SYLLABUS AND COURSE INFORMATION Spring 2015
CSCI516 – FUND CONCEPTS COMPUTING/MACH ORG

SECTIONS: 516.2E and 3E, Room: BA109, SCT127
Meets: 01/20/2015 through 05/15/2015,
Day and Time: W 1:30PM-4:10PM 4:30PM- 7:10 PM

Instructor: Dr. Nikolay Metodiev Sirakov
Office: Bin 322
Office Hours: T 11AM-12PM
TR 11AM-1PM
F 9AM-11AM
Additional by appointment

Office: Nikolay.Sirakov@tamuc.edu
Office Phone: 903 886 5943

NOTE: Before enrolling in this course, you are expected to have completed computing and a programming language course with at least C. Also, the teacher assumes you have a good programming skills. If you do not have this background, please drop this course Now. All students are required to have an email account. If you do not have one, check in the Computer Science office and have one assigned. The preferred method of communicating with the instructor is through email.

COURSE DESCRIPTION
Pipelining and global/local descriptor table and concepts are not given in the 6th and the 7th edition.
My lectures and the web posted materials are needed as well.

Pre-requisite: CSCI 515
Course Content: Boolean Operations and Functions; Basic Circuits and Logic; Adder, Memory, Digital Numbers Generation and Addition; IA-32 Processor Architecture; Assembly Language Fundamentals; Data Transfer and Addressing; Arithmetic; Array processing; Stacks; Passing parameters through the stack; links to high level languages.

Student Learning Outcomes (SLO): The students will develop skills and gather a knowledge about the fundamentals of the Computer Organization and Assembly Programming Language –IA 32; They will understand and will be able to apply the link between Boolean Algebra, Number Theory, Circuits, Processor, Machine organization and Assembly Language; the students will develop competitive skills in Assembly algorithms design, and produce an error free program. From programming view point the students will be able to program interrupts, arithmetic and editing commands of high level editors.

In general the students will understand the theoretical foundations of modern computers, will be able to implement common assembly language algorithms, to develop solution modeling and to analyze, design and implement problems. To reach SLO the following objectives are to be subject of teaching:

Objective #1 Numbering systems and conversions: convert from one number system to another; work with Two's complement notation; Boolean functions and basic theorems;

Objective #2 Intro to Computer Organization: theoretical concepts to design digital diagrams, basic circuits and gates; the link between Boolean Functions, Circuits, Processor, Computer Organization, Micro code, Machine Code, Assembly language and High Level language; the general concepts of IA-32, and its Processor Architecture;

Objective #3 Concepts of Machine Instructions, Interrupts: Assembly and linking, assembly language programming, work with the basic elements of Assembly Language; constants, words, identities, directives, instructions; assemble, link and run a program; I/O devices; memory mapped I/O; keyboard input, read, display and copy, Common Interrupts, MS-DOS services; read and display 64 bit integers; Direct Addressing;

Objective #4 Unconditional jumps, flags, subroutines, Stacks: arithmetic, flags, registers; work with jump and loops; search an area for positive numbers; Nested Procedure Calls; implement stack operations, work with shift and rotate instructions, 64 bit addition.

Objective #5 Arrays, addressing modes, memory management, indirect addressing, conditional loops and Floating Point;
Objective #6 Advanced procedures, local variables, stack parameters and frames, strings, link to high level language (C++);

The instructor will include this semester the Consensus Theorem along with the half adder and adder.

COURSE EVALUATION: Basis for Evaluation:
<table>
<thead>
<tr>
<th>In-class exams</th>
<th>32%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program</td>
<td>18%</td>
</tr>
<tr>
<td>Quizzes</td>
<td>16%</td>
</tr>
<tr>
<td>In Class Problems</td>
<td>12%</td>
</tr>
<tr>
<td>Final exam</td>
<td>22%</td>
</tr>
</tbody>
</table>

Grading Policy:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>100%-90%</td>
</tr>
<tr>
<td>B</td>
<td>89%-80%</td>
</tr>
<tr>
<td>C</td>
<td>79%-70%</td>
</tr>
<tr>
<td>D</td>
<td>69%-60%</td>
</tr>
<tr>
<td>F</td>
<td>Less than 59%</td>
</tr>
</tbody>
</table>

The professor reserves the rights to reward students for continuous hard work.
The instructor reserves the right to drop student for not attending eight or more classes, although the action is not automatic and the student will be noticed about that.

Additional Assignments: In class check problems; Home Practice Problems; Extra Credit Problems.
The programs are to be submitted in an electronic format, all other assignments in a hard copy.

Final Test
Section: 2E, 3E
Date: Monday, May 11, 2015
Time: 1:15PM-3:15PM

COURSE POLICIES
Programs: Programming is a part of this class. The only way to learn to program is to sit down and write programs. The next thing to do is make them work correctly. The knowledge obtained from reading and lectures only provides you with theoretical basis; you have to actually do the programming in order to learn.

Programming grades: Programs will receive a letter grade based on the following criteria:
The program compiles, executes, and produces the required correct results ≈ 95%.
The program compiles, executes, and produces the output with minor errors ≈ 85%.
The program compiles and executes but does not produce the required output ≈ 75%.
The program is a good attempt but will not compile without errors ≈ 65%.

Programs with copied code or other cheating (all or in part) receive grade 0.
A program with extra features, fancy output will receive extra score.
A program with sloppy coding or editing, no comments, spacing, etc may have points deducted.
The professor reserves the rights to reward students for continuous hard work.

Short quizzes: are to be solved independently during the class period. No makeup is allowed.

Exams: The in-class exams will be given roughly at regular intervals. Students will be informed of the test dates around a week in advance. The test will take one class period and will be given at the scheduled times only. No opportunity will be given to take the test at earlier or later times except in cases of formal institutional excuses as mentioned above.

Makeup: Except in the case of a formal institutional excuse, no individual makeup test will be permitted.

Cheating: test and quizzes results will be canceled in case of cheating, extra credit grades may be taken off.

Students with Disabilities: The Americans with Disabilities Act (ADA) is a federal anti-discrimination statute that provides comprehensive civil rights protection for persons with disabilities. Among other things, this legislation requires that all students with disabilities be guaranteed a learning environment that provides for reasonable accommodation of their disabilities. If you have a disability requiring an accommodation, please contact:
Office of Student Disability Resources and Services; Texas A&M University-Commerce; Halladay Student Services Building; Room 303 A/D; Phone (903) 886-5150 or (903) 886-5835; Fax (903) 468-8148
StudentDisabilityServices@tamu-commerce.edu

All students enrolled at the University shall follow the tents of common decency and acceptable behavior conducive to a positive learning environment (See Student’s Guide Handbook, Polices and Procedures, Conduct).

Only the way to pass through this class is to study, study and again study.