
CSCI516: Program 1 - October 11, 2010
The Program is due:

 October 25, 2010 in the beginning of the class

For Late Submissions 10 out of 100 points will be taken off.

For your first program, you are to write an assembly program that will
display on a clear screen as follows:

 I am xxxxxxxxx (insert your name and your Class ID#)

To view the current Time please press “CT”;

To view the current day of the week press “DW”;

To view the current date press “CD”,

For all students with an odd Class ID
To find the sum of the time components (hh+min+sec) press +;

For all students with an even Class ID
To find the sum of the date components (mm+day+year) press +;

The program must end if the user press “EP”. The program respond
is: Thank you – Have a nice day!

Prompt the user with the above questions. You are then to read the user's
response from the keyboard. If the user's response is CT, then display
“The current time is: XX:XX:XX”.

If the user's response is DW, then display
“Today is: the X day of the week”.

If the user's response is CD, then display
“The current date is: mm.dd.yy”

For all students with an odd Class ID
The sum of the time components (hh+min+sec) is: give the sum

For all students with an even Class ID
The sum of the date components (mm+day+year is: give the sum

Start the work on a clear screen.
Write every question or respond on a separate row.
5 points will be taken of for every error.

You may use the string output function (int 21h function 09h – See page 466,
or the Lecture_Interrups on my Web site) to write to the screen. You may use
buffered input to read from the keyboard (int 21h function 0Ah – See page
469, or the Lecture_Interrups on my Web site).

Use good structured methods to design your program. Use meaningful labels.
Align your fields and use comments to explain the meaning of your code.
Neatness counts in your grade. Any additional feature will be bring to you
additional points.

You may use the MASM or the Turbo Assembler to assemble and link your
program. Your Source Program (Prg1_ID.ASM) must be located on a labeled
floppy disk with your name. Submit all files generated by your compiler,
along with your source file. After the program has been assembled with no
errors, execute the program. If necessary, use the Turbo Debugger to find any
problems. Appendix D in your book discusses the Turbo Debugger.

Submit the following files on a floppy disk (drive A): Prg1_ID.ASM,
Prg1_ID.LST, Prg1_ID.OBJ, Prg1_ID.EXE. The notation ID means
your class list number.
5 points off for every mistake.
In case of copied programs or substantial pieces of the program a
mark of 0 or 50 will be given.

Some hints in forms of Pseudo-code and charts are given below.
The Lecture which discusses the matter is Lecture_Interrups on my web page.
An example of a program for finding sum of integer numbers is give on P76
Ed.5.

An Example Pseudo-code for Program 1
Main Program
 Call Clear_Screen
 Prompt all questions
 Call Read_Key_Board
 If key=CT Then
 Call Print_MessageCT
 Else
 Call Print_End
 End If
Second Question: If key=CW Then
 Call Print_MessageCW
 End If
 Call Print_End
Third Question: If key=CD Then

 Call Print_MessageCD
 End If
 Call Print_End

End Main

Clear_Screen
 Save all Registers
 Write 25 Blank Lines to the Screen
 Reset Cursor to Line 1 Column 1
 Restore all Registers
End Clear_Screen

Print_MessageT
 Write the answer to the Screen
 Call Get_Time
 Write the time to the Screen
End Print_Message

Print_MessageW
 Write the answer to the Screen
 Call Get_Date
 Write the day of the week to the Screen
End Print_Message

Print_MessageD
 Write the answer to the Screen
 Call Get_Date
 Write the date to the Screen
End Print_Message
Read_Key_Board
 Write Repeat Line to the Screen
 Read Reply from the Key Board
End Read_Key_Board
Get_Date
 Get current Date from the Operating System
 Move 0 to ah
 Call To_ASCII
 Move converted Day of the week to Message
 Move Year to AX Register
 Call To_ASCII
 Move converted Year to Message
 Move Month to AX Register
 Call To_ASCII
 Move converted Month to Message
 Move Day to AX Register
 Call To_ASCII
 Move converted Day to Message

End Get_Date
Print_End
 Write Ending Line to the Screen
End Print_End

Get_Time
 Get current Time from the Operating System
 Set AM_PM = ‘PM’
 If Hour > 12 Then
 Hour = Hour - 12
 Else
 Set AM_PM = ‘AM’
 End IF
 Move Hour to AX Register
 Call To_ASCII
 Move converted Hour to Message
 Move Minute to AX Register
 Call To_ASCII
 Move converted Minute to Message
 Move Second to AX Register
 Call To_ASCII
 Move converted Second to Message
End Get_Time

To_ASCII
 Set Count to 5
 Set Index to 4
 Do While Count is > 0
 Divide AX by 10 - Quotient to AX
 Remainder to DX
 Add 30h to DX to Convert to ASCII
 Move DL to Ascii_Out [Index]
 Decrement Index
 Decrement Count
 End Do
End To_ASCII

End Main Program

An Example Block Diagrams

HERE ARE SOME EXAMPLE PIECES OF CODE and NOTES TO HELP YOU
DEVELOP YOUR PROGRAM1

1)
; Keyboard Input Buffer

KbBuff DB 2 ; max no of input chars
 ; (1 + the enter key)
KbNoRead DB 0 ; No of chars actualy read
 ; This field is returned
 ; (the enter key don't count)
KbIn1 DB ' ' ; room for char 1
KbEntKey DB ' ' ; room for the enter key (0Dh)

2) Main Program - look at the main block diagram given in the assignment.

.code
main PROC
 mov ax,@data
 mov ds,ax
 CALL ClrScreen
L1: CALL Print_Msg
 CALL GotoNextLine
 mov ah,0Ah
 mov dx,OFFSET kybdData
 int 21h
 mov ah, [kybdData.buffer]
 mov al, [kybdData.buffer+1]
 CALL ClrScreen
 cmp al,'D'
 JNZ L2
 cmp ah,'C'
 JNZ L2
 mov dx, OFFSET date
 CALL PrintMSg
 CALL Get_Date
 CALL GotoNextLine
 JMP ENDL1
L2: CALL ClrScreen
 cmp al,'T'
 JNZ L3
 cmp ah,'C'
 JNZ L3
 mov dx, OFFSET time
 CALL PrintMSg
 CALL Get_Time
 CALL GotoNextLine
 JMP ENDL1

L3: CALL ClrScreen
 cmp al,'W'
 JNZ L4
 cmp ah,'D'
 JNZ L4
 CALL Get_Day_Of_Week
 mov dx, OFFSET day
 CALL PrintMSg
 CALL GotoNextLine
 JMP ENDL1
L4: CALL ClrScreen
 cmp al,'P'
 JNZ ENDL1
 cmp ah,'E'
 JNZ ENDL1
 JMP ENDL2
ENDL1: JMP L1
ENDL2: CALL GotoNextLine
 mov dx, OFFSET endMsg
 CALL PrintMSg
 CALL GotoNextLine

 exit
main ENDP

3)ClrScreen Proc ; Procedure to clear the screen

 push ax ; Save all regesters
 push bx
 push cx
 push dx

; call BIOS to Clear the Screen

 mov ah,6 ; Clear the screen command
 mov al,0 ; clear the whole screen
 mov ch,0 ; Start X Cord.
 mov cl,0 ; Start Y Cord.
 mov dh,24 ; End X Cord.
 mov dl,79 ; End Y Cord.
 mov bh,7 ; Clear to normal Attributes
 int 10h ; BIOS interrupt

; Set the cursor to line 1 position 1

 mov ah,2
 mov dh,1 ; row 1
 mov dl,1 ; column 1

 mov bh,0 ; page 0
 int 10h ; BIOS interrupt

 pop dx ; Restore all regesters
 pop cx
 pop bx
 pop ax
 ret
ClrScreen ENDP

4)
PrtMsg PROC
 push ax ; Save all regesters
 push bx
 push cx
 push dx

; call OS to Print the Message
 mov dx,OFFSET Msg1
 mov ah,9h ; Function code for display string
 int 21h ; call OS to do it

 call GetDate ; Read and Format the Date
 call GetTime ; Get the current time of Day.

 mov dx,OFFSET Msg2
 mov ah,9h ; Function code for display string
 int 21h ; call OS to do it
 pop dx ; Restore all registers
 pop cx
 pop bx
 pop ax
 ret
PrtMsg ENDP

5) An Example program to show how to get the system time and date as well as how to
display them is given in the text book section “MS-DOS Function Calls (INT 21h) P438,
5th Edition”.
Example programs are also given below:
GetTime PROC

; GetTime will read the current time from the system and
; convert it to Ascii characters. If the Hour is 00 to 11,
; it will insert "AM" in AmPm. If the hour = 12 it will
; insert "PM". If the Hour is 13 to 23 it will insert "PM"
; and subtract 12 from Hour.

; It will move the Hour to MsgHour (2 digits) and the
; minutes to MsgMinutes (2 digits).

 push ax ; Save all regesters
 push bx
 push cx
 push dx

 mov ah,2Ch ; get the current time
 int 21h

; Set up the AM/PM Message
 mov AmPm,'P' ; move PM to the message
 mov AmPm+1,'M'
 cmp ch,12 ; compare the hour to 12
 je AmPm_Ok ; hour = 12 - just print it
 ja IsPM ; hour > 12 - print PM and sub 12 from the hour
 mov AmPm,'A' ; hour < 12 - move in AM
 jmp AmPm_Ok

IsPM:

 sub ch,12 ; sub 12 hours

AmPm_Ok:
; Convert the hours to Ascii

 mov al,ch ; move the hour to AX
 mov ah,0 ; clear the high order of the reg
 call To_Ascii ; convert it to charactrs

; Hours will be in AsciiOut in the form 000HH.

 mov al,AsciiOut+3 ; get the fourth digit
 mov MsgHr,al ; save the first digit
 mov al,AsciiOut+4 ; get the fifth digit
 mov MsgHr+1,al ; save the second digit

; Convert the minutes to Ascii
 mov al,cl ; move the minutes to AX
 mov ah,0 ; clear the high order of the reg
 call To_Ascii ; convert it to charactrs

; Minutes will be in AsciiOut in the form 000MM.
 mov al,AsciiOut+3 ; get the fourth digit
 mov MsgMin,al ; save the first digit
 mov al,AsciiOut+4 ; get the fifth digit
 mov MsgMin+1,al ; save the second digit

 mov al,dh ; move the seconds to AX
 mov ah,0 ; clear the high order of the reg

 call To_Ascii ; convert it to charactrs

 mov al,AsciiOut+3 ; get the fourth digit
 mov MsgSec,al ; save the first digit
 mov al,AsciiOut+4 ; get the fifth digit
 mov MsgSec+1,al ; save the second digit

 pop dx ; Restore all regesters
 pop cx
 pop bx
 pop ax
 ret
GetTime ENDP

GetDate PROC
; GetDate will read the current date from the system and
; convert it to Ascii characters. It will then move the
; Year to MsgYear (4 digits), the Month to MsgMonth (2 digits)
; and the Day to MsgDay (2 digits).

 push ax ; Save all regesters
 push bx
 push cx
 push dx

 mov ah,2Ah ; get the current date
 int 21h

 mov ah, 0
 call To_Ascii ; convert it to charactrs
 mov al,AsciiOut+4 ; get the fifth digit
 mov MsgDW,al ; get the current day of the week

; Convert the Year from Binary to ASCII
 mov ax,cx ; move the year to AX
 call To_Ascii ; convert it to charactrs

; Year will be in AsciiOut in the form 0YYYY.
 mov al,AsciiOut+1 ; get the 1st digit
 mov MsgYear,al ; move it to the message area
 mov al,AsciiOut+2 ; get the second digit
 mov MsgYear+1,al ; save the second digit
 mov al,AsciiOut+3 ; get the third digit
 mov MsgYear+2,al ; save the third digit
 mov al,AsciiOut+4 ; get the fourth digit
 mov MsgYear+3,al ; save the fourth digit

; Convert the Month from Binary to ASCII
 mov al,dh ; move the month to AX

 mov ah,0 ; clear the high order of the reg
 call To_Ascii ; convert it to charactrs

; Month will be in AsciiOut in the form 000MM.

 mov al,AsciiOut+3 ; get the fourth digit
 mov MsgMon,al ; save the first digit
 mov al,AsciiOut+4 ; get the fifth digit
 mov MsgMon+1,al ; save the second digit

; Convert the Day from Binary to ASCII

 mov al,dl ; move the day to AX
 mov ah,0 ; clear the high order of the reg
 call To_Ascii ; convert it to charactrs

; Day will be in AsciiOut in the form 000DD.

 mov al,AsciiOut+3 ; get the fourth digit
 mov MsgDay,al ; save the first digit
 mov al,AsciiOut+4 ; get the fifth digit
 mov MsgDay+1,al ; save the second digit

 pop dx ; Restore all regesters
 pop cx
 pop bx
 pop ax
 ret
GetDate ENDP

6)ReadKeyBoard -Use "int 21h, function 0Ah", read keyboard, and

 "int 21h, function 9h", to display string.

7) To_Ascii PROC

; To_Ascii - Proc to take an unsigned binary value located in the
; AX Reg and convert it to a string of printable ASCII characters.
; The results are placed in AsciiOut (5 bytes in length).

 push ax ; Save all regesters
 push bx
 push cx
 push dx
 push si

 mov cx,5 ; number of out put characters
 mov si,4 ; Index value to ASCIIOut
 mov bx,10 ; value to divide by

Ascii_Loop:
 mov dx,0 ; clear dx for divide
 div bx ; divide by 10
 add dx,30h ; convert remainder to ascii
 mov AsciiOut[si],dl ; move the char to the output
 dec si ; sub 1 from the index
 loop Ascii_Loop ; do it 5 times

 pop si ; Restore all regesters
 pop dx
 pop cx
 pop bx
 pop ax
 ret
To_Ascii ENDP

