
Assembly Language for Intel-Based

Computers, 4th Edition

Lecture 23: Finite State

Machines, WHILE operator

(c) Pearson Education, 2002. All rights reserved. You may modify and copy this slide show for your personal use, or for

use in the classroom, as long as this copyright statement, the author's name, and the title are not changed.

• Chapter corrections (Web) Assembly language sources (Web)

Slides prepared by Kip R. Irvine

Revision date: 07/11/2002

Modified by Dr. Nikolay Metodiev Sirakov

Kip R. Irvine

http://www.nuvisionmiami.com/books/asm/corrections.htm
http://www.nuvisionmiami.com/kip/asm.htm

Web site Examples Lecture 23, April 13,2005, 3PM-4:15PM

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003.
2

Application: Finite-State Machines

• A finite-state machine (FSM) is a graph structure that changes state

based on some input. Also called a state-transition diagram.

• We use a graph to represent an FSM, with squares or circles called

nodes, and lines with arrows between the circles called edges (or

arcs).

• A FSM is a specific instance of a more general structure called a

directed graph (or digraph).

• Three basic states, represented by nodes:

• Start state

• Terminal state(s)

• Nonterminal state(s)

http://www.nuvisionmiami.com/books/asm
../../../../../../../../../Masm615/Examples

Web site Examples Lecture 23, April 13,2005, 3PM-4:15PM

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003.
3

Finite-State Machine

• Accepts any sequence of symbols that puts it into an

accepting (final) state

• Can be used to recognize, or validate a sequence of

characters that is governed by language rules (called a regular

expression)

• Advantages:

• Provides visual tracking of program's flow of

control

• Easy to modify

• Easily implemented in assembly language

http://www.nuvisionmiami.com/books/asm
../../../../../../../../../Masm615/Examples

Web site Examples Lecture 23, April 13,2005, 3PM-4:15PM

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003.
4

FSM Examples

• FSM that recognizes strings beginning with 'x', followed by

letters 'a'..'y', ending with 'z':

start 'x'

'a'..'y'

'z

'

A B

C

• FSM that recognizes signed integers:

start

digit

+,-

digit
digit

A B

C

http://www.nuvisionmiami.com/books/asm
../../../../../../../../../Masm615/Examples

Web site Examples Lecture 23, April 13,2005, 3PM-4:15PM

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003.
5

Your turn . . .

• Explain why the following FSM does not work as well

for signed integers as the one shown on the previous

slide:

start

digit

+,-
A B

digit

http://www.nuvisionmiami.com/books/asm
../../../../../../../../../Masm615/Examples

Web site Examples Lecture 23, April 13,2005, 3PM-4:15PM

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003.
6

Implementing an FSM

StateA:

 call Getnext ; read next char into AL

 cmp al,'+' ; leading + sign?

 je StateB ; go to State B

 cmp al,'-' ; leading - sign?

 je StateB ; go to State B

 call IsDigit ; ZF = 1 if AL = digit

 jz StateC ; go to State C

 call DisplayErrorMsg ; invalid input found

 jmp Quit

The following is code from State A in the Integer FSM:

View the Finite.asm source code.

http://www.nuvisionmiami.com/books/asm
../../../../../../../../../Masm615/Examples
../../../../../../../Local%20Settings/Temp/Temporary%20Directory%202%20for%20CH06_PPT.ZIP/Finite.asm

Web site Examples Lecture 23, April 13,2005, 3PM-4:15PM

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003.
7

Flowchart of State A StateA

GetNext

AL = '+' ?

DisplayErrorMsg

true

AL = '-' ?
true

ZF = 1 ?
true

IsDigit

false

false

false

quit

StateB

StateB

StateC

State A accepts a plus or

minus sign, or a decimal

digit.

http://www.nuvisionmiami.com/books/asm
../../../../../../../../../Masm615/Examples

Web site Examples Lecture 23, April 13,2005, 3PM-4:15PM

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003.
8

Your turn . . .

• Draw a FSM diagram for hexadecimal integer

constant that conforms to MASM syntax.

• Draw a flowchart for one of the states in your FSM.

• Implement your FSM in assembly language. Let the

user input a hexadecimal constant from the

keyboard.

http://www.nuvisionmiami.com/books/asm
../../../../../../../../../Masm615/Examples

Web site Examples Lecture 23, April 13,2005, 3PM-4:15PM

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003.
9

Using the .IF Directive

• Runtime Expressions

• Relational and Logical Operators

• MASM-Generated Code

• .REPEAT Directive

• .WHILE Directive

http://www.nuvisionmiami.com/books/asm
../../../../../../../../../Masm615/Examples

Web site Examples Lecture 23, April 13,2005, 3PM-4:15PM

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003.
10

Runtime Expressions

.IF eax > ebx

 mov edx,1

.ELSE

 mov edx,2

.ENDIF

• .IF, .ELSE, .ELSEIF, and .ENDIF can be used to evaluate

runtime expressions and create block-structured IF

statements.

• Examples:

• MASM generates "hidden" code for you, consisting of

code labels, CMP and conditional jump instructions.

.IF eax > ebx && eax > ecx

 mov edx,1

.ELSE

 mov edx,2

.ENDIF

http://www.nuvisionmiami.com/books/asm
../../../../../../../../../Masm615/Examples

Web site Examples Lecture 23, April 13,2005, 3PM-4:15PM

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003.
11

Relational and Logical Operators

http://www.nuvisionmiami.com/books/asm
../../../../../../../../../Masm615/Examples

Web site Examples Lecture 23, April 13,2005, 3PM-4:15PM

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003.
12

MASM-Generated Code

 mov eax,6

 cmp eax,val1

 jbe @C0001

 mov result,1

@C0001:

.data

val1 DWORD 5

result DWORD ?

.code

mov eax,6

.IF eax > val1

mov result,1

.ENDIF

Generated code:

MASM automatically generates an unsigned jump (JBE).

http://www.nuvisionmiami.com/books/asm
../../../../../../../../../Masm615/Examples

Web site Examples Lecture 23, April 13,2005, 3PM-4:15PM

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003.
13

MASM-Generated Code

 mov eax,6

 cmp eax,val1

 jle @C0001

 mov result,1

@C0001:

.data

val1 SDWORD 5

result SDWORD ?

.code

mov eax,6

.IF eax > val1

mov result,1

.ENDIF

Generated code:

MASM automatically generates a signed jump (JLE).

http://www.nuvisionmiami.com/books/asm
../../../../../../../../../Masm615/Examples

Web site Examples Lecture 23, April 13,2005, 3PM-4:15PM

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003.
14

.REPEAT Directive

; Display integers 1 – 10:

mov eax,0

.REPEAT

 inc eax

 call WriteDec

 call Crlf

.UNTIL eax == 10

Executes the loop body before testing the loop condition

associated with the .UNTIL directive.

Example:

http://www.nuvisionmiami.com/books/asm
../../../../../../../../../Masm615/Examples

Web site Examples Lecture 23, April 13,2005, 3PM-4:15PM

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003.
15

.WHILE Directive

; Display integers 1 – 10:

mov eax,0

.WHILE eax < 10

 inc eax

 call WriteDec

 call Crlf

.ENDW

Tests the loop condition before executing the loop body The

.ENDW directive marks the end of the loop.

Example:

http://www.nuvisionmiami.com/books/asm
../../../../../../../../../Masm615/Examples

Web site Examples Lecture 23, April 13,2005, 3PM-4:15PM

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003.
16

The End

http://www.nuvisionmiami.com/books/asm
../../../../../../../../../Masm615/Examples

