Digital Logic. Ways of controlling digital circuits.

Computer Science Department Texas A\&M University Commerce Modified by Dr. Nikolay Metodiev Sirakov

Computers use the binary number system
Only two numbers - A Zero \& A One
A Voltage represents a number
+5 Volts $=1$
0 Volts $=0$
Digital logic is basically nothing more than a set of switches we use to control the flow of electricity.

AND Gate

Truth Table

\mathbf{A}	\mathbf{B}	\mathbf{F}
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$

OR Gate

Truth Table

A	B	F
0	0	0
0	1	1
1	0	1
1	1	1

NOT Gate

Truth Table

Texas A\&M-Commerce, CSCI516,

Other Logic Gates

The theorem of completeness states that OR and NOT or AND and NOT are sufficient to express all Boolean expressions.

We will learn here:
-How to find the truth table of a digital circuit;
-How to analyze the scheme in order to simplify our work;
-How to transfer big Hex Decimal numbers using a bus with small number of wires.
The main idea is presented by the two to four and/or 4 to 16 decoder, the Theorem which states that every positive integer is a sum of powers of two.

NAND Gate

Truth Table Truth Table
AND Gate

\mathbf{A}	\mathbf{B}	\mathbf{F}
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{0}$	$\mathbf{1}$	0
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{1}$	1	1

Texas A\&M-Commerce, CSCI516,
Lecture 4

NORGate

Truth Table
Truth Table

A	B	F
0	0	0
0	1	1
1	0	1
1	1	1

Norgate				B	F
0	0	1			
0	1	0			
1	0	0			
1	1	0			

XOR (Exclusive OR)

Truth Table

\mathbf{A}	\mathbf{B}	\mathbf{F}
$\mathbf{0}$	$\mathbf{0}$	
$\mathbf{0}$	$\mathbf{1}$	
$\mathbf{1}$	$\mathbf{0}$	
$\mathbf{1}$	$\mathbf{1}$	

Truth Table for XOR Gate

\section*{Truth Table
 | \mathbf{A} | \mathbf{B} | \mathbf{F} |
| :---: | :---: | :---: |
| $\mathbf{0}$ | $\mathbf{0}$ | 0 |
| 0 | 1 | |
| 1 | 0 | |
| $\mathbf{1}$ | 1 | |}

Truth Table for XOR Gate

Truth Table

\mathbf{A}	\mathbf{B}	\mathbf{F}
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{0}$	
$\mathbf{1}$	$\mathbf{1}$	

Truth Table for XOR Gate

Truth Table

\mathbf{A}	\mathbf{B}	\mathbf{F}
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{0}$	$\mathbf{1}$	1
1	0	1
$\mathbf{1}$	1	

Truth Table for XOR Gate

Truth Table

A	B	F
0	0	0
0	1	1
1	0	1
1	1	0

Other Gates with NOT Gates

Truth Table Truth Table

OR Gate		
\mathbf{A}	B	F
0	0	0
0	1	1
1	0	1
1	1	1

A	B	F
0	0	1
0	1	0
1	0	1
1	1	1

Multi-Input Gates

January 26,2012
Texas A\&M-Commerce, CSCI516,

January 26,2012
Texas A\&M-Commerce, CSCI516,

January 26,2012
Texas A\&M-Commerce, CSCI516,
Lecture 4

January 26,2012
Texas A\&M-Commerce, CSCI516,

January 26,2012
Texas A\&M-Commerce, CSCI516,
Lecture 4

January 26,2012
Texas A\&M-Commerce, CSCI516,
Lecture 4

January 26,2012
Texas A\&M-Commerce, CSCI516,
Lecture 4

January 26,2012

Two to Four Decode

A	B	D1	D2	D3	D4
$\mathbf{0}$	$\mathbf{0}$				
$\mathbf{0}$	$\mathbf{1}$				
$\mathbf{1}$	$\mathbf{0}$				
$\mathbf{1}$	$\mathbf{1}$				

Two to Four Decode

A	B	D 1	D 2	D 3	D 4
0	0	1	0	0	0
0	1				
1	0				
1	1				

Two to Four Decode

A	B	D 1	D 2	D 3	D 4
0	0	1	0	0	0
0	1	0	1	0	0
1	0				
1	1				

Two to Four Decode

A	B	D 1	D 2	D 3	D 4
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1				

Two to Four Decode

A	B	D 1	D 2	D 3	D 4
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

4 to 16 Decoder-Truth Table

A 3	A 2	A 1	A 0	Value	Line
0	0	0	0	0	0000
0	0	0	1	1	0001
0	0	1	0	2	0010
0	0	1	1	3	0011
0	1	0	0	4	0100
0	1	0	1	5	0101
0	1	1	0	6	0110
0	1	1	1	7	0111
1	0	0	0	8	1000
1	0	0	1	9	1001
1	0	1	0	10	1010
1	0	1	1	11	1011
1	1	0	0	12	1100
1	1	0	1	13	1101
1	1	1	0	14	1110
1	1	1	1	15	1111

4 to 16 Decoder-Page 2

4 to 16 Decoder-Page 3

January 26,2012
Texas A\&M-Commerce, CSCI516,

4 to 16 Decoder-Page 4

January 26,2012
Texas A\&M-Commerce, CSCI516,

