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Chapter Overview 

• Why Link ASM and HLL Programs? 

• General and Calling Conventions 

• External Identifiers 

• Inline Assembly Code 

• __asm Directive 

• File Encryption Example 

• Linking to C++ Programs 

• Linking to Borland C++ 

• ReadSector Example 

• Special Section: Optimizing Your Code 

• Loop Optimization Example 

• FindArray Example 

• Creating the FindArray Project 

http://www.nuvisionmiami.com/books/asm
../../../../../../../../../Masm615/Examples
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Why Link ASM and HLL Programs? 

• Use high-level language for overall project 

development 

• Relieves programmer from low-level details 

• Use assembly language code 

• Speed up critical sections of code 

• Access nonstandard hardware devices 

• Write platform-specific code 

• Extend the HLL's capabilities 

http://www.nuvisionmiami.com/books/asm
../../../../../../../../../Masm615/Examples
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General Conventions 

• Considerations when calling assembly language 

procedures from high-level languages: 

• Both must use the same naming convention (rules 

regarding the naming of variables and procedures) 

• Both must use the same memory model, with 

compatible segment names 

• Both must use the same calling convention 

http://www.nuvisionmiami.com/books/asm
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Calling Convention 

• Identifies specific registers that must be preserved by 

procedures 

• Determines how arguments are passed to 

procedures: in registers, on the stack, in shared 

memory, etc. 

• Determines the order in which arguments are passed 

by calling programs to procedures 

• Determines whether arguments are passed by value 

or by reference 

• Determines how the stack pointer is restored after a 

procedure call 

• Determines how functions return values 

http://www.nuvisionmiami.com/books/asm
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External Identifiers 

• An external identifier is a name that has been placed 

in a module’s object file in such a way that the linker 

can make the name available to other program 

modules.  

• The linker resolves references to external identifiers, 

but can only do so if the same naming convention is 

used in all program modules. 

http://www.nuvisionmiami.com/books/asm
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Inline Assembly Code 

• Assembly language source code that is inserted directly 

into a HLL program. 

• Compilers such as Microsoft Visual C++ and Borland 

C++ have compiler-specific directives that identify inline 

ASM code. 

• Efficient inline code executes quickly because CALL 

and RET instructions are not required. 

• Simple to code because there are no external names, 

memory models, or naming conventions involved. 

Disadvantage: 

• Decidedly not portable because it is written for a single 

platform. 

http://www.nuvisionmiami.com/books/asm
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_asm Directive in Microsoft Visual C++ 

• Can be placed at the beginning of a single statement 

• Or, It can mark the beginning of a block of assembly 

language statements 

• Syntax: 

__asm  statement 

 

__asm { 

  statement-1 

  statement-2 

  ... 

  statement-n 

} 

http://www.nuvisionmiami.com/books/asm
../../../../../../../../../Masm615/Examples
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Commenting Styles 

mov  esi,buf     ; initialize index register 

mov  esi,buf    // initialize index register 

mov  esi,buf    /* initialize index register */ 

All of the following comment styles are acceptable, but 

the latter two are preferred: 

http://www.nuvisionmiami.com/books/asm
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You Can Do the Following . . . 

• Use any instruction from the Intel instruction set 

• Use register names as operands 

• Reference function parameters by name 

• Reference code labels and variables that were 

declared outside the asm block  

• Use numeric literals that incorporate either 

assembler-style or C-style radix notation  

• Use the PTR operator in statements such as  

  inc BYTE PTR [esi] 

• Use the EVEN and ALIGN directives 

• Use LENGTH, TYPE, and SIZE directives 

http://www.nuvisionmiami.com/books/asm
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You Cannot Do the Following . . . 

• Use data definition directives such as DB, DW, or 

BYTE 

• Use assembler operators other than PTR 

• Use STRUCT, RECORD, WIDTH, and MASK 

• Use macro directives such as MACRO, REPT, IRC, 

IRP 

• Reference segments by name.  

• (You can, however, use segment register names as 

operands.) 

http://www.nuvisionmiami.com/books/asm
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Register Usage 

• In general, you can modify EAX, EBX, ECX, and EDX 

in your inline code because the compiler does not 

expect these values to be preserved between 

statements 

• Conversely, always save and restore ESI, EDI, and 

EBP. 

See the Inline Test demonstration program. 

http://www.nuvisionmiami.com/books/asm
../../../../../../../../../Masm615/Examples
../../../../../../../Local%20Settings/Temp/Temporary%20Directory%201%20for%20CH12_PPT.ZIP/inlineTestCpp.txt


Web site     Examples Lecture 28, April 25.2005,3PM-4:15PM                                                  

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 
13 

File Encryption Example 

• Reads a file, encrypts it, and writes the output to 

another file.  

• The TranslateBuffer function uses an __asm block to 

define statements that loop through a character array 

and XOR each character with a predefined value.  

View the Encode2.cpp program listing 

http://www.nuvisionmiami.com/books/asm
../../../../../../../../../Masm615/Examples
Encode2.pdf
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Linking Assembly Language to C++ 

• Basic Structure - Two Modules 

• The first module, written in assembly language, 
contains the external procedure 

• The second module contains the C/C++ code that 
starts and ends the program  

• The C++ module adds the extern qualifier to the 
external assembly language function prototype. 

• The "C" specifier must be included to prevent name 
decoration by the C++ compiler: 

extern "C" functionName( parameterList ); 

http://www.nuvisionmiami.com/books/asm
../../../../../../../../../Masm615/Examples


Web site     Examples Lecture 28, April 25.2005,3PM-4:15PM                                                  

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 
15 

Name Decoration 

Also known as name mangling. HLL compilers do this 

to uniquely identify overloaded functions. A function 

such as: 

int ArraySum( int * p, int count ) 

would be exported as a decorated name that encodes 

the return type, function name, and parameter types. 

For example: 

int_ArraySum_pInt_int 

The problem with name decoration is that the C++ 

compiler assumes that your assembly language 

function's name is decorated. The C++ compiler tells 

the linker to look for a decorated name. 

C++ compilers vary in the way they decorate function 

names. 

 

http://www.nuvisionmiami.com/books/asm
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Special Section: Optimizing Your Code 

• The 90/10 rule: 90% of a program's CPU time is 
spent executing 10% of the program's code  

• We will concentrate on optimizing ASM code for 
speed of execution 

• Loops are the most effective place to optimize code  

• Two simple ways to optimize a loop: 

• Move invariant code out of the loop 

• Substitute registers for variables to reduce the number 
of memory accesses 

• Take advantage of high-level instructions such as 

XLAT, SCASB, and MOVSD. 

http://www.nuvisionmiami.com/books/asm
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Loop Optimization Example 

.data 

days DWORD ? 

minutesInDay DWORD ? 

totalMinutes DWORD ? 

str1 BYTE "Daily total minutes: ",0 

• We will write a short program that calculates and 

displays the number of elapsed minutes, over a 

period of n days. 

• The following variables are used: 

http://www.nuvisionmiami.com/books/asm
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Sample Program Output 

Daily total minutes: +1440 

Daily total minutes: +2880 

Daily total minutes: +4320 

Daily total minutes: +5760 

Daily total minutes: +7200 

Daily total minutes: +8640 

Daily total minutes: +10080 

Daily total minutes: +11520 

. 

. 

Daily total minutes: +67680 

Daily total minutes: +69120 

Daily total minutes: +70560 

Daily total minutes: +72000 

View the complete source code. 

http://www.nuvisionmiami.com/books/asm
../../../../../../../../../Masm615/Examples
../../../../../../../Local%20Settings/Temp/Temporary%20Directory%201%20for%20CH12_PPT.ZIP/Optimize.asm
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No optimization. 

 mov days,0 

 mov totalMinutes,0 

  

L1:   ; loop contains 15 instructions 

 mov eax,24  ; minutesInDay = 24 * 60 

 mov ebx,60 

 mul ebx 

 mov minutesInDay,eax 

 mov edx,totalMinutes ; totalMinutes += minutesInDay 

 add edx,minutesInDay 

 mov totalMinutes,edx 

 mov edx,OFFSET str1  ; "Daily total minutes: " 

 call WriteString 

 mov eax,totalMinutes ; display totalMinutes 

 call WriteInt 

 call Crlf 

 inc days  ; days++ 

 cmp days,50  ; if days < 50, 

 jb  L1  ; repeat the loop 

Version 1 

http://www.nuvisionmiami.com/books/asm
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Move calculation of minutesInDay outside the loop, and assign EDX before the loop. 
The loop now contains 10 instructions. 

 mov days,0 

 mov totalMinutes,0  

 mov eax,24  ; minutesInDay = 24 * 60 

 mov ebx,60 

 mul ebx 

 mov minutesInDay,eax 

 mov edx,OFFSET str1  ; "Daily total minutes: " 

 

L1: mov edx,totalMinutes ; totalMinutes += minutesInDay 

 add edx,minutesInDay 

 mov totalMinutes,edx  

 call WriteString  ; display str1 (offset in EDX) 

 mov eax,totalMinutes ; display totalMinutes 

 call WriteInt 

 call Crlf 

 inc days  ; days++ 

 cmp days,50  ; if days < 50, 

 jb  L1  ; repeat the loop 

Version 2 

http://www.nuvisionmiami.com/books/asm
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Move totalMinutes to EAX, use EAX throughout loop. Use constant expresion for 

minutesInDay calculation. The loop now contains 7 instructions. 

 

 C_minutesInDay = 24 * 60  ; constant expression 

 mov days,0 

 mov totalMinutes,0  

 mov eax,totalMinutes 

 mov edx,OFFSET str1 ; "Daily total minutes: " 

 

L1: add eax,C_minutesInDay ; totalMinutes += minutesInDay 

 call WriteString  ; display str1 (offset in EDX) 

 call WriteInt  ; display totalMinutes (EAX) 

 call Crlf  

 inc days  ; days++ 

 cmp days,50  ; if days < 50, 

 jb  L1  ; repeat the loop 

  

 mov totalMinutes,eax ; update variable 

Version 3 

http://www.nuvisionmiami.com/books/asm
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Using Assembly Language to Optimize C++ 

• Find out how to make your C++ compiler produce an 

assembly language source listing 

• /FAs command-line option in Visual C++, for example 

• Optimize loops for speed 

• Use hardware-level I/O for optimum speed 

• Use BIOS-level I/O for medium speed 

http://www.nuvisionmiami.com/books/asm
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FindArray Example 

#include "findarr.h" 

 

bool FindArray( long searchVal, long array[],  

                long count ) 

{ 

  for(int i = 0; i < count; i++) 

    if( searchVal == array[i] )  

      return true; 

  return false; 

} 

Let's write a C++ function that searches for the first matching 

integer in an array. The function returns true if the integer is 

found, and false if it is not: 

http://www.nuvisionmiami.com/books/asm
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Code Produced by C++ Compiler 

_searchVal$ = 8 

_array$ = 12 

_count$ = 16 

_i$ = -4 

 

_FindArray PROC NEAR 

; 29   : { 

 push ebp 

 mov  ebp, esp 

 push ecx 

; 30   :   for(int i = 0; i < count; i++) 

 mov  DWORD PTR _i$[ebp], 0 

 jmp  SHORT $L174 

$L175: 

 mov  eax, DWORD PTR _i$[ebp] 

 add  eax, 1 

 mov  DWORD PTR _i$[ebp], eax 

 

optimization switch turned off  (1 of 3) 

http://www.nuvisionmiami.com/books/asm
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Code Produced by C++ Compiler 

$L174: 

 mov  ecx, DWORD PTR _i$[ebp] 

 cmp  ecx, DWORD PTR _count$[ebp] 

 jge  SHORT $L176 

; 31   : if( searchVal == array[i] ) 

 mov  edx, DWORD PTR _i$[ebp] 

 mov  eax, DWORD PTR _array$[ebp] 

 mov  ecx, DWORD PTR _searchVal$[ebp] 

 cmp  ecx, DWORD PTR [eax+edx*4] 

 jne  SHORT $L177 

; 32   : return true; 

 mov  al, 1 

 jmp  SHORT $L172 

$L177: 

; 33   :  

; 34   : return false; 

 jmp  SHORT $L175 

(2 of 3) 

http://www.nuvisionmiami.com/books/asm
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Code Produced by C++ Compiler 

$L176: 

 xor  al, al ; AL = 0 

 

$L172: 

; 35   : } 

 mov  esp, ebp ; restore stack pointer 

 pop  ebp 

 ret  0 

_FindArray ENDP 

(3 of 3) 

http://www.nuvisionmiami.com/books/asm
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Hand-Coded Assembly Language  (1 of 2) 

true = 1 

false = 0 

 

; Stack parameters: 

srchVal   equ  [ebp+08] 

arrayPtr  equ  [ebp+12] 

count     equ  [ebp+16] 

 

.code 

_FindArray PROC near 

     push  ebp 

     mov   ebp,esp 

     push  edi     

 

     mov   eax, srchVal ; search value 

     mov   ecx, count   ; number of items 

     mov   edi, arrayPtr   ; pointer to array 

http://www.nuvisionmiami.com/books/asm
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Hand-Coded Assembly Language  (2 of 2) 

     repne scasd           ; do the search 

     jz    returnTrue      ; ZF = 1 if found 

 

returnFalse:              

     mov   al, false      

     jmp   short exit 

 

returnTrue: 

     mov   al, true 

 

exit: 

     pop   edi 

     pop   ebp 

     ret    

_FindArray ENDP 

http://www.nuvisionmiami.com/books/asm
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Creating the FindArray Project 

• Run Visual C++ and create a project named FindArray. 

• Add a CPP source file to the project named main.cpp. This file 
should contain the C++ main() function that calls FindArray. View a 
sample. 

• Add a new header file named FindArr.h to the project. This file 
contains the function prototype for FindArray. View a sample. 

• Create a file named Scasd.asm and place it in the project directory. 
This file contains the source code for the FindArray procedure. 
View a sample. 

• Use ML.EXE to assemble the Scasd.asm file, producing Scasd.obj. 
Do not try to link the program. 

• Insert Scasd.obj into your C++ project. (Select Add Files... from the 
Project menu.) (this needs to be verified) 

• Build and run the project.  

(using Microsoft Visual Studio 6.0) 

http://www.nuvisionmiami.com/books/asm
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Creating the FindArray Project 

• Run Visual C++.Net and create a new project named FindArray. 

• Add a blank C++ source file to the project named main.cpp. Type 

the main() function that calls FindArray. View a sample. 

• Add a new header file named FindArr.h to the project. This file 

contains the function prototype for FindArray. View a sample. 

• Create a file named Scasd.asm and place it in the project directory. 

This file contains the source code for the FindArray procedure. 

View a sample. 

• Use ML.EXE to assemble the Scasd.asm file, producing Scasd.obj. 

Do not try to link the program. 

• Insert Scasd.obj into your C++ project.  

• Build and run the project.  

(using Microsoft Visual Studio) 
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