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Application: Finite-State Machines 

• A finite-state machine (FSM) is a graph structure that changes state 

based on some input. Also called a state-transition diagram. 

• We use a graph to represent an FSM, with squares or circles called 

nodes, and lines with arrows between the circles called edges (or 

arcs). 

• A FSM is a specific instance of a more general structure called a 

directed graph (or digraph). 

• Three basic states, represented by nodes: 

• Start state 

• Terminal state(s) 

• Nonterminal state(s) 

http://www.nuvisionmiami.com/books/asm
../../../../../../../../../Masm615/Examples
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Finite-State Machine 

• Accepts any sequence of symbols that puts it into an 

accepting (final) state 

• Can be used to recognize, or validate a sequence of 

characters that is governed by language rules (called a regular 

expression) 

• Advantages: 

• Provides visual tracking of program's flow of 

control 

• Easy to modify 

• Easily implemented in assembly language 

http://www.nuvisionmiami.com/books/asm
../../../../../../../../../Masm615/Examples


Web site     Examples Lecture 23, April 13,2005, 3PM-4:15PM                                                     

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 
4 

FSM Examples 

• FSM that recognizes strings beginning with 'x', followed by 

letters 'a'..'y', ending with 'z': 

start 'x'

'a'..'y'

'z

'

A B

C

• FSM that recognizes signed integers: 

start

digit

+,-

digit
digit

A B

C

http://www.nuvisionmiami.com/books/asm
../../../../../../../../../Masm615/Examples
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Your turn . . . 

• Explain why the following FSM does not work as well 

for signed integers as the one shown on the previous 

slide: 

start

digit

+,-
A B

digit

http://www.nuvisionmiami.com/books/asm
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Implementing an FSM 

StateA: 

 call Getnext ; read next char into AL 

 cmp al,'+' ; leading + sign? 

 je StateB ; go to State B 

 cmp al,'-' ; leading - sign? 

 je StateB ; go to State B 

 call IsDigit ; ZF = 1 if AL = digit 

 jz StateC ; go to State C 

 call DisplayErrorMsg ; invalid input found 

 jmp Quit 

The following is code from State A in the Integer FSM: 

View the Finite.asm source code. 

http://www.nuvisionmiami.com/books/asm
../../../../../../../../../Masm615/Examples
../../../../../../../Local%20Settings/Temp/Temporary%20Directory%202%20for%20CH06_PPT.ZIP/Finite.asm
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Flowchart of State A StateA

GetNext

AL = '+' ?

DisplayErrorMsg

true

AL = '-' ?
true

ZF = 1 ?
true

IsDigit

false

false

false

quit

StateB

StateB

StateC

State A accepts a plus or 

minus sign, or a decimal 

digit. 

http://www.nuvisionmiami.com/books/asm
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Your turn . . . 

• Draw a FSM diagram for hexadecimal integer 

constant that conforms to MASM syntax. 

• Draw a flowchart for one of the states in your FSM. 

• Implement your FSM in assembly language. Let the 

user input a hexadecimal constant from the 

keyboard. 

http://www.nuvisionmiami.com/books/asm
../../../../../../../../../Masm615/Examples
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Using the .IF Directive 

• Runtime Expressions 

• Relational and Logical Operators 

• MASM-Generated Code 

• .REPEAT Directive 

• .WHILE Directive 

http://www.nuvisionmiami.com/books/asm
../../../../../../../../../Masm615/Examples
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Runtime Expressions 

.IF eax > ebx 

 mov edx,1 

.ELSE 

 mov edx,2 

.ENDIF 

• .IF, .ELSE, .ELSEIF, and .ENDIF can be used to evaluate 

runtime expressions and create block-structured IF 

statements. 

• Examples: 

• MASM generates "hidden" code for you, consisting of 

code labels, CMP and conditional jump instructions. 

.IF eax > ebx && eax > ecx 

 mov edx,1 

.ELSE 

 mov edx,2 

.ENDIF 

http://www.nuvisionmiami.com/books/asm
../../../../../../../../../Masm615/Examples
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Relational and Logical Operators 

http://www.nuvisionmiami.com/books/asm
../../../../../../../../../Masm615/Examples
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MASM-Generated Code 

 mov eax,6 

 cmp eax,val1 

 jbe @C0001  

 mov result,1 

@C0001: 

.data 

val1   DWORD 5 

result DWORD ? 

.code 

mov eax,6 

.IF eax > val1 

mov result,1 

.ENDIF 

Generated code: 

MASM automatically generates an unsigned jump (JBE). 

http://www.nuvisionmiami.com/books/asm
../../../../../../../../../Masm615/Examples
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MASM-Generated Code 

 mov eax,6 

 cmp eax,val1 

 jle @C0001  

 mov result,1 

@C0001: 

.data 

val1   SDWORD 5 

result SDWORD ? 

.code 

mov eax,6 

.IF eax > val1 

mov result,1 

.ENDIF 

Generated code: 

MASM automatically generates a signed jump (JLE). 

http://www.nuvisionmiami.com/books/asm
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.REPEAT Directive 

; Display integers 1 – 10: 

 

mov eax,0 

.REPEAT 

 inc eax 

 call WriteDec 

 call Crlf 

.UNTIL eax == 10 

Executes the loop body before testing the loop condition 

associated with the .UNTIL directive.  

Example: 

http://www.nuvisionmiami.com/books/asm
../../../../../../../../../Masm615/Examples
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.WHILE Directive 

; Display integers 1 – 10: 

 

mov eax,0 

.WHILE eax < 10 

 inc eax 

 call WriteDec 

 call Crlf 

.ENDW 

Tests the loop condition before executing the loop body The 

.ENDW directive marks the end of the loop.  

Example: 

http://www.nuvisionmiami.com/books/asm
../../../../../../../../../Masm615/Examples
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The End 
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