
Assembly Language for Intel-Based

Computers, 4th Edition

Lecture 25:

Interface With High-Level Language

(c) Pearson Education, 2002. All rights reserved. You may modify and copy this slide show for your personal use, or for

use in the classroom, as long as this copyright statement, the author's name, and the title are not changed.

• Chapter corrections (Web) Assembly language sources (Web)

Slide show prepared by Kip R. Irvine, Revision date: 07/07/2002

Modified on April 23.2005

by Dr. Nikolay Metodiev Sirakov

Kip R. Irvine

http://www.nuvisionmiami.com/books/asm/corrections.htm
http://www.nuvisionmiami.com/kip/asm.htm

Web site Examples Lecture 28, April 25.2005,3PM-4:15PM

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003.
2

Chapter Overview

• Why Link ASM and HLL Programs?

• General and Calling Conventions

• External Identifiers

• Inline Assembly Code

• __asm Directive

• File Encryption Example

• Linking to C++ Programs

• Linking to Borland C++

• ReadSector Example

• Special Section: Optimizing Your Code

• Loop Optimization Example

• FindArray Example

• Creating the FindArray Project

http://www.nuvisionmiami.com/books/asm
../../../../../../../../../Masm615/Examples

Web site Examples Lecture 28, April 25.2005,3PM-4:15PM

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003.
3

Why Link ASM and HLL Programs?

• Use high-level language for overall project

development

• Relieves programmer from low-level details

• Use assembly language code

• Speed up critical sections of code

• Access nonstandard hardware devices

• Write platform-specific code

• Extend the HLL's capabilities

http://www.nuvisionmiami.com/books/asm
../../../../../../../../../Masm615/Examples

Web site Examples Lecture 28, April 25.2005,3PM-4:15PM

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003.
4

General Conventions

• Considerations when calling assembly language

procedures from high-level languages:

• Both must use the same naming convention (rules

regarding the naming of variables and procedures)

• Both must use the same memory model, with

compatible segment names

• Both must use the same calling convention

http://www.nuvisionmiami.com/books/asm
../../../../../../../../../Masm615/Examples

Web site Examples Lecture 28, April 25.2005,3PM-4:15PM

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003.
5

Calling Convention

• Identifies specific registers that must be preserved by

procedures

• Determines how arguments are passed to

procedures: in registers, on the stack, in shared

memory, etc.

• Determines the order in which arguments are passed

by calling programs to procedures

• Determines whether arguments are passed by value

or by reference

• Determines how the stack pointer is restored after a

procedure call

• Determines how functions return values

http://www.nuvisionmiami.com/books/asm
../../../../../../../../../Masm615/Examples

Web site Examples Lecture 28, April 25.2005,3PM-4:15PM

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003.
6

External Identifiers

• An external identifier is a name that has been placed

in a module’s object file in such a way that the linker

can make the name available to other program

modules.

• The linker resolves references to external identifiers,

but can only do so if the same naming convention is

used in all program modules.

http://www.nuvisionmiami.com/books/asm
../../../../../../../../../Masm615/Examples

Web site Examples Lecture 28, April 25.2005,3PM-4:15PM

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003.
7

Inline Assembly Code

• Assembly language source code that is inserted directly

into a HLL program.

• Compilers such as Microsoft Visual C++ and Borland

C++ have compiler-specific directives that identify inline

ASM code.

• Efficient inline code executes quickly because CALL

and RET instructions are not required.

• Simple to code because there are no external names,

memory models, or naming conventions involved.

Disadvantage:

• Decidedly not portable because it is written for a single

platform.

http://www.nuvisionmiami.com/books/asm
../../../../../../../../../Masm615/Examples

Web site Examples Lecture 28, April 25.2005,3PM-4:15PM

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003.
8

_asm Directive in Microsoft Visual C++

• Can be placed at the beginning of a single statement

• Or, It can mark the beginning of a block of assembly

language statements

• Syntax:

__asm statement

__asm {

 statement-1

 statement-2

 ...

 statement-n

}

http://www.nuvisionmiami.com/books/asm
../../../../../../../../../Masm615/Examples

Web site Examples Lecture 28, April 25.2005,3PM-4:15PM

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003.
9

Commenting Styles

mov esi,buf ; initialize index register

mov esi,buf // initialize index register

mov esi,buf /* initialize index register */

All of the following comment styles are acceptable, but

the latter two are preferred:

http://www.nuvisionmiami.com/books/asm
../../../../../../../../../Masm615/Examples

Web site Examples Lecture 28, April 25.2005,3PM-4:15PM

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003.
10

You Can Do the Following . . .

• Use any instruction from the Intel instruction set

• Use register names as operands

• Reference function parameters by name

• Reference code labels and variables that were

declared outside the asm block

• Use numeric literals that incorporate either

assembler-style or C-style radix notation

• Use the PTR operator in statements such as

 inc BYTE PTR [esi]

• Use the EVEN and ALIGN directives

• Use LENGTH, TYPE, and SIZE directives

http://www.nuvisionmiami.com/books/asm
../../../../../../../../../Masm615/Examples

Web site Examples Lecture 28, April 25.2005,3PM-4:15PM

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003.
11

You Cannot Do the Following . . .

• Use data definition directives such as DB, DW, or

BYTE

• Use assembler operators other than PTR

• Use STRUCT, RECORD, WIDTH, and MASK

• Use macro directives such as MACRO, REPT, IRC,

IRP

• Reference segments by name.

• (You can, however, use segment register names as

operands.)

http://www.nuvisionmiami.com/books/asm
../../../../../../../../../Masm615/Examples

Web site Examples Lecture 28, April 25.2005,3PM-4:15PM

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003.
12

Register Usage

• In general, you can modify EAX, EBX, ECX, and EDX

in your inline code because the compiler does not

expect these values to be preserved between

statements

• Conversely, always save and restore ESI, EDI, and

EBP.

See the Inline Test demonstration program.

http://www.nuvisionmiami.com/books/asm
../../../../../../../../../Masm615/Examples
../../../../../../../Local%20Settings/Temp/Temporary%20Directory%201%20for%20CH12_PPT.ZIP/inlineTestCpp.txt

Web site Examples Lecture 28, April 25.2005,3PM-4:15PM

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003.
13

File Encryption Example

• Reads a file, encrypts it, and writes the output to

another file.

• The TranslateBuffer function uses an __asm block to

define statements that loop through a character array

and XOR each character with a predefined value.

View the Encode2.cpp program listing

http://www.nuvisionmiami.com/books/asm
../../../../../../../../../Masm615/Examples
Encode2.pdf

Web site Examples Lecture 28, April 25.2005,3PM-4:15PM

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003.
14

Linking Assembly Language to C++

• Basic Structure - Two Modules

• The first module, written in assembly language,
contains the external procedure

• The second module contains the C/C++ code that
starts and ends the program

• The C++ module adds the extern qualifier to the
external assembly language function prototype.

• The "C" specifier must be included to prevent name
decoration by the C++ compiler:

extern "C" functionName(parameterList);

http://www.nuvisionmiami.com/books/asm
../../../../../../../../../Masm615/Examples

Web site Examples Lecture 28, April 25.2005,3PM-4:15PM

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003.
15

Name Decoration

Also known as name mangling. HLL compilers do this

to uniquely identify overloaded functions. A function

such as:

int ArraySum(int * p, int count)

would be exported as a decorated name that encodes

the return type, function name, and parameter types.

For example:

int_ArraySum_pInt_int

The problem with name decoration is that the C++

compiler assumes that your assembly language

function's name is decorated. The C++ compiler tells

the linker to look for a decorated name.

C++ compilers vary in the way they decorate function

names.

http://www.nuvisionmiami.com/books/asm
../../../../../../../../../Masm615/Examples

Web site Examples Lecture 28, April 25.2005,3PM-4:15PM

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003.
16

Special Section: Optimizing Your Code

• The 90/10 rule: 90% of a program's CPU time is
spent executing 10% of the program's code

• We will concentrate on optimizing ASM code for
speed of execution

• Loops are the most effective place to optimize code

• Two simple ways to optimize a loop:

• Move invariant code out of the loop

• Substitute registers for variables to reduce the number
of memory accesses

• Take advantage of high-level instructions such as

XLAT, SCASB, and MOVSD.

http://www.nuvisionmiami.com/books/asm
../../../../../../../../../Masm615/Examples

Web site Examples Lecture 28, April 25.2005,3PM-4:15PM

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003.
17

Loop Optimization Example

.data

days DWORD ?

minutesInDay DWORD ?

totalMinutes DWORD ?

str1 BYTE "Daily total minutes: ",0

• We will write a short program that calculates and

displays the number of elapsed minutes, over a

period of n days.

• The following variables are used:

http://www.nuvisionmiami.com/books/asm
../../../../../../../../../Masm615/Examples

Web site Examples Lecture 28, April 25.2005,3PM-4:15PM

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003.
18

Sample Program Output

Daily total minutes: +1440

Daily total minutes: +2880

Daily total minutes: +4320

Daily total minutes: +5760

Daily total minutes: +7200

Daily total minutes: +8640

Daily total minutes: +10080

Daily total minutes: +11520

.

.

Daily total minutes: +67680

Daily total minutes: +69120

Daily total minutes: +70560

Daily total minutes: +72000

View the complete source code.

http://www.nuvisionmiami.com/books/asm
../../../../../../../../../Masm615/Examples
../../../../../../../Local%20Settings/Temp/Temporary%20Directory%201%20for%20CH12_PPT.ZIP/Optimize.asm

Web site Examples Lecture 28, April 25.2005,3PM-4:15PM

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003.
19

No optimization.

 mov days,0

 mov totalMinutes,0

L1: ; loop contains 15 instructions

 mov eax,24 ; minutesInDay = 24 * 60

 mov ebx,60

 mul ebx

 mov minutesInDay,eax

 mov edx,totalMinutes ; totalMinutes += minutesInDay

 add edx,minutesInDay

 mov totalMinutes,edx

 mov edx,OFFSET str1 ; "Daily total minutes: "

 call WriteString

 mov eax,totalMinutes ; display totalMinutes

 call WriteInt

 call Crlf

 inc days ; days++

 cmp days,50 ; if days < 50,

 jb L1 ; repeat the loop

Version 1

http://www.nuvisionmiami.com/books/asm
../../../../../../../../../Masm615/Examples

Web site Examples Lecture 28, April 25.2005,3PM-4:15PM

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003.
20

Move calculation of minutesInDay outside the loop, and assign EDX before the loop.
The loop now contains 10 instructions.

 mov days,0

 mov totalMinutes,0

 mov eax,24 ; minutesInDay = 24 * 60

 mov ebx,60

 mul ebx

 mov minutesInDay,eax

 mov edx,OFFSET str1 ; "Daily total minutes: "

L1: mov edx,totalMinutes ; totalMinutes += minutesInDay

 add edx,minutesInDay

 mov totalMinutes,edx

 call WriteString ; display str1 (offset in EDX)

 mov eax,totalMinutes ; display totalMinutes

 call WriteInt

 call Crlf

 inc days ; days++

 cmp days,50 ; if days < 50,

 jb L1 ; repeat the loop

Version 2

http://www.nuvisionmiami.com/books/asm
../../../../../../../../../Masm615/Examples

Web site Examples Lecture 28, April 25.2005,3PM-4:15PM

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003.
21

Move totalMinutes to EAX, use EAX throughout loop. Use constant expresion for

minutesInDay calculation. The loop now contains 7 instructions.

 C_minutesInDay = 24 * 60 ; constant expression

 mov days,0

 mov totalMinutes,0

 mov eax,totalMinutes

 mov edx,OFFSET str1 ; "Daily total minutes: "

L1: add eax,C_minutesInDay ; totalMinutes += minutesInDay

 call WriteString ; display str1 (offset in EDX)

 call WriteInt ; display totalMinutes (EAX)

 call Crlf

 inc days ; days++

 cmp days,50 ; if days < 50,

 jb L1 ; repeat the loop

 mov totalMinutes,eax ; update variable

Version 3

http://www.nuvisionmiami.com/books/asm
../../../../../../../../../Masm615/Examples

Web site Examples Lecture 28, April 25.2005,3PM-4:15PM

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003.
22

Using Assembly Language to Optimize C++

• Find out how to make your C++ compiler produce an

assembly language source listing

• /FAs command-line option in Visual C++, for example

• Optimize loops for speed

• Use hardware-level I/O for optimum speed

• Use BIOS-level I/O for medium speed

http://www.nuvisionmiami.com/books/asm
../../../../../../../../../Masm615/Examples

Web site Examples Lecture 28, April 25.2005,3PM-4:15PM

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003.
23

FindArray Example

#include "findarr.h"

bool FindArray(long searchVal, long array[],

 long count)

{

 for(int i = 0; i < count; i++)

 if(searchVal == array[i])

 return true;

 return false;

}

Let's write a C++ function that searches for the first matching

integer in an array. The function returns true if the integer is

found, and false if it is not:

http://www.nuvisionmiami.com/books/asm
../../../../../../../../../Masm615/Examples

Web site Examples Lecture 28, April 25.2005,3PM-4:15PM

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003.
24

Code Produced by C++ Compiler

_searchVal$ = 8

_array$ = 12

_count$ = 16

_i$ = -4

_FindArray PROC NEAR

; 29 : {

 push ebp

 mov ebp, esp

 push ecx

; 30 : for(int i = 0; i < count; i++)

 mov DWORD PTR _i$[ebp], 0

 jmp SHORT $L174

$L175:

 mov eax, DWORD PTR _i$[ebp]

 add eax, 1

 mov DWORD PTR _i$[ebp], eax

optimization switch turned off (1 of 3)

http://www.nuvisionmiami.com/books/asm
../../../../../../../../../Masm615/Examples

Web site Examples Lecture 28, April 25.2005,3PM-4:15PM

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003.
25

Code Produced by C++ Compiler

$L174:

 mov ecx, DWORD PTR _i$[ebp]

 cmp ecx, DWORD PTR _count$[ebp]

 jge SHORT $L176

; 31 : if(searchVal == array[i])

 mov edx, DWORD PTR _i$[ebp]

 mov eax, DWORD PTR _array$[ebp]

 mov ecx, DWORD PTR _searchVal$[ebp]

 cmp ecx, DWORD PTR [eax+edx*4]

 jne SHORT $L177

; 32 : return true;

 mov al, 1

 jmp SHORT $L172

$L177:

; 33 :

; 34 : return false;

 jmp SHORT $L175

(2 of 3)

http://www.nuvisionmiami.com/books/asm
../../../../../../../../../Masm615/Examples

Web site Examples Lecture 28, April 25.2005,3PM-4:15PM

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003.
26

Code Produced by C++ Compiler

$L176:

 xor al, al ; AL = 0

$L172:

; 35 : }

 mov esp, ebp ; restore stack pointer

 pop ebp

 ret 0

_FindArray ENDP

(3 of 3)

http://www.nuvisionmiami.com/books/asm
../../../../../../../../../Masm615/Examples

Web site Examples Lecture 28, April 25.2005,3PM-4:15PM

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003.
27

Hand-Coded Assembly Language (1 of 2)

true = 1

false = 0

; Stack parameters:

srchVal equ [ebp+08]

arrayPtr equ [ebp+12]

count equ [ebp+16]

.code

_FindArray PROC near

 push ebp

 mov ebp,esp

 push edi

 mov eax, srchVal ; search value

 mov ecx, count ; number of items

 mov edi, arrayPtr ; pointer to array

http://www.nuvisionmiami.com/books/asm
../../../../../../../../../Masm615/Examples

Web site Examples Lecture 28, April 25.2005,3PM-4:15PM

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003.
28

Hand-Coded Assembly Language (2 of 2)

 repne scasd ; do the search

 jz returnTrue ; ZF = 1 if found

returnFalse:

 mov al, false

 jmp short exit

returnTrue:

 mov al, true

exit:

 pop edi

 pop ebp

 ret

_FindArray ENDP

http://www.nuvisionmiami.com/books/asm
../../../../../../../../../Masm615/Examples

Web site Examples Lecture 28, April 25.2005,3PM-4:15PM

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003.
29

Creating the FindArray Project

• Run Visual C++ and create a project named FindArray.

• Add a CPP source file to the project named main.cpp. This file
should contain the C++ main() function that calls FindArray. View a
sample.

• Add a new header file named FindArr.h to the project. This file
contains the function prototype for FindArray. View a sample.

• Create a file named Scasd.asm and place it in the project directory.
This file contains the source code for the FindArray procedure.
View a sample.

• Use ML.EXE to assemble the Scasd.asm file, producing Scasd.obj.
Do not try to link the program.

• Insert Scasd.obj into your C++ project. (Select Add Files... from the
Project menu.) (this needs to be verified)

• Build and run the project.

(using Microsoft Visual Studio 6.0)

http://www.nuvisionmiami.com/books/asm
../../../../../../../../../Masm615/Examples
../../../../../../../Local%20Settings/Temp/Temporary%20Directory%201%20for%20CH12_PPT.ZIP/maincpp.txt
../../../../../../../Local%20Settings/Temp/Temporary%20Directory%201%20for%20CH12_PPT.ZIP/maincpp.txt
../../../../../../../Local%20Settings/Temp/Temporary%20Directory%201%20for%20CH12_PPT.ZIP/findarr_h.txt
../../../../../../../Local%20Settings/Temp/Temporary%20Directory%201%20for%20CH12_PPT.ZIP/Scasd.asm

Web site Examples Lecture 28, April 25.2005,3PM-4:15PM

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003.
30

Creating the FindArray Project

• Run Visual C++.Net and create a new project named FindArray.

• Add a blank C++ source file to the project named main.cpp. Type

the main() function that calls FindArray. View a sample.

• Add a new header file named FindArr.h to the project. This file

contains the function prototype for FindArray. View a sample.

• Create a file named Scasd.asm and place it in the project directory.

This file contains the source code for the FindArray procedure.

View a sample.

• Use ML.EXE to assemble the Scasd.asm file, producing Scasd.obj.

Do not try to link the program.

• Insert Scasd.obj into your C++ project.

• Build and run the project.

(using Microsoft Visual Studio)

http://www.nuvisionmiami.com/books/asm
../../../../../../../../../Masm615/Examples
../../../../../../../Local%20Settings/Temp/Temporary%20Directory%201%20for%20CH12_PPT.ZIP/maincpp.txt
../../../../../../../Local%20Settings/Temp/Temporary%20Directory%201%20for%20CH12_PPT.ZIP/findarr_h.txt
../../../../../../../Local%20Settings/Temp/Temporary%20Directory%201%20for%20CH12_PPT.ZIP/Scasd.asm

