested that the onset of significant star formation in
the Galaxy occurred about 9.3 & 2 Gyr ago. The mathematical framework
used by these authors was quite straightforward. They constructed their
integrated luminosity functions by summing constant-birthrate luminosity
functions of 0.4, 0.6, and 0.8 My pure-carbon model sequences, weighted
by the observed luminosity function of Weidemann and Koester (1984) at
log(L/Lg) ~ —2.0 (the mean luminosity of that observed sample). By
proceeding in this manner, the authors neglected the mass dependence of
the ages of the main sequence stars which give rise to the white dwarf
population; however, to first order this approximation is valid because the

progenitor ages are in general small compared with the white dwarf ages.

Iben and Laughlin (1989) and Yuan (1989) used the cooling curves pre-
sented in Winget et al. in more sophisticated luminosity function synthesis
programs, and both explicitly included the main sequence evolutionary time-
scales. Both also found estimated disk ages in a broad range around 9 Gyr.
These improved treatments of the full evolutionary picture did show some
clear differences from the Winget et al. results, however. In particular, be-
cause of the neglect of main sequence evolutionary times, the Winget et al.
luminosity functions predict too sharp a peak compared to the others and

to the observations.

Iben and Laughlin (1989) and Yuan (1989) explored the luminosity
function thoroughly using the Winget et al. (1987) cooling curves, but these
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models are probably not as representative of the real stars as is desirable.
Above, I presented the results of a large, homogeneous set of evolutionary
model sequences, and I adopt them here in an extensive study of the white
dwarf luminosity function, expanding upon the work presented in Wood
(1990). I use the sequences discussed above to explore the effects that
uncertainties in core composition and helium layer mass have on the derived
luminosity function of the disk white dwarfs, and further, explore the effects
on the luminosity function of changes in the assumed star formation rate as
a function of time, the initial—final (I—F) mass relation, the initial mass
function of white dwarf progenitors, and of possible changes as a function of
age of the characteristic scale height above the Galactic plane of the stars’

orbits.

In addition to the disk population, there may exist a substantial popu-
lation of white dwarfs in the halo of the Galaxy. Liebert, Dahn, and Monet
(1989) constructed a preliminary halo luminosity function using the high-
velocity (Vian > 250 km s"l) tail of the Luyten 8-tenths sample. The halo
LF is derived using only six stars and so is subject to substantial change;
however it is suggestive in that it appears that the halo LF is still increasing
at the luminosity of the disk LF turndown. Previous investigations of this
potential halo population of white dwarfs include those by Mochkovitch et
al. (1990), Ryu et al. (1990), Tamanaha et al. (1990), Weidemann (1990),
and Wood (1990). As in the exploration of the disk luminosity function, I
explore the halo function parametrically using the model sequences tabu-

lated in the Appendix.

The remainder of this chapter is organized as follows. In §6.2 I discuss
the specifics of the LF synthesis programs, and in §6.3 the observed lumi-
nosity functions of Liebert, Dahn, and Monet (1988, 1989). I present the
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resulting disk and halo luminosity functions in §§6.4 and 6.5, respectively,
and then discuss these results as they apply to some of the current Galactic
formation and evolution models in §6.6. Finally, I close in §6.7 with a few

remarks on the future of white dwarf cosmochronology.

6.2 THEORETICAL LUMINOSITY FUNCTIONS

6.2.1 Numerical Specifics

In the simplest approximation, we consider the luminosity function that
results from a constant white dwarf birthrate of stars with a specified mass.

The resulting relation is

dtcool

® o dlog(L/Lg)’

(6.1)

where ® is in units of pc™3 My, This expression allows a convenient way
of examining the relative contributions that the different input evolutionary
sequences make to the full integrated luminosity functions. To compare
with the features of the observed luminosity function in detail, one must

integrate the full expression

My Ly
dtcool dm

& =M/L/ $(0) SO o5 g 4L M, (6.2)

where M and My, L and Ly are the lower and upper mass and luminosity
limits to the integration, respectively. The upper mass limit is typically
8 Mg, and as discussed below the calculations are relatively insensitive to
the specific choice. The lower mass limit is the main-sequence turnoff mass

for the input disk age (%4isk), and is obtained by inverting the relation for
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~2.5
the main-sequence evolutionary time scale, )15 = 10 (7&%) , thus giving

the mass corresponding to tprs = tgisk. The upper luminosity limit is 10Lg
(the results are insensitive to the exact choice), and the lower luminosity
is determined for each mass by interpolating between sequences for the

luminosity corresponding to the age

coor [Mwp(Mys)] = taisk — tms(Mus). (6.3)

The other inputs to the model include the star formation rate as a func-
tion of time, [SFR = ()], the initial mass function [IMF = ¢(M)], the
initial—final mass relation (—%ﬁ»), and of course the mass-dependent WD
cooling curves. For these relations, I have adopted the following parameter

set to define my standard model.
e Constant SFR,
e Mass limits: My =8 Mg, M = Miymof (tdisk ),
e Salpeter IMF: ¢(M) = (M/Mg)~ %%,
-2.5
o Pre-WD lifetime: tpr5 = 10 (ﬁ%) ,

‘e [—=F mass relation: Mwp = A - exp(B - Mys), where A = 0.49462 and
B = 0.09468 (see §6.5.2, below),

e No scale height inflation with increasing age.

For each mass sampled from M} to My, I calculate the main-sequence
evolutionary timescale, the weight given by the adopted IMF, the corre-
sponding white dwarf mass, maximum age, and the minimum luminosity
corresponding to this age. For each of the sampled luminosity points, I cal-
culate dt/dlog(L/Lg) using splines and centered differencing for each of the

two input sequences which bracket the mass in question, interp.ola,te between
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these two values in the logarithm of all variables, and then multiply by the

weights just discussed to obtain the LF contribution at the given mass and

luminosity.

I decided to use splines after trying both simple linear interpolation as in
Winget et al. (1987) and polynomial fitting as in Iben and Laughlin (1989).
Neither of these proved to be satisfactory. Linear interpolation between
models along the sequence is too sensitive to the model-to-model numerical
noise in the age-luminosity relations. Polynomial fits are not constrained to
pass through the points, and consistently “cuts corners.” This is especially
crucial at the low-luminosity end, and inspection of Figure 8 in Iben and
Laughlin shows that their fit to the Winget et al. 1.0 My model sequence
overestimates the age at the luminosity of the dimmest fitted point and
beyond (see their Figure 8), probably accounting for the high plateau they
found just beyond the luminosity off the turndown (e.g., their Figure 14).

6.2.2 Extrapolating the Model Sequence Age-Luminosity Relations

The evolutionary models detailed above terminate shortly after the crys-
tallization boundary reaches the core/envelope transition. The age and lu-
minosity of the final converged model in a sequence are functions of the mass
and core composition — massive and oxygen-rich sequences can evolve to
faint luminosities in much less than 10 Gyr. Because of this, it is necessary to
extrapolate the age-luminosity relation to arbitrarily low luminosities. Al-
though the extrapolations pick up at luminosities which are past the peak
in the single-sequence luminosity functions, they are crucial in determining

the shape of the LF beyond the turndown, and so should be as physically
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realistic as possible. As discussed in §2.3 above, we use a Mestel-like deriva-
tion with the assumption that the heat capacity in the Debye regime may

be approximated by

Oy =~ (Cv)o (%—0) (6.4

where nominally v = 3, and (Cy)o and (T')¢ are the mass averages over the

final model in the sequence. This leads to an age-luminosity relation of the

t—to=A- [1_ <.f_0)q} (6.5)

where tg and Ly are the age and luminosity of the last converged model in

form

a sequence, and where the exponent ¢ is a function of the adopted opacity
law and the value chosen for v in equation (6.4). Although the Lamb (1974)
equation of state does show Cy dropping approximately as T3 as T — 0
at a constant density, Figure 3.12 above shows that the integrated average
heat capacity in the Debye regime scales approximately as (Cy) « T —
i.e., v = 1. Using this and a Kramers’ opacity law (k = rop~! T*3), the
exponent ¢ in equation (6.5) is ¢ &® 1. The calculation of the leading term A
in the extrapolation relation nominally requires knowledge of the mean heat
capacity, temperature, and controlling opacity (xo); however, it turns out to
be sufficient to solve for A using the last two good points in the sequences.
Plotted against mass these show a clear trend and can be fitted with the
relation:

A =aexp(b- M) (6.6)

where a and b are the fitted parameters and M = M/M g, and the fit itself

is by standard non-linear least squares (see for example Press et al. 1986,
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Figure 6.1: Behavior of and Fits to the Parameter A as a Function of Stellar Mass
and Core Composition. The parameter A is the maximum age difference between the
last converged model in a sequence and the asymptotic limit. The points shown here
were from fits to the final two good models in a sequence for the carbon-core (squares),
oxygen-core {circles), and mixed C/O-core (triangles). The fits shown over the data are

of the form given by equation (6.6).

§14.4). Figure 6.1 shows the fits over the A’s for the three core-composition

choices.

I use these fitted values of A to calculate the extrapolations, and show
the resulting age-luminosity relations for the carbon-core, oxygen-core, and
carbon/oxygen-core sequences in Figures 6.2, 6.3, and 6.4, respectively. If
the extrapolations were perfect, then we might expect the asymptotic age to
be a smooth function of stellar mass for a given core composition. Inspection

of the three Figures shows that it is not, and this is an indication of the
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noise present in the process; however, even with the noise, this extrapolation
relation is far superior to the simple 2-point extrapolation in the logarithm
of the age and luminosity which others have used to extend cooling curves
in the past. The latter completely ignores the dropping global heat capacity

and so grossly overestimates the ages in the extrapolation region.

6.3 THE OBSERVED LUMINOSITY FUNCTION

The observed disk luminosity function (LF) has been presented most re-
cently in Liebert, Dahn, and Monet (1988; LDMS88), and using the six high-
velocity stars in this sample, Liebert, Dahn, and Monet (1989) constructed
a halo LF. It is worthwhile to discuss these LF's and their associated uncer-
tainties before proceeding with the theoretical results. Figure 6.5 shows the
two LF's in a format which differs slightly from that in Liebert, Dahn, and
Monet (1988). The data upon which the bright and faint portions of the LF

are based come from two different sources, and I discuss each in turn.

The bright end of the observed LF [My < +13, corresponding to
log(L/Lg) 2 - 3.3 and ages teoo <

~o

1 Gyr] is as determined by Flem-
ing, Liebert, and Green (1986). Their sample was drawn from the white
dwarf subset of the PG catalog, itself the result of the U — V excess,
magnitude-limited Palomar-Green survey, complete down to my = 16.5
(Green, Schmidt, and Liebert 1986). The LFs presented by Ishida et al.
(1982) and Downes (1986) are in at least reasonable agreement with the
Fleming, Liebert and Green result. Note that because the scale is logarith-
mic, 20 error bars are not simply twice the standard 1 ¢ error bars. For

working purposes, I normalize the disk LF's to the point log(L/Lg) = —2.91,
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Figure 6.2: Age-Luminosity Relations for the Carbon-Core Sequences. The age-
luminosity relations for the carbon-core sequences are shown (solid lines) including the
extrapolation beyond the final converged models in the sequences (dashed lines). These
DB sequences have masses 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, and 1.2 M. The surface helium-
layer masses are typically log{Mye/Myx) = —4, with the exceptions being ¢10500 and
c12500 at log( Mye/Myx) = —5. To facilitate intercomparison, this and the two following
Figures are shown on the same luminosity scale as the corresponding LF Figures 6.6,
6.6, and 6.8, below.

9
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Figure 6.3:

Age-Luminosity Relations for the Oxygen-Core Sequences. Similar to
Figure 6.2.
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Figure 6.4: Age-Luminosity Relations for the Carbon/Oxygen-Core Sequences. Sim-
ilar to Figure 6.2, these DB sequences have masses 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and
1.0 M@and all have helium layer masses of log{ My./My) = —4.
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Figure 6.5: The Observed Luminosity Functions of the Disk and Halo. The disk LF is

shown here in a form somewhat different from the original in Liebert, Dahn, and Monet
(1988; their Figure 3). The high-luminosity points are as shown in LDM88 (o), but I
combine the low-luminosity data from their Tables 6 and 7 to construct the uncertainty
(or error) boxes representing the cool observed LF (see text). The normalization point
used for the disk LFs is shown as a crossed circle (®). Also'shown here is the preliminary
observed halo LF as presented by Liebert, Dahn, and Monet (1989; o), constructed using
the 6 high-tangential-velocity stars in their sample.

log N = —3.54, which usually results in the curves not passing beyond the

upper limit of any single error bar.

It is the low luminosity objects that dominate the space density of white
dwarfs — the observed LF peaks at log(L/Lg) ~ —4.3 — and these ob-
jects are usually found in proper motion studies or as binary companions to

nearby stars. Luminosity functions constructed using proper motion selected
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objects may have a bias introduced favoring stars with large tangential veloc-
ities. Liebert, Dahn, and Monet (1988) used the 1/Viyax method of Schmidt
(1975), however, and because each star’s contribution to the space density
is itself a function of of its proper motion, the kinematic bias is removed di-
rectly. The 1/Vnax method requires a complete subset of the proper motion
catalog. The authors drew their sample from the Luyten Half-Second (LHS)
Catalog (Luyten 1979), selecting the 43 spectroscopically confirmed white
dwarf stars which satisfied the criteria: proper motion u > 0”8 yr—1, abso-
lute luminosity My > 13, and Galactic latitude § > —20°. In making their
error analysis, Liebert, Dahn, and Monet assumed that the uncertainty of a
given star’s contribution to the space density was equal to the value of the
contribution itself. Thus, the counting uncertainties in a given luminosity
interval can be dominated by a single uncertain contributing value. These

uncertainties are reflected in the vertical extent of the error boxes.

In addition to the counting uncertainties, the values of the luminosities
themselves are uncertain because the bolometric corrections (BCs) appro-
priate for the cool white dwarfs are not well known. Because of these BC
uncertainties, Liebert, Dahn, and Monet (1988) analyzed and presented
their data in two separate ways. First, they used the BCs predicted by cool
DA (hydrogen-atmosphere) models for the cool DA stars and blackbody
BCs for the cool non-DA models (no good atmosphere calculations exist
for cool non-DAs). These result in corrections of a few tenths of a mag-
nitude for the cool white dwarfs and suggest that the turndown occurs at
log(L/Lg) ~ —4.3. If the results were otherwise concordant, then this might
have been the end of the story; however, the authors found that adopting
the model/blackbody BCs implies that the cool white dwarfs are on average

larger and hence less massive than average. In contrast, we expect that the
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coolest white dwarfs should be more massive than average because more
massive white dwarfs have shorter evolutionary timescales and presumably
progenitors with shorter evolutionary timescales. To address this inconsis-
tency, the authors in their second reduction simply assumed that the BC
was zero for all stars. Although this has no physical basis, it does predict
that the cool white dwarfs have masses near the mean. Liebert, Dahn, and
Monet (1988), not knowing which of the two reductions was closer to the
truth, presented both as outside limits. In this same spirit, I present them
in Figure 6.5 as the left-hand and right-hand edges of the 3 uncertainty
boxes (cf. their Figure 3). Thus although we do not know observation-
ally the exact luminosity of the turndown, we do know that it lies between
log(L/Lg) ~ —4.3 and —4.7. This then is my criterion for acceptance in the
luminosity functions presented below. Those that pass through the lowest-
luminosity uncertainty box I consider to be consistent with the data, and

those that do not, are not.
6.4 SINGLE-SEQUENCE LUMINOSITY FUNCTIONS

In the most recent discussion of nuclear reaction rates, Caughlan and
Fowler (1988) estimate that the 12C(a,7)1%O reaction rate is uncertain to a
factor of 2, and this translates to correspondingly large uncertainties in the
core composition that should be modelled. Above, I presented a large, ho-
mogeneous set of evolutionary sequences that were likely to bracket the “cor-
rect” parametrization of the stars themselves, and in the spirit of Liebert,
Dahn, and Monet (1988), chose the 3 complete sets of sequences representing
the complete range of possible core compositions: pure-carbon, pure-oxygen,

and mixed carbon/oxygen cores. The mixed C/O core profiles are patterned
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after C/O profiles predicted by MS—WD evolutionary calculations and so
are likely to give the most reasonable ages. The profiles are parameterized
by equation (3.1) and shown in Figure 3.1 above. The model sequences
within the carbon and oxygen sets had masses of 0.4, 0.5, 0.6, 0.7, 0.8, 0.9,
1.0, and 1.2 Mg, and had helium envelopes and atmospheres with fractional
masses typically log(Mge/M,) = —4 [the 1.0 and 1.2 Mg sequences had
log(Mye/M,) = —5]. The composition transition zones were idealized as
discontinuities, but as was shown above there is not a large difference be-
tween these models and those that have the composition transition zones
set to approximate diffusive equilibrium. These three sets of sequences are

the inputs to the LF synthesis program unless otherwise noted.

As discussed in §7.2, the luminosity function of a single evolutionary
sequence is proportional to dt/dlog(L/Lg), and because it is a derivative
it amplifies the features present in the age-luminosity functions [which are
displayed as log(age) vs. log(L/Lg)]. Figures 6.6, 6.7, and 6.8 show the
single-sequence luminosity functions for the carbon-core, oxygen-core and
mixed C/O core sequences, respectively. These are the building blocks of
the integrated luminosity functions which follow, and so it is worthwhile to

discuss briefly the features and their physical bases.

At high luminosities, we see the strong effects of the neutrino cooling in
the interiors. The losses are immediate and are greater in higher-mass stars;
the so-called neutrino dip is therefore larger for these models. Although
neutrino losses are less important in lower-mass models, they persist to
lower luminosities because the degeneracy is lower overall and the conductive
opacities higher overall, resulting in a larger temperature contrast between

interior and surface. In the Mestel regime, all the models nearly satisfy the
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Figure 6.6: Single-Sequence Luminosity Functions for the Carbon-Core Model Se-
quences. See the text for a description of the mass dependence of the features. Compare
with the age-luminosity relations in Figure 6.2. The LF extrapolations are shown for the
sequences which are younger than 16 Gyr upon termination (dashed lines), calculated
as described above. Note that in this and the following Figures, the ordinate axis labels
read log N for the quantity previously defined as log ® in the text. I apologize for any

confusion this may cause.

criteria under which the standard Mestel cooling law is derived (see above

for details), and they all have slopes of approximately ® o t5/7.

Crystallization in the interiors of white dwarfs stars is a first order phase

transition with associated release of latent heat which acts as a luminosity
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Figure 6.7: Similar to Figure 6.6, but for Oxygen-Core Sequences. Compare with the

age-luminosity relations in Figure 6.3.

source through the fourth stellar structure equation relating luminosity L,
to %;#, where s is entropy (Van Horn 1968, Lamb and Van Horn 1975). The
pressures are higher in the cores of more-massive models, and they crystal-
lize first. The energy available in the crystallization process scales approxi-
mately with mass, but because the release begins at higher luminosities for
higher-mass models and is also more spread out in luminosity, the effect on

the ages is reduced. The luminosity interval spanned by crystallization is
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Figure 6.8: Similar to Figure 6.6, but for Mixed C/O Cores Defined by Equation (3.1).

Compare with the age-luminosity relations in Figure 6.4.

larger in higher-mass models, and the onset is more gradual. Because of
this, the effect on the luminosity function is smaller but more spread out.
Following crystallization, the models enter the Debye cooling regime, and
the global heat capacity and entropy drop with the core temperature, flat-
tening the age-luminosity relation substantially and resulting in the cooling
to microwave-background temperatures in a finite time span. The shape of

the LF is also affected by core composition. Oxygen crystallizes at higher
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temperatures (and hence higher luminosities) than carbon, and so for a given
stellar mass the effect of crystallization is less in the oxygen-core sequences
than in the carbon-core sequences. This results in a flatter peak compared
to the carbon-core single-sequence LF's, and smaller leading coefficients to

the extrapolation relation (6.5).

6.5 INTEGRATED DISK LUMINOSITY FUNCTIONS

6.5.1 Variations in Core Composition

Probably the largest uncertainty in white dwarf evolution is the core
composition of the stars themselves. Because the 12C(a,v)!%0 reaction rate
is uncertain to roughly a factor of 2 (Caughlan and Fowler 1988), the core
composition of the white dwarf stars as a function of progenitor mass and
composition is poorly determined. The behavior of the rate as a function of
temperature is non-intuitive and has been discussed recently by D’Antona
and Mazzitelli (1990). They point out that the ratio 2C/!%0 is primarily
dependent on the ratio of the cross sections for the 3a and 1*C+a processes.
The latter reaction is favored at lower burning temperatures, with the result
that there is enhanced oxygen production in regions where the temperature
is not too high. Thus, because the temperatures characteristic of core helium
burning are lower than those of shell helium burning, we expect a greater
fractional oxygen production in these regions. Similarly, we expect that
overall the fractional oxygen production in lower-mass stars will be greater

than that in higher-mass stars.
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Figure 6.9: Integrated Disk Luminosity Functions for Carbon-Core Sequences using
the Standard Model Parameters. Luminosity functions with input disk ages of 7-16 Gyr
(at intervals of 1 Gyr) are shown over the observed luminosity function of Liebert, Dahn,
and Monet (1988). Those which pass through the lowest luminosity error box have ages
9-12 Gyr.

Confronted with this uncertainty, I decided to bracket the true luminos-
ity function by computing theoretical luminosity functions with the carbon-
core and oxygen-core sequences from above in addition to the more real-
istic carbon/oxygen core sequences whose C/O profile was guided by the
Mazzitelli and D’Antona (1986) and D’Antona and Mazzitelli (1989) results.
Figure 6.9 shows the luminosity functions that result from integrating the
standard-model parameters (defined in §6.2 above) with the carbon-core se-
quences and input disk ages of 7 to 16 Gyr. Also included for reference in

this and subsequent Figures are the observational data of Liebert, Dahn,
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and Monet (1988). In the Figure, note first that all of the theoretical lu-
minosity functions converge at the high-luminosity end and that are all
reasonable approximations to the data there. Because the sequences that
we use start with polytropes at log(L/Lg) =~ 2 and do not converge with
the more-realistic tracks until a luminosity of order log(L/Lg) < 0, I do

not show the luminosity functions above this point.

The luminosity functions of the carbon-core models split off from each
other at approximately log(L/Lg) = —3.7, and peak shortly after this. The
peak in the mass function is between 0.5 and 0.6 Mg, and because each
of these individually peaks at log(L/Lg) ~ —4, the integrated luminosity
functions are fairly sharply peaked there as well. Beyond the peak, the low-
age luminosity functions turndown sharply, whereas the older ones are flatter
before turning down. The location of the dropoff is given approximately by
the age-luminosity relation for the peak of the mass distribution, and the
contributions beyond this point are from the high-mass white dwarfs, which
evolve more quickly (and whose progenitors also evolved quickly). Note that
the contribution of this high-mass tail to the luminosity function increases
for increasing disk ages, and that the rate of falloff decreases. Focusing
now on those luminosity functions which pass through the lowest-luminosity
error box, we find that the acceptable fits run from an age of about 9 Gyr
to slightly less than 12 Gyr. Note that Winget et al. (1987) fit carbon-core
models to data that had the bolometric correction applied (corresponding
to the left-hand sides of the low-luminosity boxes). The input sequences
and galactic evolution model that went into the curves in this Figure are
most similar to theirs, and interpolating by eye to the midpoint of the left-
hand side of the lowest luminosity box suggests an age quite close to their

estimate of 9.3 Gyr.
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Figure 6.10: Integrated Disk Luminosity Functions for Oxygen-Core Sequences using
the Standard Model Parameters. Luminosity functions with input disk ages of 6-12 Gyr
(at intervals of 1 Gyr). Those which pass through the lowest-luminosity error box have

ages of approximately 7-10 Gyr.

Figure 6.10 shows the LFs that result from integrating the standard-
model parameters with the oxygen-core sequences as input. The ages used
as input for the curves in this Figure are 6-12 Gyr, and those which satisfy
the acceptance criterion have ages ranging from roughly 7 to 10 Gyr. The
oxygen-core models diverge at a luminosity of log(L/Lg) = —3.4, and the
luminosity functions are flatter at the peak than the carbon-core models.
Although the observational errors are too large to draw solid conclusions, the
fact that these curves both rise and peak with a characteristic shape which is

closer to the observed may indicate that the cores are dominated by oxygen,
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as recent asymptotic giant branch calculations predict (see D’Antona and
Mazzitelli 1990). In addition, because the oxygen-core models are evolving
faster at the luminosity of the turndown, the spacing between the luminosity
functions is larger at the turndown luminosity. The oxygen-core models give
a lower limit on the disk age, especially if we consider thicker helium layer

masses.

Recall Figure 4.14 which demonstrated the dependence of the ages on the
adopted helium-layer mass. This Figure shows that the ages sampled at each
of three luminosities within the lowest-luminosity error box are to a good
approximation linear functions of the logarithm of the fractional helium
layer mass, as discussed above. Because this Figure was generated using
0.6 Mg sequences, it reasonably reflects the age shifts that we would expect
as functions of the core composition and helium-layer mass. For example,
the models I've used here have helium layer masses of log( Mye/M,) = —4. If
instead I had used models with log( My./M.) = —3, then I might expect that
the age ranges for the carbon and oxygen integrated luminosity functions
would be shifted to lower ages by roughly 1.0 and 0.7 Gyr, respectively
(depending on the luminosity under consideration). To the extent that the
stars at the turndown luminosity have masses near 0.6 My, Figure 4.14 gives
the conservative upper and lower limits to the age estimates for the local
disk obtained through a comparison with the observational upper and lower

limits to the lowest-luminosity error box.

Last of the standard model integrations is that using the C/O-core
models. The resulting luminosity functions are shown in Figure 6.11 for ages
7-15 Gyr, and because the model sequences are the closest to the structure
of the stars themselves, these LF's should provide the best estimate of the

age of the local disk of the families of curves shown so far. The curves which
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Figure 6.11: Integrated Disk Luminosity Functions for Carbon/Oxygen-Core Se-
quences using the Standard Model Parameters. The luminosity functions have input
disk ages of 6-13 Gyr (at intervals of 1 Gyr). Those which pass through the lowest-

luminosity error box have ages of approximately 7.5-10 Gyr.

pass through (or at least touch) the lowest-luminosity observational error
box have ages of approximately 8-11 Gyr. Note that in each of the three
cases discussed so far, the age spread is typically 3 Gyr over the observational
uncertainties. By contrast, if the observed points were not uncertain because
of the lack of good bolometric corrections, then the typical uncertainty of
the theoretical fits would be roughly half those suggested by these fits. I

will discuss this further below.



145

6.5.2 Variations in the Initial Mass Function

As reviewed recently by Scalo (1986), the determination of the initial
mass function has been a long-standing problem in astrophysics, and al-
though it is in nature intimately tied to the star formation rate (see also
Tinsley 1980, and Miller and Scalo 1979), we usually separate the two as in
equation (6.2) and write for the IMF, ¢(M) = (M/Mg)™®. As discussed by
Scalo, we find observationally that IMF's appear similar over a wide range of
galactic types and metallicities, that differences among the IMF exponents
« are only of order £0.5. Furthermore, there is no evidence for the IMF

being a function of galactocentric radius or local metallicity.

Beyond these time-averaged results, however, we find that the IMF
slopes are different for high-mass and low-mass stars, and that in fact the
high-mass and low-mass stars form in distinctly different environments. It
appears that whereas low-mass stars form in cold, dense cores typical of the
Galactic inter-arm environment in the disk (see Shu, Adams, and Lizano
1987; Boss 1989), high-mass stars form in warmer environments typical of
H II regions in the spiral arms — the idea being that the heating by the
high mass stars raises the Jeans mass (e.g., Silk 1977), and that shocks from
supernova events drive a cascade of formation (see Scalo 1986). We find a
significant absence of low mass stars in high-mass star forming regions, and
a similar lack of high-mass stars in low-mass star forming regions (see Bash
and Vissar 1981). Giisten and Mezger (1983) have suggested on the basis
of their chemical evolution studies that while the slope of the IMF is the
same throughout the disk, the lower mass limit, M, slides up and down
depending on the local environment. They suggest that M ~ 2-3 Mg

in the spiral arms, compared to My = 0.1 in the interarm region. The
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progenitor clouds of the high-mass and low-mass star forming regions have
differing scale heights. The dense cores in which the low-mass stars form
have a larger scale height than do the giant molecular clouds in which the
high-mass stars form, and as a result the low-mass stars themselves have a

larger scale height than high-mass stars.

The slope of the Salpeter IMF is observationally determined to be in
the range —2.3 > a > —3.4 (see Scalo 1986), and the question is: how
important are these uncertainties to the derived white dwarf luminosity
functions? As a test, I computed a series of variations on the standard
model with the slopes set to a = -1, —2, —3, and —4 for the carbon-core
sequences and an input disk age of 9 Gyr (see Figure 6.12). This range of
IMF slopes more than spans the current observational uncertainties, and we
see that even over this extreme range, the luminosity functions are relatively
insensitive to variations in the IMF, and suggest a ~1 Gyr uncertainty over
this IMF range. Similar results are found using the oxygen-core sequences
(not shown), and also by Yuan (1989) and Noh and Scalo (1990), who used
the Winget et al. (1987) cooling curves. Noh and Scalo noted that this is
one of the few cases where the effects of the IMF and the star formation

rate are essentially decoupled from each other.

In addition to variations in the slope of the IMF, it is also of interest to
consider the effects of variations in the adopted upper main-sequence mass
limit for the integration. This was investigated by Iben and Laughlin (1989),
who found little change in the resulting LF as My was changed from 8 Mg
to 6 M. Figure 6.13 shows luminosity functions calculated assuming upper
mass limits of My = 2, 4, 6, and 8 M. Here again these are variations from
the standard model for the carbon-core sequences and an input disk age of

9 Gyr. In examining the Figure, it is apparent that indeed the differences
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Figure 6.12: The Effects of Variations in the Initial Mass Function. The four
luminosity functions shown here were computed with IMF slopes of & = -1, -2, ~3,
and —4, and demonstrate conclusively that the white dwarf luminosity function is largely

insensitive to uncertainties in the IMF.

among the luminosity functions with the three higher-mass limits are quite
small — well within the current observational uncertainties. The curve
computed with the 2 Mg upper limit shows substantial differences from the
other three; however, because the white dwarf progenitors have masses that
extend at least to 5 Mg, this final curve is not physical. Again, the LFs
calculated using the oxygen-core sequences behave similarly, but are not

shown.

Finally, because the observations suggest that the lower MS mass limit

for star formation is a function of time, and in particular because it has
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Figure 6.13: The Effects of Variations of My on the Luminosity Functions. The
four luminosity functions shown here were computed with My = 2, 4, 6, and 8 Mg, as
labeled. The differences among the latter three are small, and indicate that uncertainties

in My are unlikely to be a source of uncertainty in the determination of the disk age.

been suggested that the lower mass limit was a decreasing function of time
in the early Galaxy, it is worthwhile to simulate this to see the results. I
have chosen three arbitrary but plausible analytical forms for the relation
M(t). Two of these are exponentially declining with time, and the third is

simply a long linear decline:
8e~133t  Case A,
My =< 8¢~ %40t (Case B, (6.7)
8(1— %), CaseC.
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Figure 6.14: Three Test Relations Simulating the Possible Monotonic Decline in M,
with Time in the Early Galaxy. The curves in this Figure correspond to the three cases

in equation (6.7) as indicated.

Of the three cases, the first is probably the most physical, as it suggests
that 1 Mg mass stars began forming approximately 1 Gyr after the onset of
star formation in the disk (see Figure 6.14). The luminosity functions cor-
responding to these curves are shown in Figure 6.15 along with a standard-
model luminosity function. They were computed using the carbon-core se-
quences and a disk age of 10 Gyr, with the remaining parameters according
to the standard model. In the Figure, it is apparent that if in fact My is
a function of time, then it will affect the location of the turndown. The
Case A relation shows an age shift of approximately 0.5 Gyr relative to the

standard-model curve (cf. Figure 6.9), and the Case B and C curves show
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Figure 6.15: The Effects of a Monotonic Decline in M (t) in the Early Galaxy. Three
of the four luminosity functions shown here were calculated with the M (t) relations

shown in Figure 6.14, and correspond by line type.

age shifts on the order of 1 and 2 Gyr, respectively. This result again em-
phasizes the point that what we are measuring with the falloff is the length

of time that low-mass stars have been forming in the local disk.

6.5.3 Variations in the Star Formation Rate

6.5.3.1 Galactic Formation and Evolution in Brief

As discussed in the recent comprehensive review by Gilmore, Wyse, and

Kuijken (1989; GWKS89), understanding the history of star formation in the
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local disk of the Galaxy is an important step to understanding galactic evo-
lution in general. To get things into context, it is worthwhile to consider
the picture in an evolutionary sense, starting from ¢t = 0. We know that the
Big Bang occurred, and we know that matter (at least the luminous mat-
ter) is clumped into galaxies and that the galaxies are clumped on larger
mass scales and so on, but that on the largest scales the universe appears
smooth. As discussed by Hogan (1990), early results from COBE (COsmic
Background Explorer) satellite show that the microwave background exibits
a 2.74 K blackbody spectrum with no apparent anisotropies other than the
dipole caused by the Earth’s absolute motion (see Lindley 1990). The im-
pressive jump in sensitivity achieved with this instrument provides at last
observational constraints on pre-galactic cosmology that are severe enough
to seriously challenge many long-standing ideas; most dramatically, it is
becoming increasingly difficult to explain the transition from the smooth
background to the currently-observed large-scale structure in terms of grav-
itational interactions only, and string theory is all but unraveled. What
this means for our purposes here is that we simply don’t know the times-
pan between the Big Bang and the onset of star formation — estimates run
from as short as 0.5 Gyr to as long as ~5 Gyr (see Fowler and Meisl 1986).

Furthermore, it is not clear that we will resolve the question soon.

The process of the formation of the Galaxy is also poorly known, but
at least here there exist number of observational constraints. The num-
ber of suggested formation models is large, including but not limited to:
rapid-collapse models (Eggen, Lynden-Bell, and Sandage 1962), pressure-
supported collapse models (e.g., Larson 1976), aggregate models involving

the accretion of a large population of dwarf spheroidals (e.g., Freeman 1987,
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Searle and Zinn 1978), and nonlinear models involving cloud disruption from

infall-imparted kinetic energy (Vasquez and Scalo 1989).

In the rapid collapse models, star formation starts throughout the proto-
galaxy on approximately a free-fall timescale (a few 10® years), whereas
in the pressure-supported collapse models, star formation begins in the
bulge and halo of the proto-galaxy on a short timescale but then sweeps
out radially through the disk over a period of a few billion years. Wyse
and Gilmore (1988) suggest a variant of this picture wherein the rate of
dissipation and the star formation rates increase substantially from increased
cooling once the metallicity climbs to [Fe/H] ~ —1 dex, leaving behind
a discrete population of stars with disk-like properties but with velocity
dispersion perpendicular to the disk of order 45 km s~! — the so-called
thick disk. Both of these models suggest that there should exist an age—scale
height relation for the oldest stars, and although such a trend is observed,
it will be some time before it is clear whether the observations indicate that
these stars are members of a separate thick disk population or are simply the
extended tail of the old disk (see Norris and Green 1989, and Gilmore, Wyse,
and Kuijken 1989 for a discussion of this). The aggregate models work from
the idea that the early proto-galaxy was not stable against smaller-scale
collapse in the virial collapse phase, but rather fractionated into a large
number of roughly globular-cluster-mass systems which then proceeded to
accrete to form the Galactic disk and globular cluster system as we observe
it today. In the nonlinear one-zone models of Vasquez and Scalo (1989),
infall of material onto the disk injects kinetic energy into the system of star-
forming clouds, potentially disrupting them. The authors found that infall
could suppress star formation for up to ~5 Gyr and that the termination

of this lull should be heralded by an energetic burst of star formation. The
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model is crude and extrapolating from a one-zone model to the entire Galaxy
is a stretch; however, it does seem plausible in view of the Vasquez and Scalo
results and the discussion in the previous subsection that the infall of matter
should at least heat the disk, raise the Jeans mass, and possibly enhance

the high-mass star formation rate.

The very existence of a thin, cold disk suggests that the collapse was
dissipative; if it was not the matter would be at the virial temperature of
roughly 10® K with a corresponding 1-dimensional velocity dispersion of or-
der 100 km s~!. The dissipation Likely proceeded first according to the virial
theorem, and then via ionizing radiative shocks and subsequent radiation
upon recombination (GWK89 and references therein). Although the picture
is in essence simple enough in concept, the presence of shocks makes it ex-
tremely difficult to model successfully, especially at the resolution needed
to track subsequent star formation. Typically, the constant density ap-
proximation is used, thus averaging over all local perturbations and greatly
simplifying the calculation (Rees and Ostriker 1977, Binney 1977, and Silk
1977). These authors have found that the calculated global cooling time-
scales are usually smaller than the free-fall collapse timescales for objects of
roughly Galactic mass and smaller M g 10'%, but not for masses charac-
teristic of groups and clusters of galaxies. The cooling times for the shock
ionized matter must be considered to be uncertain to an order of magnitude,
however, and this raises the very real possibility that the Galaxy sustained
an epoch of pressure supported, quasi-static collapse (e.g., Larson 1976).
Because the local environment suggested by this model is similar in many
ways to that of the high-stellar-mass-forming H II regions we observe to-
day, it is plausible to consider that the very early star formation history of

the Galaxy was dominated by high-mass star formation, and that only with
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time did significant numbers of progressively lower mass stars first form. In
other words, it is plausible that the lower mass limit of the IMF monoton-
ically decreased as the metallicity increased (see Scalo 1986). Because it is
precisely these stars that the white dwarfs are tracers of, the results below

may help differentiate among these early collapse models.
6.5.3.2 Theoretical Approzimaltions to the Star Formation Rate

Having discussed in some detail the various models which have been
suggested for the formation and evolution of the Galaxy, we now take a leap
to some simple analytical approximations to the SFR, and explore further

the match between the theoretical curves and the observations.

o
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Figure 6.16: Exponentially-Decaying Star Formation Rates with Selected Decay
Constants. The SFR curves are normalized to 1.0 at ¢ = 0, and have their e-folding

timescales printed along side.
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Beyond the crudest approximation — that the SFR has been constant
in time — the next step in complexity is to adopt a simple analytical
approximation to the evolution of the gas density pgas under the assumption

that the SFR approximately obeys

Y(t) o< P (6.8)

where 3 is usually assumed to be 1 or 2. An obvious choice for the functional

form of the SFR is an exponential decay with time,
(t) oc e=H/TSPR, (6.9)

where 7gpR is the decay constant, typically thought to be of order a few 10°
years. The curves in Figure 6.16 show a family of exponentially declining
SFRs and Figure 6.17 shows the luminosity functions calculated using these
curves, the carbon-core models, and the standard-model parameters for
everything else. The luminosity functions in Figure 6.17 use the carbon-core
sequences and an input disk age of 9 Gyr, and again are normalized to the
observed LF at log(L/Lg) = —2.9. Because the curves were all normalized
to the observations in the Mestel regime, and because for all the e—folding
timescales chosen the SFR is fairly constant for the most recent 1 Gyr, the
curves are nearly indistinguishable above log(L/Lg) =~ —3. Alternatively,
the curves could be normalized at the peak in the luminosity function, and
we would then find a substantial deviation from the brighter observed points
for the curves calculated with the short e-folding timescales. For reference,
I have also included in the figure a curve corresponding to the same model
inputs, but with a constant SFR. The differences between this curve and
those with e~folding timescales of 10 and 20 Gyr are quite small, and even

the curve with an e-folding timescale of 5 Gyr is within the errors when
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compared with the constant SFR model. Thus, it is not possible on the basis
of existing observations to prefer one of these prescriptions over the others,
although it is at least possible to rule out exponential-decay models that
have e—folding timescales of order or smaller than 2 Gyr. This is consistent
with other evidence that the SFR cannot have changed grossly over ~10 Gyr
(see, for example, Barry and Scalo 1990).

-2 ! | ! ! L -

Log N (Pc—s M bol_1)

Figure 6.17: Luminosity Functions Computed with Exponentially-Decaying SFRs.
The e-folding timescales used as input to the calculations were 1, 2, 5, 10, and 20 Gyr,
and for reference the Figure also includes a luminosity function computed with a constant
SFR. As discussed in the text, the models with e-folding timescales of order or greater

than 5 Gyr are consistent with the observed data.
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Clayton (1988) has quite reasonably suggested that a simple exponential

decay is unphysical because there is likely to have been a sustained infall

onto the disk as star formation began. Under this assumption, he derived

a relation for the evolution with time of the mass of the gas Mg(¢), again
assumed to be proportional to the SFR:

]V’[G(t) _ mwt{ Wi - (w'—w)t .

where Mgy is the initial gas mass, w is the gas consumption constant defined
by the relation wMg = (1 — R)1) where R is the gas return fraction, w' is
the exponential infall constant in f(t) = fge““’/t where fy is the initial
strength of the infall, and wy = fo/Mgo is a measure of the strength
of the initial infall. Typically, the value chosen for the gas consumption

constant is w = 0.3 Gyr~!

, and for the strength of the infall wy = 5 (see
Clayton 1985). Again assuming a linear relationship between pgas and 9,
the resulting SFRs — shown in Figure 6.18 — then have maxima that occur
some 1-4 Gyr after the onset of star formation. A series of 9 Gyr, carbon-
core sequence luminosity functions corresponding to these SFR curves are
in Figure 6.19. Alongside a constant-SFR luminosity function computed
similarly, the luminosity functions show little variation as a result of the
Clayton SFRs. Though the time of SFR maximum for the curve with
the 5 Gyr halo-infall timescale and the 3 Gyr gas consumption timescale
(W' = 0.2, w = 0.3) occurs about 4 Gyr after the onset of star formation,
the relevant timescale in determining the location of the turndown for this
or any SFR is the rise time to achieve a significant star formation rate,
and not the time of maximum SFR. Looking at Figure 6.18, we find that
the dispersion in ages at early times when the SFR first reaches 50% of its

maximum is of order 1 Gyr. It is this spread of ages that the turndown
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Figure 6.18: Normalized Clayton (1988) Star Formation Rates. Similar to the curves

in Clayton’s Figure 2, the curves shown have infall timescales ranging from 1 to 5 Gyr
(@’ = 1t00.2) and gas consumption timescales ranging from roughly 3 to 5 Gyr (w = 0.2
and 0.3). The star formation rate is assumed to be linearly proportional to the gas
density. Although the peaks in these SFR relations occur as late as 4 Gyr after star
formation onset, it is the age dispersion when the SFR first reaches ~50% that affects
the location of the WDLF turndown.

luminosity is sensitive to, and comparison against Figure 6.9 shows that the

indicated spread is of order 1 Gyr.
6.5.3.3 Empirical Star Formation Rates

Various authors have published empirically-obtained star formation his-
tories for the Galaxy, among them Twarog (1980) in an age-metalicity study
of a large sample of southern F dwarfs, and Barry (1988) using the observed
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Figure 6.19: Luminosity Functions Calculated with the Clayton Star Formation Rates.
The curves in this Figure correspond to the SFRs of the previous Figure, and a constant
SFR is also included for reference. The spread in ages indicated by comparison with

Figure 6.9 above is of order 1 Gyr. See the discussion in the previous caption.

chromospheric activity—age relation in a study of a sample of late F and G
dwarfs. Figure 6.20 contains the SFR/(SFR) values of Twarog’s Table 3,
and the expected SFR history of Barry as given by the outer envelope of the
histogram in his Figure 4 (note that this has since been superceded by Barry
and Scalo (1990), but that the adjustments are slight). In addition to show-
ing Barry’s data in the 4 x 10® yr bins he used, the Figure also shows them
in 1.2 Gyr bins which smooth out the probably-spurious discontinuities and

reversals indicated by the finer resolution.
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Figure 6.20:  Empirical Twarog (1980) and Barry (1988) Star Formation Rates.
Plotted as SFR/(SFR), the data of Twarog are from his Table 3, and those of Barry are
from the outer envelope of the histogram of his Figure 4. In addition to these histograms,

I have also binned the Barry data into 1.2 Gyr steps to compare with the Twarog data.

The luminosity functions corresponding to these SFRs are shown in
Figure 6.21. These models used an input disk age of 12 Gyr, the carbon-core
sequences and the standard-model defaults for the remaining parameters.
They show substantial differences from the comparable constant-SFR curve
which is also shown in the Figure for reference. At high luminosities,

the luminosity function shows an enhancement resulting from the recent
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burst indicated by Barry’s derived SFR. Excepting the highest-luminosity
observed point, this curve is an excellent fit to the observations at high
luminosities. On the basis of this curve, it is tempting to conclude that
the data indicate a recent burst of star formation; it is important to realize,
however, that even though the observed LF points at log(L/Lg) = —1.7 and
log(L/Lg) ~ —2.6 lie off all the previous theoretical curves, they still lie less
than 20 away, and so the result must be considered marginally significant.
The Barry data binned into 1.2 Gyr bins also cause a rise in the LF at
high luminosities, but here the enhancement persists to a luminosity which
is too low, and the theoretical curve is only approximately consistent with
the observed points. The Twarog SFR is nearly constant over the last few

billion years, and the LF reflects this at high luminosities.

The luminosity functions diverge at log(L/Lg) =~ —3.5, and peak at
log(L/Lg) =~ —4.0. We find that all of the non-constant-SFR curves pass
above the observed error box at this luminosity, and this suggests that either
the SFRs overestimate the rate at early times, or that the strength of recent
star formation is at least as strong as implied by Barry’s burst. The Barry
SFR indicates enhancements in the rate roughly 7 and 11 Gyr ago, and these
are reflected in the double-peaked profile of the corresponding luminosity
functions. Even though all four curves used an input age of 12 Gyr, we find
that the Barry curves fall off at a luminosity higher than the other two.
This is the result of the form of the Barry SFR at early times. Unlike most
SFR determinations (theoretical or observational), the SFR of Barry does
not simply “turn on” and stay on, but rather shows the early rate to be
lower than the mean rate and non-constant. Thus, although I chose an age
of 12 Gyr, the indicated rate is zero between 11.2 and 12 Gyr, giving the

brighter turndown.
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Figure 6.21: Luminosity Functions Computed with the Twarog (1980) and Barry
(1988) Star Formation Rates. Shown alongside a luminosity function calculated with a
constant SFR, these curves show some of the most dramatic behavior we have yet seen,
particularly at the high luminosity end. Although the Barry SFR gives rise to a LF
which is a better approximation to the observed point at log(L/Lg) = —~1.7, the error

bars on the points are large enough to preclude drawing a firm conclusion on this basis.

The recent burst suggested by the Barry (1988) data motivates an
exploration of the effect on the LF of a simple burst. I computed a series
of luminosity functions (see Figure 6.22) which included 108 yr bursts of
amplitude 10 times the mean SFR in the recent star formation history. I
computed a total of nine such curves. The first has the burst in the most
recent 10® yr bin, the second in the second most recent 10® yr bin, and so
on. The final curve has the burst in the time slot extending from 1 Gyr

ago to 9 x 10% yr ago. In the Figure, the curve resulting from the most
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Figure 6.22: Luminosity Functions with 108 yr Star Formation Bursts. There are a
total of 10 curves in this Figure. The carbon-core sequences were used with an input
disk age of 10 Gyr. Aside from the constant-SFR curve included for comparison, each
of the other nine has a SFR burst of amplitude 10 times the mean SFR and of duration
108 yr, with the first occupying the most recent 102 yr, the next occupying the next
most recent 108 yr, and so on, until the last curve which has a SFR that bursts from

1 Gyr ago to 9 x 10% yr ago.

recent burst is hidden in among the high-luminosity tails of all the other
burst LFs. Only relatively massive stars can have evolved from the main
sequence to the white dwarf luminosity function in 10 yr, and these do
not contribute much to the LF because their IMF weight is so low. The
remaining curves are all easily discernible in the Figure, and as we probably
could have guessed, begin to look self-similar with the overall luminosity

function as they move towards low luminosities. Again comparing against
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the stand-out data point near log(L/Lg) ~ —1.7, the curves suggest that if
it is real and not simply 20 away from it’s true location, then there probably

was an enhancement in the SFR between 3 and 4 x 108 yr ago.
6.5.4 The Effects of @ Changing Disk Scale Height with Time

The sample of old stars has a larger vertical velocity dispersion than
the sample of young stars (see, for example, Freeman 1987 and references
therein), and from this we infer that old stars have a larger scale height
above the disk than do young stars. The cause of this is not currently
known with certainty but there are two primary suggestions. First, it could
be that over the history of the Galaxy stars got scattered to orbits with
higher scale heights above the disk through random collisions with giant
molecular clouds as suggested by Spitzer and Schwarzschild (1951, 1953),
but it is not clear that such scattering can account for the entire velocity
dispersion (perpendicular to the disk) which is observed (Lacey 1984). The
recurrent passing of the spiral density wave through the disk and smaller
scale instabilities may also scatter stars to larger scale heights (e.g., Freeman
1987 and references therein), as could the accretion of a dwarf irregular
galaxy similar to the Magellanics. An increase of scale height with time
of this kind will be reflected as a depression in the cool end of the white
dwarf luminosity function. The second suggested mechanism to account
for the age—scale height relation is to assume that the stars simply formed
at large scale heights during an initial, pressure-supported proto-Galatic
collapse (e.g., Gilmore, Wyse, and Kuijken 1989 and references therein).
This model also predicts larger scale heights for older stars, but could be
entirely consistent with an approximately constant SFR per unit time per

unit volume during the phase transition from proto-Galaxy to star-filled
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Galaxy. To the extent that this model accounts for the observed age-
velocity relation, the effect on the WDLF could be minimal. Indeed, it seems
reasonable that both contribute to the observed vertical velocity dispersion,
and that the SFR per unit volume is approximated by the functional form

of Clayton (1988).
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Figure 6.23: Models for the Evolution of the Scale height of the Galactic Disk as a
Function of Stellar Age. This Figure includes the h;/{k;0) relation of Twarog (1980;
his Figure 9) and three simple analytical models which assume an exponential decline
until 5 Gyr ago, with a constant scale height since then. Each is normalized to 1 at the
current epoch. The three exponential/constant inflation curves are normalized at 12 Gyr
ago to have scale heights which are factors of 3, 6, and 12 times the current scale height

(Cases A, B, and C, respectively).
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Figure 6.23 shows a sampling of various inflation vs. age relations,
including an approximation to that shown in Figure 6 of Twarog (1980)
and three simple analytical approximations which assume an exponential
decline in the scale height with time from the beginning of star formation
to 5 Gyr ago, and a constant scale height since then. Of the three cases, the
intermediate one (Case B) is very similarly to the curve of Twarog’s Figure 9
which shows a factor of 6 inflation at the earliest times compared to the scale
height of young objects. The remaining two cases have initial scale heights
which are factors of 3 and 12 larger than the current scale height (Cases
A and C, respectively), and they more than bracket published estimates
of the early scale height of the disk. Because the white dwarf sample is
drawn from an approximately cylindrically-symmetric portion of the disk
and because I am considering inflation in the Spitzer and Schwarzschild
sense (1.e., gravitational scattering), it is handled in the WDLF integrator by
simply dividing by the scale height corresponding to the total age (tms+twp)

at the current luminosity and mass.

Figures 6.24, 6.25, and 6.26 show the families of luminosity functions
calculated like those shown in Figure 6.9 above, but including the 3 ex-
ponential/constant SFRs shown in Figure 6.23. I also calculated similar
Figures for the Twarog (1980) functions, but because they are quite similar
to the intermediate analytical function, I do not show the results here. I

discuss each of the three in turn.

The luminosity functions in Figure 6.24 were computed using the Case
A exponential/constant inflation relation. The bright end of the luminosity
function is completely unaffected as we would expect, but we see that the
low-luminosity portions of the curves are somewhat depressed as compared

to Figure 6.9. Using the criterion that acceptable curves pass through the
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Figure 6.24: Luminosity Functions Including Disk Inflation Case A and Carbon-Core

Sequences. Similar to the LFs in Figure 6.9, but with an analytical model for increased
scale height as a function of age for the oldest stars as shown in Figure 6.23. The input

ages for the curves run from 7 to 16 Gyr at intervals of 1 Gyr.

lowest-luminosity box, the ages suggested by these models range from ~9.3
to nearly 13 Gyr. This upper limit is consistent with the fitted ages of the
the disk population of globular clusters (see, for example, the manuscripts

in Philip 1988).

Figure 6.25 shows the luminosity functions calculated with the Case B
inflation relation. Here the curves are further depressed, and models as
old as 15 Gyr are consistent with the high-luminosity edge of the lowest
luminosity box. Note, however, that because of the exponential, relation

B suggests a factor-of-13 inflation over 15 Gyr, and this is larger than
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Figure 6.25: Luminosity Functions Including Disk Inflation Case B. The carbon-core

sequences are used and the disk ages are as in Figure 6.24.

observational or theoretical estimates of the size of the effect. Had one
of the Clayton SFRs had been used in the integration, the upper age limit
would be approximately 16 Gyr, approaching the ages of the oldest globular

clusters.

Last in the carbon-core models, we have the family of curves computed
using the Case C inflation relation. These model an inflation in scale height
by a factor of 12 over 12 Gyr (and 35 over 15 Gyr) — much larger than
observations or theory suggest — and so are an extreme (i.e., unphysical)
test case. With that warning in mind, we see in Figure 6.26 that all of the

curves pass well below the top of the lowest-luminosity error box, and with
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Figure 6.26: Luminosity Functions Including Disk Inflation Case C. The carbon-core

sequences are used and the disk ages are as in Figure 6.24.

this inflation relation a luminosity function with an age of 18 Gyr would

still be consistent with the LF observations.

In Figure 6.27 1 show the family of luminosity functions computed
with the Case B exponential/constant inflation relation and the oxygen-
core models for input ages spanning 7-13 Gyr. As in Figure 6.10, the peaks
of these curves are flatter than the comparable curves in Figure 6.25. The
luminosity functions are again depressed below log(L/Lg) ~ —4 compared
to the constant-scale height models, and here the range of ages consistent

with the lowest-luminosity box span the range 7.5 to just less than 11 Gyr.

6.5.5 The Question of Mass
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Figure 6.27: Luminosity Functions Including Disk Inflation Case B for Oxygen-Core

Sequences. The ages of the curves run from 7-13 Gyr, and those consistent with the last

box have ages from roughly 7.5 to 11 Gyr.

6.5.5.1 The Observed Mass Distribution

I mentioned above that the mass distribution of white dwarf stars is
remarkably narrow, and so effectively reduces the order of complexity of the
problem at hand. While this is true, it does not tell the whole story. Rel-
ative measurements are easier to make than absolute measurements, and
so while we have known for some years that the distribution is narrow,
there still exists some uncertainty in the mean mass of the distribution.
Observationally, it is gravity that is determined directly through compar-
ison with a grid of model atmosphere calculations spanning the range of

interest in log ¢ and log T'eff. Masses are then derived from these gravities
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through an assumed mass-radius relation. The most commonly used of these
have been the zero-temperature carbon-configuration results of Hamada and
Salpeter (1961). Until recently, most of the gravity determinations were
made using low-resolution (> 4OA) multi-channel spectrophotometry (see
most recently Greenstein 1984), known to have calibration problems which
cause uncertainties in the derived mean mass of approximately 0.1 Mg. Ob-
servations using these techniques suggest that the mean DA white dwarf
mass is (M/Mg) = 0.58 with a model-independent standard deviation
of ¢ = 0.1 Mg (Koester, Shultz, and Weidemann 1979; Weidemann and
Koester 1984). Using similar techniques, Oke, Weidemann and Koester
(1984) derived a mean mass for DB white dwarfs of (M/Mg) = 0.55, also
with a scatter of o = 0.1 M.

Recently, multi-channel photometric results have been surpassed in
quality by higher-resolution (~8A) spectroscopic results compared against
denser model-atmosphere grids (McMahan 1989; Bergeron, Saffer, and
Liebert 1990). McMahan studied a sample of 53 DA white dwarf stars
which spanned the temperature range ~5,000 to 65,000 K. He found a nar-
row mass distribution ¢ < 0.1 centered on (M/Mg) = 0.523. Bergeron,
Saffer, and Liebert (1990; BSL) have studied a sample of 114 DA white
dwarfs with temperatures Teff > 15,000. They chose this lower tempera-
ture limit because the model atmospheres above this temperature are fully
radiative and in local thermodynamic equilibrium — z.e., they are compar-
atively simple to model. The BSL gravity determinations are good to 40.05
dex in log ¢ making them the highest quality data published to date by a

considerable amount.
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Figure 6.28: Derived White Dwarf Mass Distributions. The results of Bergeron,
Saffer, and Liebert (1990; BSL90), McMahan (1989; M89), Weidemann and Koester
(1984; WK84), and Oke, Weidemann, and Koester (1984; OWKS84) are shown in the
four panels of this Figure. Note that the recent determinations for the mean mass of the
DA white dwarfs are still consistent with the DB mass distribution of OWK84, and do
not suggest distinct evolutionary tracks for the DA and DB white dwarfs. Also shown
over the BSL data is the 2-gaussian fit described in the text.
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Starting with their gravity distribution, BSL used the mass—gravity re-
lation given by the carbon/oxygen presented above to derive the mass distri-
bution shown in the Figure. To accomplish this, they interpolated between
the theoretical sequences at the temperature indicated for each individual
star, thus fully taking into account the finite temperature effects on the ra-
dius. Although the mean, average deviation, and standard deviation of the
BSL sample are similar to those of the McMahan sample, the high-resolution
BSL results are really quite stunning in their detail, and the authors justly
claim that it is now possible to believe mass determinations for certain indi-
vidual stars. The BSL distribution shows a narrow peak skirted by extended
wings to both high and low mass. As an aside we note that a (6—parameter)
two-component gaussian fit gives for the central peak (M/Mg) = 0.49 and
og = 0.052, and for the broad component (M/Mg) = 0.59 and og = 0.38
(see Figure 6.28) where oq is the Gaussian width. The ratio of the areas un-
der the broad distribution and that portion of the narrow distribution above
this is approximately 1:8, suggesting that while the great majority of white
dwarf progenitors evolve into the narrow distribution, some, perhaps as the
results of an external influence, evolve into the broad distribution. Inter-
acting binary evolution seems a likely candidate for this external influence,

though it is only one of many possible suggestions.

Both the BSL and the McMahan mass distributions suggest that the
mean mass of the white dwarfs is closer to 0.5 Mg than 0.6 Mg, and this is
a substantial change from the value accepted until very recently. Because the
two major uncertainties of atmosphere calculations — convection and non-
LTE effects — are not factors in the atmospheres of the BSL hot-DA sample,
it is likely the BSL determinations are quite accurate as well as being precise.

These hot stars are all younger than ..o < 0.5 Gyr, however, and so may
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not be representative of the mass distribution for all luminosities. It may be
significant that Koester, Shultz, and Weidemann (1979) found that although
their entire sample suggested a mean mass of (M /M) = 0.58, a sub-sample
with Teff > 13,000 K suggested a mean mass of (M/Mg) = 0.47. However,
as discussed in BSL, the Kiel group’s results are sensitive to the assumed
convective efficiency, and they overestimate log g because they assumed ML1
convection, whereas the 13,000 K effective temperature of the blue edge of
the DA instability strip is matched by pulsation models calculated under
the assumption of the more efficient ML3 convection (Winget and Fontaine

1982).

It is not unreasonable that such a trend could be observed in any event,
considering the effect that crystallization has on the discovery function,
defined in the case of constant white dwarf birthrate (e.g., Lamb 1974,
Lamb and Van Horn 1975) as

. dtcool L 3/2 ;
D= Testtizo) (1;@) | (6.11)

Figure 6.29 shows the discovery functions for the oxygen-core sequences.
Because of the 15,000 K low-temperature cuttoff in the BSL sample, it is not
expected that any of these stars will be crystallizing. In the luminosity range
of the BSL sample the discovery probability as a function of mass is relatively
flat at a given Teff. The other samples, however, all contain objects which
are crystallizing, and at lower luminosities, crystallization enhances the
probability of discovery of higher-mass objects, possibly accounting in part
for the skew tail towards higher masses observed in the Weidemann and
Koester (1984) data but not in the BSL data. As the accuracy of the mass
determinations for individual stars becomes more reliable, it should be useful

to apply adjustments to the derived global mass distribution based on these
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discovery probabilities. Certainly the last word on the subject has not yet

been written.
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Figure 6.29: Discovery Functions for the Oxygen-Core DB Sequences. The prob-
ability of discovering crystallizing white dwarfs is enhanced compared to lower-mass
white dwarfs that have yet to crystallize or higher-mass white dwarfs that already have '

crystallized.

6.5.5.2 The Initial—> Final Mass Relation and Theoretical Mass Distributions

There have been a number of studies whose goal was to determine the
connection between the main sequence progenitors of white dwarfs and the
white dwarfs themselves. Studies of young open clusters with white dwarf

members suggests that stars as massive as ~8 Mgevolve to become white

dwarf stars (Romanishin and Angel 1980, Weidemann and Koester 1983),
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Figure 6.30: A Selection of Initial—Final Mass Relations. The relations shown here
include the Iben and Laughlin (1989) relation, a variation on that relation, and a family

of relations of the form given in equation (6.12).

but it is far from clear what the mapping function from main-sequence mass
to white-dwarf mass is. The observations that we just discussed suggest
that the mapping is quite flat, and that most stars evolve to become white
dwarf stars of 0.5-0.6 Mg. Figure 6.30 shows a few sample initial—final
mass relations which I've used in calculating families of luminosity functions.
Several alternate relations are shown and discussed in Weidemann and Yuan
(1989) and Weidemann (1987a, b). In addition to the Iben and Laughlin
(1989) initial--+final mass relation which has become standard for these
studies I also have computed luminosity functions for a variation of the

same which continues the high-mass slope to the lower-mass limit M. In
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addition, I also present a family of initial—final mass relations based on an

exponential model:
Mwp = Arr exp(Brr - Mus), (6.12)

where Arr and By are free parameters.

This functional form came to mind upon inspection of the PNN mass
distribution calculated using the Schénberner method (see Schénberner and
Weidemann 1983) as shown in Weidemann and Yuan (1989) — the PNN
mass distribution has a distinctly exponential decline towards higher masses.
Assuming that the flux of stars through this region of the H-R Diagram is
at equilibrium and that a Salpeter IMF determines the relative numbers of

the PN’s main-sequence progenitors, we find

‘MWD)r (6.13)

Nwp o BS - [ln (-—-

Arr
where again o =~ —2.3 for low-mass stars. Using equation (6.13) it was
possible to fit to the PNN mass distribution and obtain the fit shown in

Figure 6.31.

As discussed in Wood (1990), this semi-empirical initial—final mass
relation fits nicely the high-mass tail of the Weidemann and Koester (1984)
mass distribution, but clearly does not account for the low-mass stars in
that sample. Because of this, and because the Bergeron, Saffer, and Liebert
(1990) and McMahan (1989) results suggest that the mean mass of the white
dwarfs may be near 0.5 Mg, I also tried varying the leading term Arr over a
range from the fitted value of 0.49 down to value of 0.35, adjusting the values
of Brr such that 8 Mg stars evolve into white dwarfs of mass ~1.05 Mg, as

the original fit does. The various choices are given in Table 6.1. Model B,
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Figure 6.31: The Mass Distribution of the Planetary Nebula Nuclei with Fitted Model
A. The PNN mass distribution shown in Weidemann and Yuan (1989) was fitted using

equation (6.13) in a non-linear least squares formalism.

not listed in the Table, is identical to Model A above a progenitor mass of

1.1 Mg, but below this follows Mwp = 2 Mys.
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TABLE 6.1
INITIAL—FINAL

MASS RELATION PARAMETERS

Model Arr Brr
A 0.49 0.096
C 0.45 0.110
D 0.40 0.125
E 0.35 0.140

Figure 6.32 shows the family of curves calculated with the carbon-
core sequences and the Iben and Laughlin (1989) I—F mass relation. The
remaining parameters are according to the sta,nda,rdlmodel. We find that
the curves look quite similar those in Figure 6.9, and in particular they do
not show the plateau just beyond the turndown in the luminosity function
that Iben and Laughlin found. This plateau was not found by Yuan (1989)
either, and so is probably the result of the polynomial fit to the 1.0 Mg
cooling curve overestimating the low-luminosity ages as discussed above,
and hence the contribution of the high-mass stars to the low-luminosity end

of the curve.

The white dwarf mass function which results from assuming the Iben
and Laughlin [—-F mass relation is nearly a delta function, and so is a
poor description of the observational data. This mass function and those
corresponding to the other relations just discussed are shown in Figure 6.33.
It is apparent that the exponential forms yield a better approximation to the

observed distributions (though they are still less than perfect). In particular,
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Figure 6.32: Luminosity Functions Calculated with the Iben and Laughlin (1989) [—F
Mass Relation. Other parameters defining the integration are at the default standard

model values. Compare with Iben and Laughlin’s Figure 12.

the Model A initial—final mass relation is a particularly good fit to the
high-mass tail of the Weidemann and Koester (1984) mass distribution,
although it does not fit the low-mass tail. Model B includes a turnover in
the I—=F mass relation, and the improved fit with the observations suggests
that this occurs in nature as well — although it is likely that in nature
the I—F mass relation is more a probability distribution than a strict
relation. The Bergeron, Saffer, and Liebert (1990) distribution suggests that
an exponential relation more along the lines of Model D are more consistent

with the observations.
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Figure 6.33: Theoretical vs. Observational Mass Functions. The data of BSL90 and
WK84 Data are shown in the top panel for reference. The calculated mass distributions
in the bottom panel result from integrating using the carbon-core sequences and an input

disk age of 9 Gyr for the I»F mass relations shown in Figure 6.30.

Figure 6.34 shows the family of luminosity functions calculated with
the Model D I—F mass relation. The mean mass of this sample is about
0.5 M@ and the shape of the luminosity functions is changed relative to the
Model A results (i.e., the standard model; see Figure 6.9). However, the
ages suggested by a comparison with the limits of the lowest luminosity box
still suggest the range 9-12 Gyr. Figure 6.35 shows the family of luminosity
functions calculated with the oxygen-core sequences and the Model D I—F

mass relation. Here we see that again the curves are similar to the Model A
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Figure 6.34: Carbon-Core Sequence Luminosity functions for Model D I—F Mass

Relation. The lower mean mass of the white dwarf mass distribution changes the shape
of the luminosity functions near the peak and the slope of the falloff, but do not suggest

a large change in ages compared to the standard model results.

results shown in Figure 6.10 above. The disk ages implied here span the
range 7.5 to 10 Gyr.

In summary then, the recent shift in the accepted mean mass of the
white dwarf stars is not likely to be a source of great uncertainty in the ages
of the turndown, although subtle shifts in the I—=F mass relation will affect

the shape of the peak of the LFs.
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Figure 6.35: Oxygen-Core Sequence Luminosity Functions for Model D I—~F Mass

Relation.

6.5.6 The Best-Guess Model

Finally, I computed a family of luminosity functions that most closely
approximate the true state of affairs (as we currently understand them). For
this calculation, I used the carbon/oxygen-core sequences and assumed the

parameter set:

e Clayton (1988) SFR with gas consumption timescale of 2 Gyr (v =
0.5Gyr~!) and halo infall timescale of roughly 3 Gyr (w = 0.3Gyr™1)
(i.e., the long-dashed line in Figure 6.18).

e Mass limits: My =8 Mg, M1 = Miymoft (tdisk)s
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Figure 6.36: Luminosity Functions Using the C/O-Core Sequences and Best-Guess
Parameter Set. The family of curves shown in this Figure should represent the true
situation most closely of any shown in this work. These curves as they compare to the
observations suggest that our current best estimate for the age of the local disk lies

within the range 8 to less than 11 Gyr.

o Salpeter IMF: ¢(M) = (M/Mg)~ %3,

e Pre-WD lifetime: tpr5 = 10 (%) _2'5,

o [—F mass relation D: Mwp = 0.40 exp(0.125Mys)

o Scale height inflation relation B (factor of 6 inflation at an age of 12 Gyr,

similar to Twarog 1980).

The resulting family of luminosity functions is shown in Figure 6.36, and

shows consistency with the observations for disk ages ranging from 8 to 11

Gyr.
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6.6 HaLo WHITE DWARF LUMINOSITY FUNCTIONS

6.6.1 Introduction

In the previous sections I discussed the use of the white dwarf luminos-
ity function (LF) to measure the age of the local disk. The range of ages
that come out of the analysis are significantly shorter than those determined
for the halo globular clusters and suggest that the onset of low-mass star
formation in the disk of the galaxy was delayed by some 2-5 Gyr relative
to the onset time in the halo globular clusters. This result supports the
pressure-supported collapse models of Larson (1976), and further suggests
that halo white dwarfs, if they can be found, will have a luminosity func-
tion that peaks at luminosities significantly lower than the disk luminosity
function [i.e., by roughly 0.5 dex in log(L/Lg)]. This being the case, and
because there are at least two observational surveys currently underway
which are searching for these objects (Claver et al. 1990; T. von Hipple,
personal communication), it is worthwhile to explore briefly the theoretical
luminosity functions of this suggested old population of halo white dwarf
stars so that the future observations may be interpreted in context. This
subject has been recently discussed by Mochkovitch et al. (1990), Ryu et
al. (1990), Tamanaha et al. (1990), Weidemann (1990), and Wood (1990).

In the following, I will also consider the question of the halo white dwarf
stars as “dark matter” candidates. Models of the rotation curves of spiral
galaxies, including our own Galaxy, best fit the observations when they
include the gravitational potential of a massive halo (Faber and Gallagher

1979, Bahcall and Soneira 1980, Bahcall 1984). To the limits of current
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observations, this halo matter is otherwise undetected and so its exact nature
is quite puzzling — we call it simply dark matter. Models fitting the Galactic
rotation curve suggest that the density of the halo dark matter (pga;x) is
of order (0.01 Mgpc™?) at our Galactocentric radius. With only the near
absence of evidence as a constraint, the number of suggested dark-matter
candidates has been large, and have ranged from numerous unobservable
“~inos” to cold objects of sub-stellar mass (:.e., gas giants and brown dwarf
stars) to sub-luminous stellar-mass objects (cool white dwarf stars, neutron
stars, and black holes) to 10% Mg black holes (Trimble 1987 and references

therein).

Considering for the moment only baryonic matter, the current consen-
sus is as follows: although the largest contribution to pgark is possible in the
form of sub-stellar mass objects, unless the initial mass function rises again
below the current observed lower-mass turnover at ~0.2 Mg (Scalo 1986),
they probably do not account for a dominant fraction of pgax (Hegyi and
Olive 1986); white dwarf stars are a possibility, but only marginally; neutron
stars and stellar-mass black holes are effectively ruled out because their pro-
genitors would have greatly overproduced heavy elements relative to what
is observed; finally, primordial black holes of any kind, being unobservable

cannot be ruled out.
6.6.2 The Observations

The preliminary halo WD luminosity function presented by Liebert,
Dahn, and Monet (1989) was constructed using the six high-velocity stars
in their sample (Vian > 250 kms™1). Because of this low number of objects,
the error bars on the LF are substantial as can be seen in Figure 6.5 (or one

of the following Figures). These points have had the black-body bolometric
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correction applied as described in §6.3 above and in Liebert, Dahn, and
Monet (1988); note that these may be overestimates, and the location
in luminosity of the data should be considered as uncertain as the low-
luminosity disk LF points. Of the sample of six stars, five are fainter than
My = +13, and the derived space density is (1.3 £ 0.6) x 10~° pc~3, which
is about 3 orders of magnitude down from the space density given by the

disk LF.
6.6.3 The Calculations

Proceeding as above, I explore the halo luminosity function by varying
the input parameters to the luminosity function synthesis program: the
star formation rate, the initial mass function, and of course the ages. In the
following I assume that the halo and disk LFs are effectively decoupled,
and further assume an exponentially declining SFR with a short decay
timescale of 0.5 Gyr, a Salpeter (@ = —2.35) IMF. I use the carbon core
sequences as input, because the stars formed in the early burst would have
had low metallicities and so larger core-burning temperatures, and by the
arguments above should be carbon rich. The sequences are extrapolated to
low luminosities as described in §6.2 above. I consider halo ages of 13, 15,
and 18 Gyr, and normalize the LFs to fall within the Liebert, Dahn, and
Monet (1988, 1989) error estimates. A significant percentage of the models
have cooling times whose asymptotic maxima are shorter than the halo ages
that are considered. Although these are unobservable and therefore do not
contribute to the luminosity function, they do contribute to the mass density

and I account for them.

6.6.4 The Results
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6.6.4.1 A Full Mass Spectrum Burst

The first case considered is an early burst of star formation with a full
mass spectrum. Specifically, Figure 6.37 shows the observed halo LF of
Liebert, Dahn, and Monet (1989), and the theoretical LFs computed using

the carbon-core sequences under the assumptions

e SFR: () o e=t/0:5 Gy

e Mass limits: My =8 Mg, M = Miumoft (thalo),
o Salpeter IMF: ¢(M) = (M/Mg)~235,

e Pre-WD lifetime: tars = 10 (L) "7,

e Initial—final mass relation: Mwp = A - exp(B - Mys), where A = 0.65
and B = 0.08,

e No scale-height inflation with increasing age.

A constant-SFR, 10 Gyr disk LF also computed with the carbon-core
sequences is included in the Figure for reference along with the observed
disk LF observations. The SFR here simulates a burst of star formation
on approximately a dynamical timescale, and because the SFR timescale is
short compared to the timescale implied by the luminosity steps in the inte-
gration, the computed luminosity function is fairly noisy. Normalizing the
halo and disk luminosity functions relative to the observations and to each
other determines the relative star formation rates, and for the 13, 15, and
18 Gyr curves shown here, the ratio of the halo-to-disk SFR is approximately
1/50 in each case, which is small enough to have been otherwise undetected.
The initial—final mass relation is flat and weighted towards higher masses,

giving a mean of approximately 0.7 Mg for a full mass spectrum burst. I
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chose this relation because it is expected on theoretical grounds that the
efficiency with which the AGB envelope is lifted is a function of metallicity.
Therefore, because the main sequence progenitors of the halo white dwarfs
should have been very low in metal abundance, the white dwarfs themselves
should have masses higher than the mean mass determined for the field

white dwarf stars.
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Figure 6.37: Halo Luminosity Functions from Full Mass Spectrum Burst. The three

halo luminosity functions shown here were computed with carbon-core sequences and
have ages of 13 (dotted line), 15 (short-dashed line), and 18 Gyr (long-dashed line),
respectively. Also shown for comparison is a disk LF computed with the carbon-core
sequences, a constant SFR, and an age of 10 Gyr. The noise in the halo LFs results
from the steep drop in the SFR. The observed halo LF points from Liebert, Dahn, and

Monet (1989) are also included for reference.
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The luminosity functions shown in Figure 6.37 show a substantial tail to
high luminosities quite similar to the trend suggested by the observations,
and, as normalized, the LFs suggest only a modest space density of roughly
5 x 107% pc—3. All of the curves roll over at low luminosities as a function
of age and Debye cooling (recall the single-sequence LFs shown above in
Figure 6.6). These roll over at a luminosity similar to that of the high-mass
tail of the disk LF, suggesting that we must rely on observed tangential
velocities to separate the two populations observationally, even if the halo
is several 10° yr older than the disk. The same bolometric correction
uncertainty that complicates the absolute disk age determination is a factor
here as well, and so initially it may be difficult to determine the absolute
age of the halo population; however, the relative formation epochs of the
halo and disk wsll be obtainable in the near future as the number of cool

white dwarfs is increased and as their proper-motions are determined.
6.6.4.2 The Effects of Varying M,

As discussed above and in Scalo (1986), the evidence is strong that high-
mass stars and low-mass stars form in different environments — high-mass
stars in warm environments typical of H II regions in giant molecular clouds
and low-mass stars in the cooler environments typical of cold dark cores.
Because the local conditions in the early Galaxy were likely to have favored
high-mass star formation over low-mass star formation, it is reasonable to
consider luminosity functions computed with a main-sequence low-mass

limit, M at an intermediate mass. I have computed two such sets of

sequences, the first with M = 1.5 M and the second with M = 2.0 M.

The first set of these is shown in Figure 6.38 with the same reference

disk LF as in Figure 6.37. Again in this Figure the three curves have ages



191

Log N (PC_3 M bol_1)

4+ -6
Log(L/Lo)

Figure 6.38: Halo Luminosity Functions Computed with My = 1.5 M. Similar to

-2

Figure 6.37, but with a lower limit of My = 1.5 M to the progenitor mass spectrum.

of 13, 15, and 18 Gyr; as normalized here they have peak SFR’s which
are approximately factors of 1/15, 1/10, and 1 times the mean SFR of the
reference disk LF. Because the total number of progenitors is again low,
these SFRs are still within reason. The high luminosity tails of these curves
do not show the same trend as the observations, but instead are quite steep
and reflect the exponential decline in the SFR for the lowest-mass white
dwarfs. A 1.5 Mg model has a pre-white dwarf lifetime of about 3.5 Gyr,
and with the initial—final mass relation used it here gives rise to a 0.73 Mg
white dwarf. The 0.7 Mg white dwarf sequence used as input reaches a
luminosity of log(L/Lg) = —4.7 at teeol = 12 Gyr, and an inspection of the
Figure shows that for the 15 Gyr curve this is the luminosity of the left edge
of the plateau. The steep falloff to low luminosities at the right edge of the
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plateau parallels the single-sequence LFs in the Debye cooling regime. The
18 Gyr curve shows almost no plateau, but only a fairly sharp peak dividing
the Debye-cooling slope from the SFR slope. This curve suggests that there
could be a large population of halo white dwarfs that has so far gone largely

undetected.
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Figure 6.39: Halo Luminosity Functions Computed with My = 2.0 M @ Similar to

Figure 6.37, but with a truncation of the progenitor mass spectrum at a lower limit of
Mp =20 Mp.

The final Figure in this section shows three LFs calculated with M =
2.0 Mg (see Figure 6.39). These, like the LFs in the previous Figure, show
a steep high-luminosity tail not suggested by the observations. All three
show a sharp peak at a luminosity corresponding to the cooling time of
the dominant mass in the mass distribution, which in this case is about

0.76 Mg. The 13 Gyr curve is constrained to fall below the low-luminosity



193

error box, and so suggests only a modest space density of halo objects. The
SFR implied by this normalization is approximately 1/ 7th the disk SFR.
The 15 and 18 Gyr curves are not tightly constrained by the observations,
and so can be normalized to higher space densities, although there begins
to be a problem with the SFR. The ratio of the halo-to-disk SFRs for these
two curves is approximately 10 and >100, respectively. Observations of
starburst galaxies suggest that burst strengths can be several tens times the
underlying SFR (Telesco 1988 and references therein), and so the 15 Gyr LF
gives perhaps the maximum plausible space density for a halo population of
white dwarfs (ppalo & 1x1073 pc~?), or approximately 1/3 the space density
of the disk white dwarfs. The high-SFR implied for the 18 Gyr curve occurs
because well over 50% of the objects have evolved to invisibility; one effect
of this is that the high-luminosity slope begins to roll over before the peak
in the LF, unlike the behavior of the other LF's presented so far. Although
many of the high-mass stars in the 18 Gyr curve shown in Figure 6.37 also
would have evolved to invisibility, the lower mass limit insures that the

majority will be observable.
6.6.5 Discussion

Given that the halo age as suggested by the globular clusters is signifi-
cantly greater than the disk age as suggested by the white dwarf stars, and
given that both are relatively solid determinations, it is quite possible that
there is a real age difference between halo and disk. The white dwarf stars
alone will eventually provide the age of the halo as they already have for the
disk, and in this section I have computed a series of halo luminosity functions
in preparation for the soon-to-be-realized observations of the halo popula-

tion of white dwarf stars. I have explored the halo white dwarf luminosity
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function using ages of 13, 15 and 18 Gyr, the carbon-core input sequences,

and three different assumptions for the main-sequence lower-mass limit.

The results show that if there was a burst of star formation of all masses
in the early Galaxy, the halo luminosity function will show only a modest
space density consistent with the six-star luminosity function of Liebert,
Dahn, and Monet (1989). Because the halo and disk LF's suggest similar
contributions at luminosities of log(L/Lg) ~ —5, the two populations will
have to be separated observationally on the basis of their proper motions.
Removing the constraint that all masses must have formed in the halo
burst and instead truncating the progenitor mass distribution at either 1.5
or 2.0 Mg allows a greater halo space density to be consistent with the
observations; however, LF's computed under this assumption fit the observed
halo LF extremely poorly. These curves suggest that if there was an early
burst of star-formation in the halo preceding the onset of star formation in
the disk, and if that burst only produced stars above 2 M, then for plausible
burst star formation rates (< 80 times the mean disk SFR; see Telesco 1988)
there could exist a population of halo white dwarf stars at luminosities just
beyond the current practical observational limits with a space density of
N% the disk space density (prate < 1 % 1073 pc=® Mg pc~3), but small

compared to the inferred halo dark matter density of pqark ~ 0.01 Mg pc~3.

The LFs which I have presented here are meant to serve more as guides
to interpreting future observations than as predictions of the detailed shape
of the halo LF at luminosities below current observational limits. There are
several theoretical uncertainties whose effects are difficult to gauge a prior:.
The 12C(a,7)!%0 reaction rate suggests that high-temperature nuclear burn-

ing should produce a relatively higher mass fraction of carbon (see D’Antona
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and Mazzitelli 1990, and Caughlan and Fowler 1988), and because the pro-

genitors of the halo white dwarfs should have had very low metal abun-
dances and so should have burned hot while on the main sequence, I used
carbon-core model sequences to represent the halo population. If instead
oXygen-core sequences are more representative of the halo white dwarfs (as
they are of the disk white dwarfs), then the LFs would have approximately
the same character, but would be moved to lower luminosities for compa-
rable ages. Furthermore, for comparable ages, the oxygen-core sequences
would suggest that a larger fraction of the white dwarf population would
have cooled to invisibility. The initial—final mass relation that I used gives a
higher mean mass than the observed mass distribution of field white dwarfs,
again because of the low metallicities of these objects. If the mean mass of
the halo population is lower than assumed here, then again the curves will
have the same general character, but will be shifted only slightly to higher

luminosities.
6.7 SUMMARY

In this Chapter I have discussed the white dwarf luminosity function
and the information available from it. It has been a long read getting to
this point, and a quick look back is in order before discussing the results

within the context of evolutionary models of the early Galaxy.

It has been ten years that we’ve known of the turndown in the white
dwarf luminosity function (Liebert 1979, 1980), but only in the most recent
three years has there been a flurry of activity in the community with several
parallel attempts to decode the historical record of the luminosity function.

The pioneering work on the problem was presented by Winget et al. (1987),
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who used a simple but sufficient method of constructing theoretical luminos-
ity functions and who showed that the luminosity of the turndown suggested

an age of the local disk of (9.3 £ 2) Gyr.

The observational results of Liebert, Dahn, and Monet (1988) show
an unambiguous decline at low luminosities, but the precise luminosity
of the turndown is not well determined because of bolometric correction
uncertainties for cool white dwarfs. Realizing that they could not get around
these uncertainties, the authors chose to present their results such that they
bracketed the true luminosity function. In this study, I adopted the same
philosophy, and have calculated a large number of luminosity functions in

order to bracket the true luminosity function.

'The spread in ages just from the observational uncertainty in the lumi-
nosity of the turndown is about 3 Gyr, or e;,bout half of the total uncertainty
in the local disk age determination. This uncertainty is from the lack of good
bolometric correction estimates from cool non-DA white dwarf atmosphere
calculations. A new grid of cool helium-dominated atmospheres needs to be
computed. In addition, the question of the bolometric correction uncertain-
ties can be addressed observationally using multi-wavelength observations to
determine the deviations of the spectra of individual objects from blackbody

spectra corresponding to their effective temperatures.

The age corresponding to the luminosity function turndown is given
approximately by the age-luminosity relation appropriate to the peak mass
for the mass distribution at the adopted turndown luminosity, plus roughly
0.5 Gyr contributed by main sequence evolution. There is currently some

debate on what the mean mass of the white dwarfs is, but within the
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suggested range of 0.5-0.6 Mg the turndown ages are only a very weak

function of mass.

The derived ages are a function of core composition such that pure-
carbon core sequences give ages roughly 2 Gyr larger than comparable
oxygen-core sequences. Sequences with mixed carbon-oxygen cores, not
surprisingly, suggest ages that are intermediate between these extremes.
Integrated luminosity functions that use the oxygen-core sequences as input
are marginally more consistent with the observations at the peak of the
luminosity function than are those using the carbon-core sequences. The
former suggest a flatter peak and an earlier crystallization bump compared
to the latter. On the basis of the 2C(a,7)!%0 reaction rate (Caughlan and
Fowler 1988), it is expected that the white dwarf interiors contain more than
50% oxygen by mass, but because the reaction rate is only claimed to be
accurate to a factor of two, the precise C/O profile is currently unknown. We
must wait for asteroseismological determinations of the actual abundance

determinations to pin down these uncertainties further.

In addition to the uncertainty in the C/O profile of Population I com-
position stars, there is the added uncertainty of the evolution of the earli-
est generation of low-mass stars. Unless the early evolution of the Galaxy
was dominated by high-mass star formation which enriched the interstellar
medium before low-mass stars began forming, the first generation of white
dwarf progenitors should have had near-zero metallicities. Because of lower
opacities throughout, low-metallicity stellar models evolve quickly off the
main sequence and have significantly higher core temperatures than compa-
rable Pop I stars. Because of the behavior of the 12C(a,v)!®O reaction rate
with temperature, we might expect these stars to have formed white dwarfs

that are more carbon-rich than do later-formed progenitors (cf. D’Antona
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and Mazzitelli 1990), suggesting that the ages appropriate to the stars at the
turndown are the carbon-core model ages. However, the initial—final mass
relation is almost certainly a function of metallicity also — the ease with
which the envelope is lifted off an asymptotic giant branch star is a function
of opacity (see Kwok 1987) — and this suggests that the upper mass limit
for white dwarf progenitors may have been much lower in the past than the
current estimate of 8 Mg. Because the interstellar medium was enriched
in metals on a timescale of order 1 Gyr, the effects just described should
provide at most a ~1 Gyr uncertainty to the ages derived using the white

dwarf stars.

Given the observed dichotomy of high-mass and low-mass star formation
environments, it is not unreasonable to consider that the lower mass limit
of forming stars was a monotonically declining function of time in the early
Galaxy. If this did occur, then the ages obtained through fitting the white
dwarf luminosity functions will be short by approximately half the time it
took the lower mass limit to reach ~1 Mg. Realistically, this is probably no

more than a ~2 Gyr effect.

As was shown in Part I of this thesis, the mass of the helium layer is
nearly as important to the age determination as is the core composition.
Increasing the mass of the helium layer by an order of magnitude causes
a roughly 0.75 Gyr shift towards younger ages at the luminosity of the
turndown. The models that I used here typically had helium layer masses
of log(Mue/M,) = —4, and the determined mean (Pelletier et al. 1986) is
(log(Myue/M,)) = —3.5:+ 0.5, suggesting a roughly 0.5 Gyr shift to younger

ages.
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The combined facts that the majority of white dwarfs are tightly clus-
tered around the mean mass of 0.50-0.55 (Bergeron, Saffer, and Liebert
1990) and that the main sequence progenitors have masses up to ~8 Mg
imply that the initial —final mass relation is quite flat. Because of this,
dramatic changes in the slope of the IMF have little affect on the luminosity
functions. As Noh and Scalo (1990) discuss, this is one of the few probes
of the star-formation history where the effects of the IMF and SFR are

essentially decoupled.

The luminosity function is sensitive to the star formation rate both in
terms of onset and also for the most recent ~2 Gyr. The theoretical curves
all cluster tightly at high luminosities, suggesting that as the error bars are
reduced, it should be possible to decode the recent star formation history
in great detail. A non-constant star formation rate within the most recent
~2 Gyr is perhaps already suggested, because the luminosity functions of the
individual sequences and the integrated sequences all show a Mestel slope
in the luminosity range 2.0 » log(L/Lg) » — 3.3, but the observations
may indicate a different slope (it is marginal, given the error bars). It could
be that the observed points will move towards the Mestel relation as the
error bars are reduced, but if they do not, then the observed LF points at
log(L/Lg) = —1.7, —2.2, and —2.6 may suggest that there was a recent burst
of star formation some 3—4 x 10® yr ago, preceded by a lull approximately
1 Gyr ago. Both of these are consistent with the chromospheric age data of
Barry (1988).

The Galactic disk ages that the white dwarfs suggest range conserva-
tively from a low obtained from fitting the high-luminosity turndown limit
using oxygen-core models with thick helium layers [log(Myg./M,) = —2],

to a high obtained from fitting the low-luminosity turndown limit using
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carbon-core models with thin helium layers [log(Mpge/M.) = —4] and using
the case A disk scale height inflation relation (factor of 3 over 12 Gyr) and
a Clayton (1988) SFR. With these assumptions, the conservative estimates
for the ages consistent with the observations range from a low of ~6 Gyr
to a high of ~13.5 Gyr. Using the best estimates for the core composition
[see equation (3.1)], a thin helium-layer mass, and one of the Clayton (1988)

infall star-formation rates, the age estimates run from roughly 8-11 Gyr.

The oldest stars in the disk may have been scattered to larger scale
heights above the disk through gravitational interactions with giant molec-
ular clouds or through a satellite-galaxy accretion event. Carlberg et al.
(1985) have re-investigated the Twarog (1980) results using the VandenBerg
(1985) isochrones and several other refinements, and find Twarog overesti-
mated the scale height inflation. In addition, Liebert, Dahn, and Monet
(1988) found no correlation between tangential velocity with decreasing lu-
minosity for the coolest white dwarfs, which further suggests that if there
is a scale height inflation with age, it is modest. As we saw above, modest
scale height inflation (e.g., Case A) has only a small effect on the low-
luminosity end of the luminosity function. Although it is well established
that older stars are observed to have a larger scale height statistically than
are young stars, an alternative explanation is that these stars were formed
during an early pressure-supported collapse phase. Once formed, the stars
would no longer be supported against the galactic gravitational potential,
and would orbit on a highly-elliptical path with a mean scale height well
above that of stars formed later when the disk had settled to its current
thickness (see Gilmore, Wyse, and Kuijken 1989). In this picture, the SFR

per volume could be approximately constant, and so might cause no change
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in the white dwarf luminosity function. Undoubtedly both processes con-
tribute to the observed trend of age vs. scale height, but sorting out the
relative importance of the two explanations is going to be difficult and time
consuming. For now, it seems likely that even the Case B relation is an
overestimate for the increase of scale height by scattering processes, and so
scale height inflation is not likely to strongly affect the derived ages of the

oldest white dwarfs.



7. Concluding

Remarks

We discussed the age limits for the local Galactic disk in great detail in
the previous Chapter, and now compare those results against the age esti-
mates obtained from other cosmochronological techniques. There are some
serious inconsistancies among the results, and it is currently not possible
to select unambiguously from among these various results to obtain the age
of the Galaxy and universe. However, based on the success of white dwarf
cosmochronology in determining the age of the local disk, we suggest that
the continuing study of the white dwarf disk and halo luminosity functions

may provide the solution to the problem within a few years.

Estimates for the age of the universe, Galaxy, and Solar System come
from a number of sources. Traditional estimates come from measurements
of the Hubble expansion constant Hy, which together with a cosmological
model gives an age estimate for the length of time that the galaxies have
been receding from each other. In the most recent major review of the
cosmic distance scale, van den Bergh (1989) estimates that Hy = 67 &
8 kms™! Mpc™!, which, if the inflationary model (Guth 1981; Guth and
Steinhardt 1984) is correct and the universe is flat, suggests an age ty =
%H 0 12~ 10 Gyr (see Fowler 1987). Using Type la supernovae as standard
candles, Arnett, Branch and Wheeler (1985) and Wheeler and Harkness
(1986) use the apparent luminosity and redshift of SN Ia’s in galaxies with
z > 0.01 to determine the Hubble time Ty = .HO—I. They find Ty =

202
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16.84-1.4 Gyr, which again if Einstein’s curvature constant and cosmological
constant are zero (the Einstein-De Sitter model, 1932), gives ty = 2Ty =

11.2.

Within our own Galaxy, it is common to fit isochrones to the halo glob-
ular clusters and to the disk globular and open clusters (where “disk globu-
lars” refers to the higher-metallicity, lower-scale-height population discussed
by Zinn 1985). The isochrones are constructed using the numerical results of
standard stellar evolution calculations (VandenBerg and Bell 1985; Green,
Demarque, and King 1987), and have associated with them a number of
inherent uncertainties, such as mixing length, nuclear reaction rates, meri-
donal circulation, and magnetic field effects. Ages derived in this way are
typically ~15 Gyr and Green (1988) suggests that there is a real spread in
ages in the globular cluster system, ranging from about 13 Gyr for 47 Tuc
and NGC 362 to almost 18 Gyr for M 92 and NGC 288.

The oldest of these ages are taken to be the age of the Galaxy tg. To
find the age of the Universe the formation timescale tf (i.e., Big Bang to

star-formation onset timescale) must be added:
ty = tr +tg. (7.1)

The values adopted for tp are typically near 1 Gyr, but with estimates that
range up to ~5 Gyr. The recent COBE (Cosmic Background Explorer)
satellite results show the microwave background to be described by a 2.74 K
blackbody to exceptional accuracy, and in light of these results it is becoming
increasingly clear that tp =~ 1 Gyr may be too short a time to evolve from
the smooth background to galactic structures if gravity is the sole force at

work.
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Also dependent upon isochronal calibration are the ages determined by
Barry (1988) in his study of 115 nearby chromospherically-active stars. He
suggests that the ages of the oldest object in his sample are ~13 Gyr old,
with estimated accidental errors of 15% and systematic errors (possibly) as
large as 20% at an age of 10 Gyr. These results are challenged by Norris and
Green (1989), however, who in their study of core-helium-burning giants

with distances above the galactic plane z ¢ 3 kpc find that there is no

compelling reason to believe that the Galactic disk in the solar neighborhood
has any major stellar component as old as the disk globular clusters (s.e.,

47 Tuc at ~13 Gyr), by at least 3-6 Gyr.

Fowler (1987) and Fowler and Meisl (1986) describe their preferred
method for dating the Galaxy: nucleocosmochronology. They use the ratios
of radioactive decay product in the Solar System to derive the length of time
A preceding the formation of the Solar System, and then add to that the
age of the solar system (e.g., Wasserburg et al. 1977):

tss = 4.6 0.1 Gyr. (7.2)

Fowler (1987) finds the pre-Solar System timespan to be A = 5.4+ 1.5 Gyr
for a Galactic age of tg = 10.0+1.5 Gyr. Fowler’s results have been brought
into question by Cowan, Thielemann, and Truran (1986) who found 7.8 <
A < 10.1 Gyr, suggesting a Galactic age of of 12.4 < tg < 14.7 Gyr, after

introducing beta-delayed fission into the r—process network of reactions.

The local sample of white dwarf stars suggests that the first white dwarf
progenitors began forming at our galactocentric radius some 9.5 Gyr ago,
with the best estimates ranging from 8-11 Gyr. These results are consistent
with those of Norris and Green (1989) and Fowler and Meisl (1986), and

with the Hubble ages derived under the assumption of the inflationary model
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with a zero cosmological constant, using recent determinations for Hy and
Ty. The white dwarf results are perhaps inconsistent with the globular
cluster ages, the nucleocosmochronological ages of Cowan, Thielemann, and

Truran (1986), and are marginally inconsistent with the chromospheric ages

of Barry (1988).

If the Hubble ages as discussed above are essentially correct, then the
globular cluster ages are wrong. The white dwarf ages and the nucleocos-
mochronological ages of Fowler are consistent with this picture, and within
this context support the idea that the proto-Galaxy collapsed on roughly a
dynamical timescale (e.g., Eggen, Lynden-Bell, and Sandage 1962).

If instead the globular cluster ages are essentially correct (and it should
be noted that there is good agreement among the calculations), then either
the inflationary cosmological model is incorrect or the cosmological constant
is (or was) non-zero. The results of Fowler (but not those of Cowan,
Thielemann, and Truran) are inconsistent with this picture, because the r-
process nuclei formed in an early generation of high-mass halo stars should
have fallen onto the disk and then have be incorporated into forming disk
stars — the nucleocosmochronological ages should lie between the disk and
halo ages. If the globular cluster ages are correct, then it is possible to
conclude that the time of onset of low-mass star formation occured 2-
5 Gyr earlier in the halo globular clusters than in the local disk. This is an
important result because it suggests that the Galaxy formed via an epoch of
pressure supported collapse wherein the more-massive halo globular clusters
and the bulge of the galaxy formed first, followed by the disk globular
clusters and the stars in the disk itself. In other words, this result favors

the pressure-supported collapse model of Larson (1976).
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Whether there is or is not an age difference between disk and halo,
observations of the halo and disk populations of white dwarf stars will trace
the relative ages of the two, and will provide the solution to the problem

within the next few years.

As discussed above, the main uncertainties in the age of the local disk as
given by the white dwarf stars are the bolometric corrections appropriate to
the cool stars, and the core composition and helium layer mass of the coolest
stars. Roughly half of the age uncertainty is the result of the bolometric
correction uncertainties, and the remaining uncertainty is in the white dwarf
models. There are currently at least two observational campaigns whose goal
is to reduce significantly the error bars for the lowest luminosity objects, and
these efforts should produce results within the next two years (Claver et al.

1990; Von Hipple, personal communication).

In addition, our knowledge of the core composition and surface-layer
structure is growing at an accelerated pace because of the advent of the
Whole Earth Telescope (Nather 1989, Nather et al. 1990). With the Whole
Earth Telescope, it is at last possible to observe the pulsating white dwarf
stars and to obtain nearly continuous ~2-week photometric time-series mea-
surements. Because the data density is roughly a factor of 10 higher than is
obtainable from a typical single site, the Whole Earth Telescope Team are
finding results which are different not by degree but by kind. For example,
through comparison with theoretical models of pulsating white dwarf stars,
they have been able to determine the mass of the DOV star PG1159 to two
significant figures, the rotation period, the inclination angle, a limit to the
magnetic field strength, and the composition of the surface layer masses (see
Winget et al. 1990). In short, the observers are finding that they can use the

Whole Earth Telescope time-series data as a fine seismological probe of the
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structure of the star, and they are finding a wealth of information — stun-
ning in its detail — with every run of the instrument. Because the pulsating
DA and DB white dwarf stars are otherwise normal white dwarfs, these seis-
mological observations will allow us to measure the physical parameters of
the populations — especially the core composition and stratification — and

to eliminate these uncertainties.

Over the next few years, as the results come in from the both the
low-luminosity-white-dwarf surveys and the Whole Earth Telescope, our
understanding of the shape of the low-temperature end of the luminosity
function, and our understanding of the properties of the stars observed at
the turndown, will improve greatly. The results promise to reveal the age
of the local disk to greater accuracy than is possible with other methods,
and will answer the question of the relative ages of the disk and halo of the
Galaxy. In doing so, they will shape how we think about the formation and

evolution of all galaxies.



APPENDIX: MODEL SEQUENCE SUMMARY TABLES

Before listing the sequence summary tables discussed in the text, we
should describe in some detail our method of naming the sequences. Ex-
amples of sequence names are ¢6310, c¢6410d, and x10400b. The leading
character in the name indicates the core composition: Carbon, Oxygen, or
miXture. The following character(s) denote the core mass; for example “6”
implies a core mass of 0.6 Mg, and “10” a core mass of 1.0 Mg (note the
use of two places for models with mass of 1.0 Mg and greater). Following
this is the character which denotes the logarithm of the helium-layer mass;
for example “4” implies log(Mpy./M,) = —4. The following two characters
denote the hydrogen layer mass in the same sense as we just discussed. Be-
cause we calculate sequences with hydrogen-layer masses below 1070 M,

must use two characters in the name.

For most of these carbon- and oxygen-core sequences, the naming con-
vention just described is sufficient. Implicit in these most basic names is
that the He/C and H/He transitions are idealized as discontinuities. For
those sequences calculated with the transition regions set to approximate
the equilibrium diffusion profile, we tag a “d” onto the tail end of the name,
and then specify the details of the transition zone thicknesses in the foot-

notes to the individual tables.

A number of our sequences have mixed C/O cores, and as we noted
above, we lead these sequences’ names with the letter “x.” Because the
number of C/O profiles which could be adopted approaches infinity, we

chose to compute families of sequences, where each member of the family
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has the same core C/O profile as a function of M;/M, as its siblings. For
example, the sequences with mixed C/O profiles we present here we de-
note with a trailing “b” specifying the profile defined by equation (3.1) and
shown in Figure 3.1. Not published here, but available upon request, we
have computed a family of sequences with 50/50 C/O cores which we have
defined as family “a” (e.g., x6300a). Similarly, we have another family of
sequences computed with an approximation to the C/O profile in Mazz-
itelli and D’Antona (1986; their Figure 5) and thin diffusive equilibrium
composition-transition zones; these we define with a trailing “c,” for the
core composition, followed by “d,” for the diffusive transition zones. These
sequences were used in a preliminary study of the white dwarf luminosity

function by Wood (1990), and are also available upon request.

In the Tables that follow, we list the luminosity log(L/Lg), the Age the
core temperature log(T;), the effective temperature log( Teff), the radius
log(R,), the neutrino luminosity log(L,/Lg), and the crystallization mass
fraction Myia /M. Typical model sequences have ~90 models in them,
and so would take up too much space if published “raw.” For this reason,
and also to facilitate the intercomparison of the various sequences, we have
interpolated (using splines) all of the sequences onto a uniform luminosity
grid whose maximum is log(L/Lg) = +1.0 and whose minimum is a function
of the specific sequence. The stepsize in luminosity between table entries is
0.2 dex. Finally, we note that beyond a point in the evolution of the models,
neutrino energy losses become unimportant, and we stop calculating them.

In the Tables these models have ellipses in the log(L,/Lg) column.
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TABLE A.l
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log(L/Lo) ~ Age  log(T.) T log(Re) log(Lu/Lo)  Miwa/Me
+1.0 2.636 (6)  7.941 79924  9.065 +1.326 0.
+0.8 2.981 (6)  7.905 72940  9.043 +1.133 0.
+0.6 3.394 (6) 7.874 66249  9.026 +0.942 0.
+0.4 3.807 (6)  7.847 59971  9.013 +0.751 0.
+0.2 4524 (6)  7.824 54167  9.002 +0.561 0.
0.0 5318 (6)  7.803 48811  8.992 +0.366 0.
-0.2 6.348 (6)  7.783 43906  8.983 +0.166 0.
~0.4 7722 (6) 7762 39475 8.976 -0.045 0.
-0.6 9.659 (6)  7.739 35453  8.970 -0.274 0.
-0.8 1.259 (7) 7714 31780  8.964 —0.535 0.
~1.0 1.739 (7)  7.682 28520  8.959 -0.848 0.
~1.2 2592 (7)  7.638 25532  8.954 ~1.243 0.
~14 4218 (7) 7580 22874  8.950 ~1.763 0.
~1.6 7.137 () 7507 20503  8.947 ~2.414 0.
-1.8 1.162 (8) 7428 18329  8.943 -3.143 0.
~2.0 1.790 (8)  7.345 16397  8.940 ~3.889 0.
2.2 2.645 (8)  7.258 14670  8.936 —4.583 0.
~2.4 3.793 (8)  7.169 13104  8.933 ~5.201 0.
~2.6 5270 (8)  7.079 11727  8.931 ~5.758 0.
~2.8 7.139 (8) 6991 10468  8.930 —6.283 0.
~3.0 9578 (8)  6.903 9329  8.929 —6.804 0.
~3.2 1.276 (9)  6.814 8325  8.928 ~7.361 0.
~3.4 1.694 (9)  6.725 7430  8.927 0.
~3.6 2430 (9) 6635 6632  8.926 0.188
-3.8 3.526 (9) 6529 5913  8.925 0.526
~4.0 4737 (9) 6417 5278  8.924 0.662
-4.2 6.392 (9) 6281 4707  8.924 0.810
4.4 7.992 (9)  6.161 4195  8.923 0.904
—4.6 9.565 (9)  6.054 3743  8.923 0.964
—4.8 1.132(10)  5.936 3331  8.923 0.991
~5.0 1.324(10)  5.801 2072  8.924 1.000
~5.2 1.520(10)  5.637 2648  8.923 1.000
~5.4 1.666(10) 5474 2356  8.924 1.000




Xx4400B SUMMARY LISTING

TABLE A.2

log(L/Lg) Age log(Te) Ter log(Ry) log(Ly/Lg)  Mxtal/ M
+1.0 2.920 (6) 8.258 55030 9.388 +0.471 0.
+0.8 4.033 (6) 8205 53455  9.313 +0.527 0.
+0.6 5.255 (6) 8.125 50842 9.256 +0.493 0.
+0.4 6.592 (6) 8.037 47583 9.214 +0.377 0.
+0.2 8.108 (6)  7.967 44019  9.182 +0.212 0.

0.0 9.886 (6) 7.911 40376 9.157 +0.031 0.
-0.2 1.203 (7) 7.863 36886 9.136 -0.164 0.
-0.4 1.467 (7) 7.821 33502 9.120 —0.369 0.
-0.6 1.803 (7) 7.782 30320 9.106 -0.580 0.
-0.8 2.248 (7) 7.744 27381 9.094 —0.808 0.
-1.0 2.871 (7) 7.704 24673 9.084 -1.062 0.
-1.2 3.780 (7) 7.660 22256 9.075 —-1.356 0.
-1.4 5.146 (7) 7.611 20002 9.067 —1.703 0.
-1.6 7.268 (7) 7.553 17995 9.059 -2.126 0.
~1.8 1.058 (8) 7.487 16156 9.053 —2.642 0.
-2.0 1.539 (8) 7.414 14504 9.046 -3.241 0.
~2.2 2.198 (8) 7.339 13020 9.039 —3.902 0.
~2.4 3.084 (8) 7.261 11681 9.035 ~4.594 0.
—-2.6 4.269 (8) 7.181 10446 9.031 —5.260 0.
-2.8 5.876 (8) 7.096 9349 9.028 —-5.872 0.
-3.0 8.012 (8) 7.009 8354 9.025 —6.434 0.
-3.2 1.082 (9) 6.918 7466  9.023 —6.983 0.
-3.4 1.448 (9) 6.826 6670 9.021 ~7.582 0.
~3.6 1.925 (9) 6.732 5959 9.019 0.
-3.8 2.569 (9) 6.633 5319 9.018 0.
—-4.0 3.604 (9) 6.519 4748 9.016 0.041
—4.9 5.288 (9)  6.390 4242 9.015 0.498
—~4.4 6.781 (9) 6.279 3776 9.015 0.646
—4.6 8533 (9) 6169 3364  9.014 0.773
—~4.8 1.085(10) 6.044 3002 9.015 0.885
-5.0 1.332(10) 5.921 2673 9.014 0.966
—5.2 1.576(10) 5.800 2379 9.015 0.993




X54008 SUMMARY LISTING

TABLE A.3

log(L/Lo) Age log(Te) Tewr log(Ry) log(Ly/Le)  Mxal/ My
+1.0 3.235 (6) 8.059 69994 9.179 +1.174 0.
+0.8 3.789 (6) 7.993 65021 9.143 -+0.996 0.
+0.6 4.422 (6) 7.938 59784 9.117 +0.811 0.
+0.4 5.172 (6) 7.895 54616 9.095 +0.622 0.
+0.2 6.076 (6) 7.860 49650 9.077 +0.429 0.
0.0 7.188 (6) 7.829 44979 9.063 +0.233 0.
—0.2 8.585 (6) 7.800 40663 9.051 +0.032 0.
0.4 1.038 (7) 7.774 36695 9.041 -0.175 0.
-0.6 1.279 (7) 7.747 33034 9.031 -0.395 0.
-0.8 1.619 (7) 7.719 29673 9.024 —0.636 0.
-1.0 2.132 (7) 7.685 26664 9.017 -0.915 0.
—1.2 2.945 (7) 7.645 23961 9.011 —1.247 0.
~1.4 4.306 (7) 7.595 21451 9.006 —1.659 0.
~1.6 6.642 (7) 7.533 19254 9.001 -~2.177 0.
~1.8 1.042 (8) 7.461 17233 8.996 —2.802 0.
-2.0 1.601 (8) 7.383 15457 8.991 -3.514 0.
-2.2 2.354 (8) 7.302 13858 8.986 ~4.238 0.
—-2.4 3.377 (8) 7.218 12398 8.982 —4.924 0.
—-2.6 4.744 (8) 7.130 11089 8.979 -5.535 0.
~2.8 6.567 (8) 7.040 9898 8.977 —6.105 0.
-3.0 8.863 (8) 6.950 8843 8.975 -6.641 0.
-3.2 1.183 (9) 6.861 7901 8.974 —7.151 0.
—-3.4 1.574 (9) 6.771 7051 8.973 —9.441 0.
-3.6 2.096 (9) 6.678 6285 8.972 0.
-3.8 2.885 (9) 6.588 5609 8.971 0.084
—4.0 4.431 (9) 6.458 5009 8.970 0.518
—4.2 5.953 (9) 6.330 4474 8.969 0.681
~4.4 7.473 (9) 6.218 3979 8.969 0.801
—4.6 9.182 (9) 6.110 3551 8.968 0.891
—4.8 1.132(10) 5.990 3163 8.970 0.966
-5.0 1.358(10) 5.860 2817 8.969 0.993
5.2 1.559(10) 5.743 2505 8.971 1.000




X7400B SUMMARY LISTING

TABLE A.4

log(L/LG) Age log(TC) Tetr log(R*) log(LV/LG) Mxtal/M*
+1.0 2.661 (6) 7.914 87326 8.989 +1.447 0.
+0.8 2.947 (8) 7.884 79100 8.971 +1.214 0.
+0.6 3.288 (6)  7.857 71263  8.956 +0.996 0.
+0.4 3.661 (6) 7.838 63959 8.946 +0.817 0.
+0.2 4.119 (6) 7.821 57278 8.939 +0.640 0.
0.0 4.719 (6) 7.803 51230 8.932 +0.449 0.
-0.2 5.531 (6) 7.785 45775 8.926 +0.247 0.
~0.5 6.698 (6)  7.766 40858  8.921 +0.026 0.
~0.7 8.517 (6) 7.744 36446 8.916 -0.230 0.
—0.9 1.173 (7) 7714 32579 8.911 ~0.551 0.
~-1.1 1.803 (7) 7.672 29052 8.908 -0.971 0.
-1.3 3.130 (7) 7.610 25884 8.904 —1.632 0.
~15 5784 (7)  7.532 23079  8.900 ~2.243 0.
~1.7 1.020 (8) 7.445 20553 8.897 —3.047 0.
~1.9 1.643 (8)  7.354 18294  8.894 ~3.835 0.
-2.1 2.486 (8) 7.261 16297 8.891 ~4.529 0.
-2.3 3.572 (8) 7.169 14518 8.889 -5.123 0.
-2.5 5.007 (8) 7.076 12903 8.887 —5.685 0.
~2.7 6.850 (8)  6.984 11482  8.886 —6.225 0.
-2.9 9.272 (8) 6.894 10197 8.885 —6.759 0.
~3.1 1.246 (9)  6.804 9048  8.884 ~7.329 0.
-3.3 1.774 (9) 6.716 8045 8.883 —9.998 0.16
-3.6 2.642 (9) 6.613 7144 8.882 0.502
-3.8 3.557 (9) 6.511 6341 8.883 0.634
—-4.0 4.733 (9) 6.401 5634 8.882 0.755
—-4.2 6.315 (9) 6.271 4992 8.882 0.870
—4.4 8.021 (9)  6.136 4440  8.882 0.958
—4.6 9.388 (9) 6.027 3931 8.884 0.986
-4.8 1.092(10) 5.910 3488 8.884 1.000




Xx84008 SuUMMARY LISTING

TABLE A.5

log(L/Lo) Age log(T) Tea log(Ry) log(Lv/Lo)  Mxtal/Mx
+0.6 2.941 (6) 7.899 77989 8.906 +1.359 0.
+0.4 3.336 (6) 7.867 67905 8.893 +1.042 0.
+0.2 3.886 (6) 7.842 61128 8.883 +0.784 0.
0.0 4.516 (6) 7.822 55253 8.877 +0.567 0.
-0.2 5.213 (6) 7.805 49269 8.872 +0.364 0.
-04 6.135 (6) 7787 43758 8.868 +0.150 0.
-0.6 7.688 (6) 7.765 39009 8.864 —0.112 0.
-~0.9 1.104 (7) 7.730 34850 8.860 —0.488 0.
-1.1 1.900 (7) 7.676 30963 8.857 —1.027 0.
-1.3 3.702 (7) 7.598 27573 8.854 ~1.732 0.
-1.5 7.036 (7) 7.508 24593 8.851 —2.544 0.
-1.7 1.202 (8) 7.415 21910 8.848 ~3.365 0.
-1.9 1.863 (8) 7.322 19467 8.846 —4.076 0.
-2.1 2.727 (8) 7.229 17313 8.844 —4.685 0.
-2.3 3.856 (8) 7.136 15409 8.842 -5.245 0.
-2.5 5.332 (8) 7.045 13696 8.841 —5.789 0.
-2.7 7.242 (8) 6.955 12172 8.840 —-6.319 0.
~2.9 9.764 (8) 6.865 10793 8.839 —6.848 0.
~3.1 1.405 (9) 6.779 9591 8.838 —7.936 0.206
-3.3 2.059 (9) 6.682 8508 8.838 0.506
~3.5 2.763 (9) 6.584 7571 8.837 0.629
—-3.8 3.635 (9) 6.483 6705 8.838 0.740
—4.0 4.825 (9) 6.373 5959 8.837 0.841
—4.2 6.200 (9) 6.257 5274 8.839 0.924
—4.4 7.859 (9) 6.110 4687 8.838 0.982
—4.6 9.069 (9) 5.999 4149 8.841 0.998
—4.8 1.039(10) 5.875 3691 8.839 1.000
-5.0 1.164(10) 5.744 3261 8.842 1.000
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TABLE A.6

215

log(L/Lo) Age log(T:)  Tew  log(Ri) log(Lv/Lo)  Mysa/Mi
+1.0 2.524 (6) 7.962 104858  8.858 +1.752 0.
+0.8 2.660 (6)  7.934 90827  8.844 +1.476 0.
+0.6 2737 (6) 7917 79682  8.834 +1.316 0.
+0.4 2.800 (6) 7.909  TI212  8.829 +1.239 0.
+0.2 2.926 (6)  7.902 64239  8.826 +1.160 0.
0.0 3213 (6)  7.887 57958  8.823 +0.996 0.
~0.2 3.798 (6)  7.859 51906  8.818 +0.688 0.
~0.5 4.805 (6)  7.828 46309  8.813 +0.347 0.
—0.7 6.637 (6)  7.795 41286  8.809 —0.005 0.
-0.9 1.090 (7)  7.745 36741  8.807 —0:515 0.
~1.1 2.402 (7) 7659 32699  8.804 ~1.297 0.
-1.3 4973 (1) 7565 29138  8.802 -2.135 0.
-15 8.927 (7) 7470 25927  8.799 ~2.961 0.
-17 1.422 (8) 7.376 23079  8.797 —3.680 0.
-1.9 2.116 (8)  7.283 20510  8.795 —4.295 0.
~2.1 3.008 (8)  7.193 18227  8.794 ~4.848 0.
-2.3 4185 (8)  7.101 16204  8.793 —5.388 0.
~25 5728 (8)  7.012 14394  8.792 ~5.918 0.
~2.7 7780 (8)  6.943 13027  8.791 —6.437 0.
-2.9 1.152 (9)  6.834 11373  8.790 —6.962 0.276
-3.1 1.629 (9)  6.742 10091  8.790 -9.997 0.523
-33 2.182 (9)  6.650 8963  8.790 0.636
-3.6 2.855 (9)  6.552 7952 8.789 0.741
~3.8 3722 (9)  6.451 7050  8.791 0.832
—4.0 4.821(9)  6.339 6267  8.789 0.912
—4.2 5.947 (9)  6.233 5543  8.793 0.966
—4.4 7.385 (9)  6.085 4928 8.790 0.992
-4.6 8.388 (9)  5.970 4358  8.795 1.000
~4.8 9.511 (9)  5.826 3882  8.791 1.000
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TABLE A.7

log(L/Lo) Age log(Te)  Tew  log(Ry) log(Lv/Lo)  Mysar/ M
+1.0 2.465 (6) 8.006 114412 8.790 +1.911 0.
+0.8 2.589 (6) 7.986 103414 8.784 +1.695 0.
406 2731(6) 7961 89088  8.775 +1.497 0.
+0.4 2.774 (6) 7.946 77126 8.768 +1.268 0.
+0.2 2.742 (6) 7.942 68214 8.763 +1.221 0.

0.0 2.768 (6) 7.939 61153 8.760 +1.187 0.
~02  2993(6) 7927 55111  8.758 +1.060 0.
-0.5 3.637 (6) 7.897 49513 8.754 +0.739 0.
0.7 5.549 (6) 7.840 44150 8.750 +0.159 0.
-0.9 1.330 (7) 7.749 39266 8.749 ~(.659 0.
-1.1 3.508 (7) 7.630 34931 8.747 —1.680 0.
-1.3 6.635 (7) 7.532 31136 8.744 -2.526 0.
-1.5 1.079 (8) 7.438 27681 8.742 -3.249 0.
~17  1.624(8) 7.346 24585  8.741 --3.863 0.
-1.9 2.346 (8) 7.253 21895 8.739 —4.430 0.
—~2.1 3.275 (8) 7.163 19418 8.739 —4.964 0.
-2.3 4.493 (8) 7.074 17284 8.738 ~5.490 0.
~25  6.184(8) 6994 15338  8.737 ~5.998 0.046
-2.7 9.219 (8) 6.897 13628 8.736 —-6.528 0.335
~2.9 1.284 (9) 6.804 12104 8.736 —7.110 0.545
-3.1 1.687 (9) 6.717 10728 8.737 0.647
-3.3 2.205 (9) 6.624 9527 8.736 0.744
~3.6 2.869 (9) 6.529 8449 8.736 0.828
—38  3.657(9) 6.428 7487 8.738 0.898
—-4.0 4.646 (9) 6.313 6669 8.736 0.961
—4.2 5.545 (9) 6.208 5888 8.740 0.985
—-4.4 6.632 (9) 6.072 5248 8.737 1.000
—46  7515(9) 5943 4615  8.744 1.000
—4.8 8.340 (9) 5.795 4122 8.739 1.000




c4400 SuMMARY LISTING

TABLE A.8

log(L/Lo) Age log(T.) Tew  log(R«) log(Ly/Lo)  Mxeal/Ms
+1.0 2788 (6)  8.251 52934  9.421 +0.264 0.
+0.8 4.089 (6) 8218 52051  9.336 +0.390 0.
+0.6 5.506 (6)  8.151 49891  9.273 +0.405 0.
+0.4 7.049 (6)  8.061 46882  9.227 +0.328 0.
+0.2 8.756 (6)  7.986 43506  9.191 +0.180 0.
0.0 1.071(7)  7.928 40073  9.164 +0.009 0.
~0.2 1.302 (7)  7.878 36588  9.142 ~0.178 0.
~0.4 1.584 (7)  7.833 33306  9.125 ~0.378 0.
-0.6 1.937 (7) 7793 30157  9.110 -0.588 0.
-0.8 2.404 (7) 7752 27287 9.098 -0.816 0.
~1.0 3.062 (7) 7710 24624  9.087 ~1.072 0.
~1.2 4.030 (7)  7.663 22173 9.077 ~1.370 0.
~1.4 5493 (7) 7610 19955  9.069 -1.724 0.
-1.6 7788 (7) 7550 17917 9.061 ~2.156 0.
-1.8 1.136 (8)  7.481 16123  9.054 ~2.679 0.
-2.0 1.652 (8)  7.409 14481  9.048 -3.281 0.
-2.2 2.362 (8)  7.333 12990  9.041 -3.948 0.
2.4 3.317 (8)  7.256 11652  9.037 —4.651 0.
-2.6 4.602 (8)  7.175 10437  9.033 ~5.337 0.
~2.8 6.347 (8)  7.091 9329  9.029 —5.964 0.
-3.0 8.649 (8)  7.004 8336  9.027 —6.527 0.
~3.2 1.174 (9)  6.913 7443  9.025 —7.080 0.
~3.4 1578 (9)  6.821 6650  9.023 ~7.672 0.
-3.6 2.103 (9)  6.729 5947  9.021 —9.988 0.
-3.8 2.819 (9)  6.629 5304  9.020 0.
—4.0 3.935 (9)  6.503 4740  9.018 0.
~4.2 5181 (9)  6.387 4227  9.017 0.
—4.4 7.181 (9) 6287 3776  9.016 0.259
~4.6 9.850 (9)  6.169 3367  9.016 0.647
-4.8 1.292(10)  6.037 2998  9.015 0.888
~5.0 1.563(10) 5914 2676  9.015 0.968
~5.2 1.862(10) 5777 2383  9.015 0.994




c5400 SUMMARY LISTING

TABLE A.9

log(L/Lg) Age log(T:) Ter log(Ry) log(Ly/Le)  Myxia/ M
+1.0 3.470 (6) 8.090 68959 9.192 +1.154 0.
+0.8 4.077 (6) 8.016 64250 9.154 +0.982 0.
+0.6 4.765 (6) 7.958 59286 9.124 +0.806 0.
+0.4 5.559 (6) 7.914 54235 9.101 +0.626 0.
+0.2 6.502 (6) 7.876 49351 9.082 +0.437 0.

0.0 7.651 (6) 7.845 44784 9.067 +0.244 0.
-0.2 9.086 (6) 7.815 40491 9.055 -+0.046 0.
0.4 1.003 (7) 7786 36529  9.043 ~0.161 0.
—0.6 1.339 (7) 7758 32035  9.034 —0.381 0.
-0.8 1.690 (7) 7.726 29619 9.027 —0.626 0.
~1.0 2.226 (7) 7.691 26604 9.019 -0.910 0.
-1.2 3.091 (7) 7.647 23927 9.012 -1.252 0.
~14 4577 (1) 7592 21422 9.007 ~1.682 0.
—-1.6 7.163 (7) 7.527 19227 9.002 —2.222 0.
-1.8 1.128 (8) 7.453 17216 8.997 —2.861 0.
-2.0 1.720 (8) 7.376 15432 8.992 —3.568 0.
-2.2 2.529 (8) 7.296 13820 8.987 ~4.300 0.
—-2.4 3.636 (8) 7.213 12385 8.984 -5.003 0.
~2.6 5.130 (8) 7.125 110673 8.981 —5.629 0.
-2.8 7.116 (8) 7.035 9891 8.979 —-6.201 0.
~3.0 9.620 (8)  6.947 8831  8.977 ~6.732 0.
-3.2 1.291 (9) 6.857 7885 8.976 —~7.266 0.
-3.4 1.722 (9) 6.767 7029 8.974 0.
Y 2.303 (9)  6.673 6284  8.973 0.
-3.8 3.081 (9) 6.576 5607 8.972 0.
—-4.0 4.276 (9) 6.456 4998 8.971 0.
—4.2 6.451 (9) 6.332 4462 8.970 0.385
—-4.4 8.700 (9) 6.216 3978 8.970 0.722
-4.6 1.085(10) 6.107 3544 8.969 0.892
—-4.8 1.334(10) 5.979 3160 8.969 0.975
-5.0 1.576(10) 5.851 2821 8.969 0.990




c6400 SUMMARY LISTING

TABLE A.10

log(L/Lg) Age log(T%) Teqr log(Ry) log(Lu/Lg)  Mxtal/ M,
+1.0 2.809 (6) 7.960 79240 9.071 +1.350 0.
+0.8 3.174 (8) 7.921 72470 9.049 +1.160 0.
+0.6 3.605 (6) 7.890 65914 9.032 +0.966 0.
+0.4 4.130 (6) 7.863 59699 9.018 +0.778 0.
+0.2 4.780 (6) 7.840 53898 9.006 +0.590 0.

0.0 5.601 (6) 7.817 48560 8.995 +0.397 0.
-0.2 6.661 (6) 7.796 43737 8.987 +0.196 0.
~0.4 8.082 (6) 7.774 39381 8.980 ~-0.016 0.
~0.6 1.009 (7) 7.750 35338 8.973 -0.246 0.
-0.8 1.316 (7) 7.722 31682 8.967 -0.511 0.
-1.0 1.827 (7) 7.686 28455 8.962 —0.831 0.
-1.2 2.759 (7) 7.640 25486 8.957 -1.239 0.
—1.4 4.558 (7) 7.577 22812 8.952 ~1.772 0.
-1.6 7.769 (7) 7.503 20445 8.949 —2.429 0.
-1.8 1.267 (8) 7.424 18295 8.945 -3.162 0.
2.0 1.956 (8) 7.342 16363 8.942 -3.923 0.
-2.2 2.893 (8) 7.256 14648 8.938 —4.641 0.
-2.4 4.147 (8) 7.167 13096 8.936 ~5.271 0.
-2.6 5.797 (8) 7.077 11692 8.934 —5.840 0.
-2.8 7.872 (8) 6.989 10440 8.932 ~6.366 0.
-3.0 1.059 (9) 6.900 9317 8.930 —6.890 0.
-3.2 1.412 (9) 6.812 8316 8.929 ~7.444 0.
-3.4 1.882 (9) 6.723 7415 8.928 -9.947 0.
-3.6 2.519 (9) 6.630 6616 8.927 0.
~3.8 3.382 (9) 6.531 5899 8.927 0.
—4.0 5.077 (9) 6.421 5269 8.926 0.342
~4.2 7.530 (9) 6.282 4697 8.925 0.732
—4.4 9.513 (9) 6.162 4191 8.925 0.897
-4.6 1.130(10)  6.054 3737 8.925 0.968
—4.8 1.331(10)  5.935 3326 8.925 0.990
-5.0 1.547(10)  5.799 2968 8.925 1.000




c7400 SUMMARY LISTING

TaBLE A.11

log(L/Lo) Age log(T:)  Tew  log(Ri) log(Lu/Lo)  Mxeal/ My
+1.0 2.668 (6)  7.923 87428  8.988 +1.465 0.
+0.8 2.910 (6)  7.897 79208  8.974 +1.270 0.
+0.6 3.208 (6)  7.874 71444  8.961 +1.079 0.
+0.4 3.571 (6)  7.855 64347  8.951 +0.895 0.
+0.2 4.028 (6)  7.836 57939  8.943 +0.708 0.
0.0 4.621 (6)  7.818 52132  8.936 +0.515 0.
—0.2 5408 (6)  7.799 46799  8.929 +0.314 0.
~0.4 6.509 (6)  7.779 41942  8.924 +0.097 0.
-0.6 8.165 (6)  7.757 37599  8.918 ~0.147 0.
-0.8 1.092 (7) 7728 33661  8.914 ~0.439 0.
-1.0 1.611 (7)  7.689 30173  8.910 ~0.814 0.
~12 2.708 (7)  7.632 26980  8.907 ~1.321 0.
~1.4 4.987 (7) 7559 24157  8.902 —1.981 0.
~16 8.843 (7) 7477 21618  8.899 ~2.734 0.
~1.8 1.447 (8)  7.392 19329  8.897 ~3.521 0.
~2.0 2.213 (8)  7.304 17278  8.894 —4.255 0.
~2.2 3.231 (8)  7.215 15463  8.891 ~4.892 0.
~2.4 4.556 (8)  7.125 13791  8.889 —5.455 0.
-2.6 6.252 (8)  7.036 12311  8.888 —5.986 0.
-2.8 8.437 (8)  6.949 10988  8.886 —6.503 0.
-3.0 1.120 (9)  6.862 9824  8.886 ~7.020 0.
~3.2 1.501 (9) 6775 8763  8.885 —9.681 0.
~3.4 2.004 (9)  6.686 7811  8.884 0.
-3.6 2.700 (9)  6.596 6968  8.883 0.017
-3.8 4.105 (9)  6.493 6210  8.883 0.350
—4.0 5817 (9)  6.383 5539  8.882 0.657
—4.2 7.863 (9)  6.250 4942  8.882 0.874
~4.4 9.658 (9)  6.121 4407  8.881 0.965
-4.6 1.123(10)  6.008 3923  8.881 0.991
-4.8 1.280(10)  5.896 3498  8.881 1.000
—5.0 1.457(10)  5.759 3113  8.882 1.000




c8400 SuMMARY LISTING

TABLE A.12

221

log(L/Lo) Age log(T) Terr log(R) log(Lv/Le)  Mxeal/ My
+1.0 2.583 (6) 7.922 93668 8.918 +1.538 0.
40.8 2.747 (8) 7.904 84862 8.909 +1.362 0.
+0.6 2.958 (6) 7.887 76694 8.902 +1.186 0.
+0.4 3.236 (6) 7.869 68898 8.894 +1.000 0.
+0.2 3.594 (6) 7.851 61785 8.887 +0.811 0.
0.0 4.058 (6) 7.834 55436 8.881 +0.618 0.
-~0.2 4.695 (6) 7.817 49725 8.876 +0.414 0.
—0.4 5.635 (6) 7.797 44549 8.872 +0.189 0.
0.6 7.166 (6) 7.772 39842 8.868 -0.077 0.
0.8 1.003 (7) 7.740 35645 8.864 ~(.414 0.
-1.0 1.639 (7) 7.690 31892 8.861 -0.879 0.
-1.2 3.159 (7) 7.618 28561 8.857 -1.524 0.
-1.4 6.084 (7) 7.536 25550 8.855 —~2.282 0.
-1.6 1.073 (8) 7.446 22830 8.852 -3.105 0.
-1.8 1.703 (8) 7.356 20432 8.849 —3.863 0.
~2.0 2.509 (8) 7.268 18217 8.847 ~4.493 0.
-2.2 3.565 (8) 7.179 16272 8.845 —5.064 0.
~2.4 4.931 (8) 7.090 14540 8.844 —5.583 0.
~2.6 6.709 (8) 7.002 12977 8.843 ~6.104 0.
-2.8 9.008 (8) 6.916 11581 8.842 -6.615 0.
-3.0 1.201 (9) 6.829 10326 8.841 ~7.117 0.
-3.2 1.596 (9) 6.742 9215 8.840 —9.983 0.
~3.4 2.157 (9) 6.660 8216 8.840 0.049
-3.6 3.264 (9) 6.560 7326 8.839 0.357
~3.8 4.579 (9) 6.457 6531 8.838 0.650
—4.0 6.061 (9) 6.350 5830 8.838 0.835
—4.2 7.687 (9) 6.228 5189 8.838 0.938
—4.4 9.393 (9) 6.088 4633 8.838 0.990
~4.6 1.073(10) 5.972 4128 8.838 1.000
—-4.8 1.202(10) 5.854 3678 8.838 1.000
-5.0 1.325(10) 5.733 3275 8.838 1.000




c9400 SuMMARY LISTING

TABLE A.13

222

log(L/Lo) Age log(Te) Ter  log(Ri) log(Lv/Lo)  Myeal/My
+1.0 2519 (6)  7.967 105730  8.860 +1.782 0.
+0.8 2.676 (6)  7.940 91819  8.848 +1.514 0.
+0.6 2.865 (6)  7.917 80403  8.838 +1.278 0.
+0.4 3.082 (6) 7.900 72149  8.832 +1.098 0.
+0.2 3.368 (6) 7.884 65071  8.828 +0.924 0.
0.0 3778 (6)  7.866 58146  8.823 +0.714 0.
-0.2 4.399 (6) 7.844 51726  8.819 +0.474 0.
-05 5410 (6)  7.819 46136  8.816 +0.206 0.
-0.7 7.378 (6) 7785 41178  8.813 ~0.134 0.
-0.9 1.226 (7)  7.73¢ 36626  8.809 ~0.625 0.
~1.1 2.586 (7)  7.652 32637  8.806 ~1.334 0.
~13 5.387 (7) 7561 29061  8.803 ~2.162 0.
~15 9.782 (7)  7.466 25857  8.800 ~3.012 0.
~17 1.568 (8)  7.372 23033  8.798 ~3.756 0.
~1.9 2.339 (8)  7.279 20459  8.797 —4.383 0.
~2.1 3.336 (8)  7.187 18225  8.795 —4.941 0.
~2.3 4643 (8)  7.097 16198  8.794 —5.479 0.
~25 6.374 (8)  7.006 14388  8.793 -6.014 0.
2.7 8.629 (8)  6.917 12775  8.792 —6.540 0.
-2.9 1.159 (9)  6.828 11352  8.791 —7.053 0.
~3.1 1572 (9)  6.746 10083  8.790 ~9.979 0.043
-33 2.357 (9)  6.649 8963  8.790 0.326
-36 3.376 (9)  6.551 7965  8.789 0.596
~3.8 4.555 (9)  6.446 7058  8.789 0.796
—4.0 5.816 (9)  6.334 6277  8.789 0.914
—4.2 7.119 (9)  6.221 5564  8.789 0.967
—4.4 8.643 (9)  6.077 4940  8.788 0.989
—46 9.867 (9)  5.944 4383  8.789 1.000
-438 1.088(10)  5.820 3892 8.789 1.000




c10500 SuMMARY LISTING

TABLE A.14

log(L/Lo)  Age  log(T.) T  log(R) log(Lv/Lo) Musa/Ms
+1.0 2.464 (6)  8.007 114668  8.790 +1.912 0.
+0.8 2.559 (6)  7.987 102160  8.784 +1.700 0.
+0.6 2704 (6)  7.963 88323  8.776 +1.438 0.
+0.4 2.880 (6) 7.943 78071  8.770 +1.223 0.
+0.2 3.103 (6) 7.927 70303  8.767 +1.041 0.
0.0 3407 (6)  7.910 63498  8.764 +0.854 0.
~0.2 3.863 (6) 7.889 56903  8.761 +0.631 0.
~0.4 4672 (6) 7.862 50830  8.758 +0.355 0.
~0.6 6.381 (6) 7.824 45478  8.755 ~0.002 0.
~0.8 1.115 (7)  7.762 40593  8.752 ~0.532 0.
~1.0 2431 (7) 7676 36285  8.749 ~1.242 0.
-1.2 4912 (7) 7590 32441  8.747 ~1.985 0.
~14 8.664 (7)  7.508 28968  8.745 ~2.702 0.
~1.6 1.390 (8)  7.424 25864  8.743 ~3.356 0.
~1.8 2.121 (8)  7.337 23118  8.741 ~3.958 0.
~2.0 3.084 (8) 7.249 20619  8.740 —4.505 0.
~92.2 4.380 (8)  7.158 18412  8.739 —5.050 0.
—92.4 6.057 (8)  7.068 16434  8.738 —5.585 0.
—2.6 8.168 (8)  6.980 14668  8.737 ~6.103 0.
-2.8 1.091 (9) 6892 13074  8.736 ~-6.622 0.
~3.0 1516 (9)  6.808 11650  8.736 ~7.172 0.109
~3.2 2.205 (9) 6716 10409  8.735 0.376
-3.4 3.037 (9)  6.625 9272 8.735 0.602
~3.6 3.949 (9)  6.529 8261  8.734 0.783
~3.8 5.048 (9)  6.425 7380  8.734 0.899
4.0 6.161 (9)  6.318 6575  8.734 0.962
4.2 7.291 (9)  6.207 5857  8.733 0.988
4.4 8.490 (9)  6.083 5221  8.733 1.000
~4.6 9.597 (9)  5.947 4653  8.733 1.000




c12500 SUMMARY LISTING

TABLE A.15

o}

log(L/Lg) Age log(T%) Teqt log(R.) log(Lu/Lg)  Mxeal/ M,
+0.6 2.697 (6) 7.964 88915 8.776 +1.450 0.
+0.4 3.075 (6) 7.994 87047 8.741 +1.492 0.
+0.2 4.018 (6) 8.045 82325 8.673 +1.518 0.

0.0 5.191 (6) 8.072 75672 8.613 +1.395 0.
-0.2 6.063 (6) 8.038 68078 8.593 +1.019 0.
-0.4 7.652 (6) 7.952 60642 8.599 +0.414 0.
-0.6 1.331 (7) 7.835 54160 8.603 —0.354 0.
-0.8 2.732 (7) 7.727 48459 8.599 -1.139 0.
-1.0 5.035 (7) 7.637 43239 8.597 —1.865 0.
-1.2 8.469 (7) 7.547 38647 8.595 —2.545 0.
—-1.4 1.323 (8) 7.454 34487 8.593 —-3.167 0.
-1.6 1.926 (8) 7.365 30804 8.592 —3.720 0.
-1.8 2.717 (8) 7.274 27446 8.591 —4.262 0.
~2.0 3716 (8)  7.186 24513  8.590 ~4.786 0.
-2.2 4.995 (8) 7.100 21875 8.590 -5.307 0.
-2.4 7.115 (8) 7.013 19510 8.589 -5.813 0.168
-2.6 1.020 (9) 6.924 17379 8.588 -6.327 0.391
-2.8 1.361 (9) 6.834 15517 8.588 —6.887 0.599
-3.0 1.763 (9) 6.748 13822 8.587 -9.701 0.744
-3.2 2.206 (9) 6.660 12322 8.587 0.854
-3.4 2.681 (9) 6.571 10995 8.587 0.925
-3.6 3.194 (9) 6478 9799 8.586 0.963
-3.8 3.769 (9) 6.377 8736 8.586 0.980
~4.0 4341 (9) 6270 7784  8.586 0.994
—-4.2 4.899 (9) 6.154 6940 8.586 1.000
—4.4 5.390 (9) 6.035 6192 8.586 0.999
—4.6 5.799 (9) 5.921 5517 8.586 1.000




04400 SUMMARY LISTING

TABLE A.16

225

log(L/Lg) Age log(T2) Terr log(R,) log(L,/Lg) Mytat/ My
+1.0 2.735 (6) 7.824 66842 9.247 +0.105 0.
+0.8 3.153 (6) 7.839 60330 9.207 +0.118 0.
+0.6 3.599 (6) 7.850 55257 9.182 +0.101 0.
+0.4 4.184 (6) 7.855 50581 9.163 +0.056 0.
+0.2 4.997 (6) 7.855 46020 9.143 -0.019 0.
0.0 6.061 (6) 7.847 41874 9.126 -0.126 0.
-0.2 7.482 (6) 7.829 37942 9.112 -0.261 0.
-04 9.390 (6) 7.806 34305 9.100 -0.419 0.
~0.6 1.200 (7) 7775 30948 9.088 -0.602 0.
-0.8 1.572 (7) 7.741 27886 9.078 -0.818 0.
-~1.0 2.120 (7) 7.703 25102 9.069 -1.072 0.
-1.2 2.934 (7) 7.660 22578 9.062 -1.373 0.
-1.4 4.176 (7) 7.609 20252 9.055 —-1.735 0.
-1.6 6.111 (7) 7.549 18204 9.049 -2.174 0.
-1.8 8.983 (7) 7.484 16312 9.045 -2.682 0.
~2.0 1.298 (8) 7.417 14651 9.038 -3.238 0.
-2.2 1.846 (8) 7.348 13134 9.033 —-3.831 0.
—-2.4 2.603 (8) 7.277 11751 9.029 —4.449 0.
2.6 3.653 (8) 7.203 10518 9.026 -5.065 0.
-2.8 5.162 (8) 7.121 9404 9.024 -5.666 0.
-3.0 7.251 (8) 7.034 8397 9.020 —-6.239 0.
-3.2 1.000 (9) 6.942 7508 9.019 —6.794 0.
-3.4 1.353 (9) 6.851 6701 9.017 ~7.330 0.
-3.6 1.816 (9) 6.757 5981 9.015 0.
-3.8 2433 (9)  6.658 5339  9.014 0.
—4.0 3.460 (9) 6.547 4772 9.012 0.089
-4.2 5.125 (9) 6.419 4256 9.011 0.549
—4.4 6.777 (9) 6302 3799  9.010 0.814
—-4.6 8.428 (9) 6.189 3388 9.010 0.934
-4.8 1.051(10)  6.050 3020 9.010 0.989
5.0 1.274(10)  5.904 2688 9.010 1.000




05400 SUMMARY LISTING

TABLE A.17

1

log(L/Le) Age log(T:)  Ter  log(Ry) log(Lu/Lo)  Mxtal/My
+1.0 3.188 (6)  7.912 74192  9.124 +0.880 0.
+0.8 3517 (6)  7.896 67753  9.103 +0.778 0.
+0.6 3.959 (6)  7.877 61517  9.084 +0.645 0.
+0.4 4517 (6)  7.857 55565  9.068 +0.494 0.
+0.2 5.194 (6)  7.836 50112  9.055 +0.334 0.
0.0 6.068 (6)  7.814 45089  9.044 +0.162 0.
—0.2 7.230 (6)  7.792 40447  9.034 -0.023 0.
~0.5 8.829 (6)  7.767 36230  9.026 -0.225 0.
~0.7 1114 (7) 7740 32488  9.018 ~0.452 0.
~0.9 1.464 (7)  7.710 29048  9.011 ~0.714 0.
~1.1 2.019 (7) 7673 25971  9.005 ~1.024 0.
-1.3 2.939 (7)  7.628 23163  9.000 ~1.402 0.
~15 4555 (7)  7.570 20704  8.995 ~1.881 0.
—1.7 7.242 (7)  7.502 18439  8.991 —2.457 0.
~1.9 1.123 (8) 7431 16456  8.987 ~3.087 0.
~2.1 1.693 (8)  7.356 14658  8.983 ~3.750 0.
~2.3 2517 (8)  7.278 13064  8.979 —4.431 0.
-25 3717 (8)  7.190 11647  8.976 ~5.096 0.
—2.7 5.354 (8)  7.009 10351  8.974 —5.700 0.
-2.9 7521 (8)  7.004 9208  8.972 ~6.275 0.
-3.1 1.032 (9) 6910 8195  8.970 —6.835 0.
-3.3 1.3904 (9)  6.817 7282  8.969 ~7.405 0.
~3.6 1.882 (9)  6.720 6473  8.968 —9.949 0.
-3.8 2.632 (9)  6.627 5757  8.967 0.103
~4.0 4116 (9)  6.500 5109  8.966 0.546
~4.2 5.756 (9)  6.361 4544  8.965 0.845
—4.4 7224 (9) 6239 4034  B8.964 0.950
~4.6 8734 (9)  6.122 3583  8.964 0.988
—4.8 1.074(10) 5974 3179  8.964 1.000




06400 SUMMARY LISTING

TABLE A.18

N

log(L/Lo)  Age  log(T) Tr log(R.) log(Lu/Lo) Mua/Ms
+1.0 2.977 (6)  7.922 84069  9.039 +1.272 0.
+0.8 3.328 (6)  7.885 74402  9.016 +1.048 0.
+0.6 3.646 (6)  7.863 67293  9.003 +0.875 0.
+0.4 4.034 (6)  7.843 60687  8.994 +0.705 0.
+0.2 4547 (6)  7.822 54331  8.984 +0.524 0.
0.0 5206 (6)  7.802 48630  8.976 +0.337 0.
~0.2 6.094 (6)  7.782 43556  8.969 +0.140 0.
-0.5 7.369 (6) 7761 38966  8.963 ~0.076 0.
-0.7 9.312 (6)  7.737 34766  8.958 ~0.323 0.
~0.9 1.245 (7) 7707 31004  8.954 ~0.615 0.
~1.1 1.790 (7)  7.669 27655  8.949 ~0.973 0.
~1.3 2817 (7) 7619 24666  8.946 ~1.437 0.
-15 4789 (7)  7.551 22004  8.942 ~2.038 0.
~1.7 8.010 (7) 7475 19581  8.939 -2.721 0.
-1.9 1.263 (8)  7.398 17426  8.936 —3.418 0.
-2.1 1.908 (8)  7.320 15516  8.933 ~4.089 0.
~2.3 2.812 (8) 7.238 13826  8.931 ~4.705 0.
-2.5 4079 (8)  7.150 12307  8.929 ~5.274 0.
—2.7 5.801 (8)  7.060 10940  8.927 ~5.822 0.
~2.9 8.088 (8) 6.968 9715  8.926 ~6.366 0.
~3.1 1.111 (9) 6876 8644  8.925 —6.913 0.
~3.3 1514 (9) 6782 7685  8.924 ~7.649 0.
~3.6 2.191 (9)  6.689 6816  8.923 ~9.966 0.147
-3.8 3.327(9)  6.581 6064  8.922 0520
—4.0 4609 (9)  6.467 5378  8.921 0.789
—4.2 6.196 (9)  6.326 4778  8.921 0.939
—4.4 7652 (9)  6.198 4244  8.920 0.985
~4.6 9.171 (9)  6.072 3770  8.920 1.000
—4.8 1.087(10)  5.937 3349  8.920 1.000




07400 SuMMARY LISTING

TABLE A.19

228

IOg(L/LG) Age IOg(Tc) Teﬂ' log(R*) IOg(L,,/L@) Mxt;al/M*
+1.0 3.250 (6) 7.912 89446 8.961 +1.401 0.
+0.8 3.440 (8) 7.888 80575 8.950 ~+1.203 0.
+0.6 3.672 (6)  7.868 72607  8.942 +1.024 0.
+0.4 3.983 (6) 7.848 65026 8.934 +0.844 0.
+0.2 4.377 (6) 7.829 58113 8.927 +0.660 0.

0.0 4.881 (6) 7.810 51945 8.921 +0.470 0.
-0.2 5.588 (6) 7.792 46385 8.916 +0.267 0.
-05 6.656 (6)  7.771 41364  8.911 +0.038 0.
-0.7 8.371 (6) 7.746 36899 8.907 -0.228 0.
—0.9 1.135 (7) 7.716 32905 8.903 —0.551 0.
~1.1 1716 (7)  7.673 29317  8.900 -0.968 0.
-1.3 2.972 (7) 7.613 26101 8.897 —~1.538 0.
-1.5 5.401 (7) 7.535 23246 8.894 —2.238 0.
-1.7 9.117 (7) 7.455 20674 8.892 ~2.959 0.
-1.9 1.433 (8) 7.375 18378 8.890 —3.645 0.
-2.1 2.167 (8) 7.293 16361 8.887 —~4.273 0.
-2.3 3.202 (8)  7.204 14554  8.885 —4.854 0.
~2.5 4.616 (8) 7.113 12954 8.883 -5.412 0.
-2.9 6.480 (8) 7.021 11510 8.882 —5.961 0.
~2.9 8.923 (8) 6.928 10231 8.881 -6.505 0.
-3.1 1.214 (9)  6.836 9092  8.880 -7.025 0.
-3.3 1.780 (9) 6.745 8085 8.879 -9.952 0.210
-3.6 2.649 (9) 6.643 7179 8.879 0.549
-3.8 3.642 (9) 6.536 6369 8.878 0.783
—4.0 4.752 (9)  6.425 5657  8.878 0.914
—4.2 6.193 (9)  6.289 5033  8.877 0.980
~4.4 7.651 (9) 6.146 4466 8.877 0.995
—4.6 9.021 (9) 6.012 3966 8.877 1.000
-4.8 1.044(10) 5.864 3515  B8.877 1.000




08400 SuMMARY LISTING

TABLE A.20

log(L/Lg) Age log(T:) Test log(Re) log(Ly/Lp)  Mxia/ My
-+1.0 3.166 (6) 7.934 96681 8.900 +1.561 0.
+0.8 3.324 (6) 7.908 86076 8.889 +1.336 0.
+0.6 3.489 (6) 7.889 77463 8.883 +1.153 0.
+0.4 3.718 (6) 7.872 69427 8.878 +0.974 0.
+0.2 4.031 (6) 7.853 61940 8.872 +0.789 0.
0.0 4.448 (6) 7.834 55192 8.868 +0.593 0.
-0.2 5.027 (6) 7.814 49201 8.863 +0.381 0.
~0.5 5.948 (6) 7.793 43829 8.860 +0.138 0.
—0.7 7.553 (6) 7.767 39039 8.857 ~0.153 0.
~(.9 1.065 (7) 7.731 34847 8.854 —0.523 0.
—1.1 1775 (7) 7.677 30993 8.851 -1.035 0.
~1.3 3.444 (T) 7.600 27591 8.848 -1.729 0.
—-1.5 6.370 (7) 7.516 24564 8.846 —2.480 0.
-1.7 1.058 (8) 7.434 21864 8.844 -3.191 0.
~1.9 1.650 (8) 7.351 19448 8.842 —3.840 0.
-2.1 2.482 (8) 7.262 17269 8.840 —4.433 0.
-2.3 3.616 (8) 7.170 15375 8.838 -4.997 0.
-2.5 5.116 (8) 7.077 13660 8.837 ~5.548 0.
2.7 7.075 (8) 6.985 12157 8.836 —6.092 0.
-2.9 9.640 (8) 6.894 10785 8.835 —6.633 0.
-3.1 1.430 (9) 6.802 9584 8.834 ~7.250 0.258
-3.3 2.095 (9) 6.705 8507 8.834 -9.999 0.561
-3.6 2.901 (9) 6.605 7559 8.833 0.782
-3.8 3.779 (9) 6.498 6717 8.833 0.908
—4.0 4.779 (9) 6.386 5966 8.832 0.969
-4.2 5.977 (9) 6.261 5288 8.832 0.991
—4.4 7.397 (9) 6.104 4702 8.832 1.000
—4.6 8.595 (9) 5.957 4173 8.832 1.000
—-4.8 9.597 (9) 5.814 3705 8.832 1.000




09400 SUMMARY LISTING

TABLE A.21

230

log{L/Lg) Age log(T:) Tesr log(R,) log(Ly/Lg)  Mxtal/ M,
+1.0 3.071 (6) 7.973 1056561 8.842 +1.745 0.
+0.8 3.216 (6)  7.943 92392 8.831 +1.480 0.
+0.6 3.346 (6)  7.923 82328 8.825 +1.277 0.
+0.4 3.506 (6)  7.906 73880 8.821 +1.100 0.
+0.2 3.746 (6)  7.889 66055 8.817 +0.916 0.

0.0 4.100 (6) 7.870 58856 8.813 +0.714 0.
-0.2 4611 (6)  7.849 52382 8.810 +0.489 0.
-0.5 5.429 (6)  7.825 46633 8.807 +0.228 0.
-0.7 7.012 (6) 7.793 41527 8.804 -0.098 0.
-0.9 1.068 (7) 7.746 37003 8.801 ~0.545 0.
-1.1 2.072 (7) 7.673 32903 8.799 —1.198 0.
-1.3 4.265 (7) 7.584 29287 8.796 ~1.977 0.
-1.5 7.651 (7) 7.497 26051 8.794 -2.724 0.
-1.7 1.242 (8) 7.411 23181 8.793 —3.400 0.
-1.9 1.907 (8)  7.321 20594 8.791 -4.010 0.
-2.1 2.807 (8)  7.229 18323 8.790 —~4 577 0.
-2.3 3.998 (8) 7.137 16298 8.788 -5.129 0.
-2.5 5.557 (8) 7.044 14462 8.787 —5.674 0.
2.7 7.643 (8) 6.961 12857 8.787 —-6.207 0.019
-2.9 1.166 (9)  6.862 11417 8.786 -6.739 0.313
-3.1 1.655 (9)  6.766 10152 8.785 —-8.849 0.594
-3.3 2.230 (9)  6.671 9003 8.785 0.783
-3.6 2.802 (9)  6.572 8007 8.784 0.896
-3.8 3.682 (9)  6.464 7109 8.784 0.956
-4.0 4.582 (9)  6.350 6301 8.784 0.991
—4.2 5.572 (9)  6.231 5598 8.783 1.000
—4.4 6.792 (9)  6.073 4971 8.783 1.000
—4.6 7.792 (9) 5911 4415 8.783 1.000
4.8 8.413 (9)  5.793 3912 8.784 1.000




010500 SUMMARY LISTING

TABLE A.22

231

log(L/Lg) Age log(T:) Terr log(Ry) log(L,/Lg)  Myal/ M,
-0.2 5.242 (6) 7.926 57901 8.751 +0.789 0.
~04 5.896 (6) 7.898 53035 8.749 +0.544 0.
—0.6 7.601 (6) 7.845 45904 8.746 +0.083 0.
-0.8 1.117 (7) 7.783 41025 8.744 —0.432 0.
-1.0 2.186 (7) 7.694 36660 8.741 —1.150 0.
-1.2 4.285 (7) 7.605 32691 8.739 -1.901 0.
—1.4 7.334 (7) 7.523 29211 8.738 ~2.573 0.
~1.6 1.143 (8) 7.445 26065 8.736 -3.152 0.
-1.8 1.701 (8) 7.367 23261 8.735 -3.672 0.
-2.0 2.478 (8) 7.286 20748 8.734 —~4.172 0.
~2.2 3.562 (8)  7.199 18543  8.733 —4.684 0.
—2.4 5.032 (8) 7.111 16536 8.732 -5.209 0.
—~2.6 7.140 (8) 7.027 14741 8.731 -5.728 0.061
-2.8 1.089 (9) 6.932 13158 8.731 —6.260 0.351
-3.0 1.537 (9) 6.839 11746 8.730 —6.796 0.605
-3.2 2.038 (9) 6.747 10460 8.730 0.777
—3.4 2.608 (9) 6.654 9337 8.729 0.884
-3.6 3.271 (9) 6.556 8315 8.729 0.952
-3.8 4.041 (9) 6.452 7418 8.729 0.983
—-4.0 4.897 (9) 6.341 6605 8.728 0.997
—4.2 5.797 (9) 6.226 5890 8.728 1.000
—4.4 6.769 (9) 6.097 5259 8.728 1.000
—4.6 7.713 (9) 5.942 4680 8.728 1.000




012500 SuMMARY LISTING

TABLE A.23

log(L/Lo) Age log(Te) Ter log(Ry«) log(Lu/Lp)  Mxwal/Ms
0.0 5.239 (6) 8.083 77241 8.599 +1.422 0.
-0.2 5.624 (6) 8.055 71314 8.598 +1.161 0.
0.4 6.894 (6) 7.985 61654 8.595 +0.592 0.
-0.6 1.019 (7) 7.884 54845 8.592 —0.106 0.
-0.8 2.116 {7) 7.760 48969 8.590 —0.930 0.
~1.0 3.997 (7) 7.663 43768 8.588 —1.647 0.
-1.2 6.703 (7) 7.577 39062 8.586 -2.270 0.
-14 1.041 (8) 7.494 34864 8.585 -2.823 0.
-1.6 1.549 (8) 7.408 31095 8.584 -3.351 0.
—-1.8 2.240 (8) 7.319 27752 8.583 —3.880 0.
-2.0 3.285 (8) 7.235 24786 8.582 —4.400 0.101
-2.2 5.085 (8) 7.139 22109 8.581 —4.934 0.355
-2.4 7.224 (8) 7.045 19702 8.580 -5.478 0.586
—-2.6 9.493 (8) 6.953 17574 8.580 -6.012 0.751
-2.8 1.204 (9) 6.863 15676 8.579 —6.543 0.859
-3.0 1.482 (9) 6.774 13974 8.579 -7.384 0.932
-3.2 1.796 (9) 6.684 12453 8.579 0.970
-3.4 2.146 (9) 6.592 11109 8.579 0.983
—3.6 2.538 (9) 6.495 9900 8.578 0.989
-3.8 2.971 (9) 6.392 8816 8.578 1.000
—4.0 3.424 (9) 6.279 7865 8.578 1.000
—4.2 3.860 (9) 6.158 7010 8.578 1.000
—4.4 4.239 (9) 6.030 6246 8.578 1.000




TABLE A.24
c6200 ABBREVIATED SUMMARY LISTING

log(L/Lo) Age log(T2) Tesr log(Ry) log(Lv/Lo)  Mxtal/ My
-+1.0 2.808 (6) 7.966 77278 9.093 +1.363 0.
0.0 5.596 (6) 7.820 48214 9.003 +0.408 0.
-1.0 2.162 (7) 7.663 28322 8.965 -1.074 0.
-2.0 1.921 (8) 7.256 16321 8.944 —~4.723 0.
—3.0 8.618 (8) 6.839 9272 8.934 —7.301 0.
~4.0 4.643 (9) 6.365 5230 8.933 0.527
—4.2 6.608 (9) 6.220 4628 8.937 0.838
—4.4 8.195 (9) 6.087 4157 8.932 0.953
—4.6 9.422 (9) 5.986 3664 8.941 0.981
—4.8 1.097(10) 5.859 3245 8.946 0.980
-5.0 1.249(10) 5.722 2886 8.949 0.980




TABLE A.25
c6300 ABBREVIATED SUMMARY LISTING

234

log(L/Lo) Age log(T) Tenr log(Ry) log(L,/Lo) Myval/ M
+1.0 2.779 (6) 7.958 78599 9.079 +1.349 0.
0.0 5.410 (6) 7.818 48387 9.000 +0.410 0.
-1.0 1.817 (7) 7.684 28348 8.964 -0.855 0.
-2.0 2.019 (8) 7.297 16339 8.942 —4.351 0.
~3.0 9.544 (8) 6.866 9309 8.932 -7.101 0.
—-4.0 4.863 (9) 6.390 5253 8.928 0.445
—4.2 7.013 (9) 6.248 4676 8.929 0.794
—-4.4 8.773 (9) 6.123 4179 8.928 0.935
—-4.6 1.026(10) 6.018 3712 8.929 0.974
—~4.8 1.206(10) 5.893 3306 8.930 0.989
—-5.0 1.395(10) 5.747 2941 8.931 1.000
-5.2 1.551(10) 5.605 2623 8.932 1.000
—5.4 1.668(10) 5.483 2327 8.935 1.000
-5.6 1.764(10) 5.364 2071 8.937 1.000
—5.8 1.850(10) 5.219 1830 8.944 1.000




TABLE A.26
06200 ABBREVIATED SUMMARY LISTING

log(L/Lo)  Age  log(T.) Tew log(Ra) log(Lu/Lo)  Musat/Ms
+1.0 2.953 (6) 7924 82203  9.061 +1.283 0.
0.0 5.038 (6)  7.807 48869  8.990 +0.383 0.
~1.0 1.684 (7) 7675 28535  8.958 ~0.937 0.
~2.0 1.660 (8)  7.285 16421  8.939 ~4.435 0.
-3.0 7.562 (8)  6.859 9332  8.929 ~7.036 0.
—4.0 3.993 (9)  6.367 5265  8.926 0.908
4.2 5271 (9) 6209 4685  8.928 0.984
—4.4 6.328 (9)  6.071 4181  8.926 0.990
—4.6 7.191(9) 5967 3707  8.931 0.990
~4.8 8.140 (9) 5861 3280  8.937 0.990
~5.0 9.205 (9) 5729 2913 8.940 0.990
—5.2 1.018(10)  5.618 2589  8.943 0.990
—5.4 L111(10) 5496 2292 8.947 0.990
~5.6 1.184(10) 5395 2032  8.953 0.990




TABLE A.27
06300 ABBREVIATED SUMMARY LISTING

log(L/Lo) Age log(T.) Tew  log(Ri) log(Ly/Lo)  Mxtal/Ms
+1.0 2.976 (6)  7.922 83473  9.045 +1.273 0.
0.0 5073 (6)  7.806 49288  8.983 +0.372 0.
~1.0 1.565 (7)  7.683 28657  8.954 —0.840 0.
—-2.0 1.654 (8)  7.336 16460  8.936 —3.980 0.
-3.0 8.488 (8)  6.897 9355  8.926 —6.802 0.
~4.0 4.392 (9)  6.406 5287  8.922 0.872
—4.2 5792 (9) 6259 4719 8.922 0.970
—4.4 7.046 (9)  6.124 4207  8.921 0.989
~4.6 8.347 (9) 5986 3746  8.921 1.000
—-4.8 9.466 (9)  5.865 3336  8.922 1.000
~5.0 1.074(10) 5720 2977  8.922 1.000
-5.2 1.167(10)  5.603 2643  8.925 1.000
—5.4 1.256(10)  5.474 2357  8.924 1.000




TaBLE A.28
c6204 ABBREVIATED SUMMARY LISTING

log(L/Lo) Age log(T.) Tew  log(Rx) log(Lv/Lo)  Mxtat/Ms
1.0 2772(6) 7966 73955  9.132 +1.373 0.
0.0 5.510 (6) 7.820 46411 9.036 +0.412 0.
-1.0 2.139 (7) 7.663 27383 8.995 -1.070 0.
—20 1921 (8) 7.254 15878  8.967 —4.736 0.
-3.0 8.424 (8) 6.849 9076 8.953 -7.197 0.
—~4.0 4.641 (9) 6.405 5155 8.944 0.396
—4.2 7059 (9) 6245 4580  8.947 0.797
—4.4 8.911 (9) 6.106 4112 8.941 0.942
—4.6 1.043(10) 5.986 3624 8.951 0.977
—4.8 1.205(10) 5.842 3224 8.953 0.977
-5.0 1.340(10) 5.718 2859 8.957 0.977
5,2 1.450(10) 5.618 2530 8.962 0.977
-5.4 1.568(10) 5.500 2237 8.970 0.977




TABLE A.29
c6310 ABBREVIATED SUMMARY LISTING
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log(L/Lg) Age log(T?) Tert log(R,) log(L,/Lg)  Myeat/ My
+1.0 2.808 (6) 7.961 78291 9.082 +1.349 0.
0.0 5.570 (6) 7.819 48318 9.001 +0.408 0.
~1.0 1.881 (7)  7.683 28286  8.966 —0.857 0.
—-2.0 2.055 (8) 7.296 16297 8.944 —4.358 0.
-3.0 9.632 (8) 6.866 9286 8.934 -~T7.102 0.
4.0 5.328 (9) 6.365 52569 8.928 0.523
—4.2 7.185 (9) 6.232 4685 8.928 0.820
—4.4 8.825 (9) 6.108 4175 8.927 0.941
—4.6 1.024(10) 6.003 3T 8.929 0.981
—4.8 1.204(10) 5.866 3309 8.930 0.995
-5.0 1.374(10) 5.722 2944 8.931 0.995
—-5.2 1.501(10) 5.604 2621 8.933 0.995
—5.4 1.614(10) 5.492 2329 8.935 0.995
~5.6 1.714(10) 5.380 2071 8.936 0.995




TABLE A.30
c6410 ABBREVIATED SUMMARY LISTING

log(L/Lo)  Age  log(T.) Texr log(R) log(L,/Lo) Ma/M,
+1.0 2.807 (6)  7.960 79043  9.073 +1.348 0.
0.0 5.602 (6)  7.817 48565  8.997 +0.397 0.
~1.0 1.828 (7)  7.687 28424  8.963 —0.831 0.
~2.0 1.951 (8)  7.342 16327  8.943 ~3.922 0.
-3.0 1.061 (9) 6900 9284  8.933 -6.891 0.
—4.0 5.480 (9) 6402 5266  8.926 0.409
-4.2 7.659 (9)  6.268 4697  8.925 0.760
—4.4 9510 (9)  6.151 4189  8.925 0.911
—4.6 1.127(10)  6.039 3730  8.925 0.971
4.8 1.324(10) 5913 3328 8.925 0.993
5.0 1.512(10) 5790 2965  8.924 0.999
~5.2 1.717(10)  5.639 2643  8.925 1.000
—5.4 1.881(10)  5.474 2357  8.925 1.000
5.6 1.980(10)  5.353 2100  8.926 1.000
~5.8 2.055(10)  5.218 1866  8.928 1.000
~6.0 9.123(10)  5.066 1657  8.931 1.000




TABLE A.31
c6400D ABBREVIATED SUMMARY LISTING

log(L/Lo)  Age  log(T.) Texr log(RM) log(L,/Lo) Mywa/M
+1.0 2.807 (6)  7.960 79277  9.072 +1.348 0.
0.0 5599 (6)  7.817 48586  8.996 +0.397 0.
~1.0 1.825 (7)  7.687 28439  8.962 -0.830 0.
~92.0 1.049 (8)  7.343 16373  8.942 —3.905 0.
-3.0 1.063 (9)  6.902 9309  8.930 —6.881 0.
—4.0 5216 (9) 6422 5270  8.926 0.341
4.2 7527 (9) 6285 4697  8.925 0.731
—4.4 9.576 (9)  6.162 4189  8.925 0.900
—4.6 1.125(10)  6.060 3730  8.925 0.967
~4.8 1.375(10)  5.908 3325  8.925 0.997
~5.0 1.529(10)  5.811 2963  8.925 1.000
—5.2 1.812(10)  5.572 2638  8.926 1.000
—5.4 1.904(10)  5.478 2351  8.927 1.000
~5.6 2.002(10)  5.341 2091  8.928 1.000




x44108 SUMMARY LISTING

TABLE A.32

log(L/Lo) Age log(T) Tenr log(Ry) log(Lv/Lo)  Mxsal/ My
+1.0 2.924 (6) 8.258 54913 9.389 +0.472 0.
+0.8 4.038 (6) 8.205 53407 9.314 +0.527 0.
+0.6 5.262 (6) 8.124 50747 9.258 +0.492 0.
+0.4 6.601 (6) 8.036 47569 9.215 +0.376 0.
+0.2 8.121 (6) 7.966 43969 9.183 +0.211 0.
0.0 9.903 (6) 7.910 40328 9.157 +0.029 0.
-0.2 1.205 (7) 7.862 36821 9.137 —0.167 0.
-0.4 1.470 (7) 7.821 33449 9.120 -0.371 0.
—0.6 1.807 (7) 7.781 30325 9.107 ~0.583 0.
-0.8 2.255 (7) 7.743 27374 9.095 -0.811 0.
~1.0 2.881 (7) 7.704 24665 9.084 —1.066 0.
-1.2 3.794 (7) 7.660 22249 9.075 -1.360 0.
—-1.4 5.168 (7) 7.610 19993 9.067 ~1.708 0.
~1.6 7.306 (7) 7.552 17983 9.060 -2.133 0.
~1.8 1.060 (8) 7.485 16142 9.054 -2.652 0.
-2.0 1.545 (8) 7.412 14482 9.048 -3.254 0.
-2.2 2.208 (8) 7.337 12970 9.044 -3.919 0.
—-2.4 3.098 (8) 7.259 11614 9.039 —4.614 0.
-2.6 4.287 (8) 7.179 10386 9.035 -5.281 0.
-2.8 5.889 (8) 7.094 9299 9.032 ~5.887 0.
-3.0 8.008 (8) 7.007 8334 9.028 -6.441 0.
-3.2 1.086 (9) 6.916 7450 9.025 —6.997 0.
-3.4 1.443 (9) 6.827 6652 9.022 ~7.545 0.
-3.6 1.904 (9) 6.738 5946 9.020 0.
-3.8 2.703 (9) 6.614 5322 9.017 0.
—4.0 3.694 (9) 6.506 4760 9.016 0.085
~4.2 5.241 (9) 6.381 4233 9.015 0.521
~4.4 6.669 (9) 6.270 3778 9.015 0.657
—4.6 8.515 (9) 6.152 3369 9.014 0.790
-4.8 1.061(10) 6.036 2999 9.015 0.893
—5.0 1.289(10) 5.920 2677 9.015 0.966
—5.2 1.530(10) 5.802 2380 9.015 0.974
~5.4 1.850(10) 5.639 2118 9.016 1.000




x6410B SUMMARY LISTING

TaBLE A.33

242

log(L/Le) Age log(Te) Tew  log(Rx) log(Lu/Lo)  Mytal/Mi
+1.0 2.632 (6)  7.945 79857  9.067 +1.331 0.
+0.8 2.982 (6)  7.905 72759  9.045 +1.133 0.
+0.6 3.395 (6)  7.873 66080  9.028 +0.941 0.
+0.4 3.897 (6)  7.848 59831  9.014 +0.752 0.
+0.2 4524 (6)  7.824 54026  9.003 +0.561 0.
0.0 5319 (6)  7.803 48731  8.993 +0.366 0.
-0.2 6.348 (6)  7.783 43905  8.985 +0.166 0.
~0.4 7722 (6) 7762 39434  8.978 ~0.045 0.
-0.6 9.659 (6) 7739 35371  8.971 ~0.274 0.
~0.8 1.259 (7)  7.714 31774  8.965 ~0.535 0.
~1.0 1738 (7)  7.682 28475  8.960 ~0.847 0.
12 2.593 (7)  7.638 25509  8.955 —1.243 0.
-14 4218 (7) 7580 22867  8.951 ~1.763 0.
~1.6 7.135 (7) 7507 20463  8.948 ~2414 0.
~1.8 1.161 (8)  7.428 18304  8.944 ~3.143 0.
-2.0 1.792 (8)  7.344 16354  8.941 ~3.891 0.
2.2 2.638 (8)  7.259 14647  8.938 ~4.578 0.
2.4 3791 (8)  7.169 13078  8.936 ~5.198 0.
-2.6 5269 (8)  7.079 11685  8.934 ~5.755 0.
~2.8 7.135 (8)  6.991 10432  8.932 —6.280 0.
-3.0 9.567 (8) 6904 9314  8.931 —6.800 0.
-3.2 1.272 (9) 6816 8318  8.929 —7.357 0.
~3.4 1.685 (9)  6.728 7415  8.928 0.
~3.6 2.345 (9)  6.647 6625  8.927 0.148
-3.8 3.458 (9)  6.547 5906  8.926 0.491
~4.0 5.057 (9)  6.397 5279  8.924 0.686
4.2 6.602 (9) 6266 4712  8.924 0.821
—4.4 8.092 (9)  6.151 4194  8.923 0.912
—4.6 9.629 (9)  6.039 3743  8.923 0.971
-4.8 1.135(10)  5.914 3337  8.923 0.993
-5.0 1.303(10) 5789 2973  8.924 0.998
-5.2 1.479(10)  5.641 2645  8.923 1.000
~5.4 1.632(10) 5470 2356  8.924 1.000




X8410B SUMMARY LISTING

TABLE A.34

243

log(L/Lo)  Age  log(T.) Tex log(Ry) log(Lu/Lo) Miat/M,
+0.8 2.856 (6)  7.911 88236  8.910 +1.444 0.
+0.6 3.099 (6) 7.884 77311  8.898 +1.187 0.
+0.4 3.411(6) 7.861 68179  8.888 +0.955 0.
+0.2 3.774 (6)  7.845 61573  8.882 +0.777 0.
0.0 4234 (6) 7.820 55754  8.878 +0.601 0.
~0.2 4865 (6) 7.811 50004  8.873 +0.394 0.
-0.4 5.800 (6)  7.791 44682  8.869 +0.160 0.
~0.6 7.315 (6)  7.767 39985  8.865 ~0.105 0.
-0.8 1.009 (7) 7737 35795  8.862 ~0.438 0.
~1.0 1.601 (7)  7.691 32013  8.858 ~0.890 0.
~1.2 2.984 (7)  7.622 28646  8.855 —1.517 0.
~14 5722 (7) 7.538 25616  8.852 ~2.984 0.
~1.6 9.877 (7) 7450 22921  8.849 ~3.070 0.
~18 1.556 (8)  7.360 20451  8.847 ~3.798 0.
~2.0 2.207 (8)  7.270 18277  8.845 ~4.423 0.
—2.2 3.255 (8)  7.181 16336  8.843 —4.979 0.
~24 4490 (8)  7.092 14561  8.843 —5.508 0.
~2.6 6.079 (8)  7.005 13013  8.841 ~6.024 0.
—28 8.161(8)  6.918 11609  8.840 —6.540 0.
~3.0 1.094 (9)  6.841 10352  8.839 ~7.036 0.026
-3.2 1.608 (9)  6.747 9233  8.838 ~9.903 0.312
~3.4 2.239 (9)  6.657 8232  8.838 0.538
-3.6 2.916 (9)  6.570 7343  8.837 0.646
~3.8 3753 (9) 6481 6548  8.836 0.743
~4.0 5.081(9) 6.368 5847  8.836 0.846
4.2 6.835 (9) 6215 5213  8.835 0.949
~4.4 8212 (9)  6.082 4649  8.835 0.986
~4.6 9.392 (9) 5963 4140  8.835 0.997
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log(L/Lo) Age log(T.) Tewr log(Ry) log(Ly/Lo)  Mxtal/Mi
+1.0 2.465 (6)  8.006 115215 8.790 +1.905 0.
+0.8 2.559 (6)  7.986 103506 8.784 +1.702 0.
+0.6 2.705 (6)  7.961 89473 8.776 +1.437 0.
+0.4 2.872 (6)  7.940 78193 8.770 +1.208 0.
+0.2 3.074 (6)  7.923 69927 8.766 +1.028 0.
0.0 3.371 (6) 7.907 63175 8.762 +0.849 0.
~0.2 3.845 (6)  7.887 56912 8.760 +0.624 0.
—-04 4.724 (6)  7.858 50900 8.757 +0.323 0.
-0.6 6.651 (6)  7.818 45486 8.754 —0.070 0.
—0.8 1.205 (7)  7.753 40627 8.752 —0.647 0.
-1.0 2.651 (7)  7.660 36345 8.748 —1.424 0.
-1.2 5.210 (7)  7.567 32488 8.746 —2.233 0.
~1.4 8.831 (7) 7475 29029 8.744 -2.980 0.
~1.6 1.355 (8)  7.385 25899 8.742 -3.617 0.
-1.8 1.960 (8)  7.296 23120 8.741 ~4.174 0.
-2.0 2.742 (8)  7.209 20638 8.740 ~4.697 0.
-2.2 3.761 (8) 7.121 18431 8.739 -5.212 0.
-2.4 5.086 (8)  7.033 16427 8.738 -~5.722 0.
-2.6 7.263 (8)  6.953 14652 8.737 —6.214 0.156
-2.8 1.039 (9)  6.863 13052 8.737 —6.716 0.429
-3.0 1.401 (9)  6.775 11654 8.736 -8.042 0.579
-3.2 1.808 (9)  6.688 10385 8.736 —-9.995 0.677
~3.4 2.334 (9)  6.603 9269 8.735 0.764
-3.6 2.952 (9)  6.516 8273 8.735 0.838
-3.8 3.707 (9)  6.428 7366 8.734 0.898
~4.0 4.635(9) 6.333 6566 8.734 0.952
-4.2 5.880 (9)  6.203 5860 8.734 0.986
—~4.4 7.058 (9)  6.050 5215 8.734 0.998




LIST OF SYMBOLS

The following list defines the notation used in this work. Units will

either be c¢.g.s., primarily for thermodynamic quantities, or solar for stellar

masses, radii, luminosities, etc. Also included in this table are the white

dwarf spectral types following Sion et al. (1983).

Symbol Description

a radiation constant (7.5646 x 1071° erg cm™% deg™*)
A Atomic Mass

Cy heat capacity

DA hydrogen-dominated spectra (DAV = pulsating)
DB helium-dominated atmosphere (DBV = pulsating)
DO hottest class of white dwarfs (DOV = pulsating)
DQ strong carbon features

DZ strong metal features (other than carbon)

DC featureless continuum spectra

\% true temperature gradient

Vad adiabatic temperature gradient

Vrad radiative temperature gradient

€x nuclear burning rate of process X

€y neutrino emission rate

n electron degeneracy parameter

g local gravity
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> A
3

Mxta.l

gravitational constant (6.670 x 1078 dyn cm? g=2)

Plank’s constant (6.6262 x 10727 erg s)
h/2n

atomic mass unit (1.6604 x 1024 g)
pressure scale height

ratio of Coulomb to thermal energy

' at solid/liquid interface

Boltzmann constant (1.3806 x 10~ %erg deg™1)
total opacity

conductive opacity

radiative opacity

constant in Kramer’s opacity law
mixing length

stellar luminosity

luminosity within radius r

033 erg s71)

solar luminosity (3.826 x 1
stellar mass

hydrogen layer mass
helium layer mass

mass contained within radius r
Solar mass (1.989 x 103 g)
crystallized mass

mean molecular weight

mean molecular weight per electron
number density of white dwarf stars

central pressure

relativistic degeneracy pressure
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Pyr non-relativistic degeneracy pressure
é(M) initial mass function

® luminosity function

U(t) star formation rate

r radius

R stellar radius ’

Ro solar radius (6.9559 x 10! cm)
Ry galactocentric radius (= 8 kpc)
Pe central density

S entropy

o Stephan—-Boltzmann constant

(= % =5.6696 x 107° erg cm™2 deg™* s7')

t time

teool white dwarf cooling age

tdisk age of the local Galactic disk

tMS main sequence evolutionary timescale
T temperature

T, core temperature

Teff effective temperature

T optical depth

X mass fraction of element ¢

Z atomic number
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