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Abstract—Energy saving has become a crucial concern in
datacenters as several reports predict that the anticipated energy
costs over a three year period will exceed hardware acquisition.
In particular, saving energy for storage is of major importance
as storage devices (and cooling them off) may contribute over 25
percent of the total energy consumed in a datacenter. Recent work
introduced the concept of energy proportionality and argued
that it is a more relevant metric than just energy saving as
it takes into account the tradeoff between energy consumption
and performance. In this paper, we present a novel approach,
called FREP (Fractional Replication for Energy Proportionality),
for energy management in large datacenters. FREP includes a
replication strategy and basic functions to enable flexible energy
management. Specifically, our method provides performance
guarantees by adaptively controlling the power states of a
group of disks based on observed and predicted workloads. Our
experiments, using a set of real and synthetic traces, show that
FREP dramatically reduces energy requirements with a minimal
response time penalty.

I. I NTRODUCTION

Power savings in datacenters has recently gained a lot
of interest because of the costs involved in power delivery
and system cooling. In a recent report to congress [1], EPA
stated that many datacenters have already reached their power
capacity limit and more than 10% of datacenters will be out
of power capacity by the end of this year, while 68% expect
to be at their limit within the next three years. In addition,
another recent report [2] revealed that power occupies nearly
a quarter of monthly operational costs in a datacenter, and if
we consider power-related costs such as power distributionand
cooling additionally, it makes up over 40% of the operational
costs.

Among the many components in the datacenter, storage is
the next largest consumer of energy after servers and cooling
systems. It is currently estimated that disk storage systems
consume about 25–35 percent of the total power [3]. This
percentage of power consumption by disk storage systems
will only continue to increase, as data intensive applications
demand fast and reliable access to on-line data resources. This
in turn requires the deployment of power hungry faster (high
RPM) and larger capacity disks.

Several energy saving techniques for disk-based storage
systems have been introduced in the literature [4], [5], [6],
[7], [8]. Most of these techniques use the idea of spinning
down the disks from their usual high energy consumption
mode into a lower energy mode (sleep/standby mode) after

they experience a period of inactivity whose length exceeds
a certain threshold (idleness threshold). The reason for this
is that typical disks consume about one tenth of the power
in standby mode as compared with their power consumption
when spinning. There are several challenges associated with
these spin-down techniques when applied to individual disks:

• Energy and response time penalty: Disks can only service
requests while they are spinning, in case a request arrives
when the disk is in sleep mode there is a response time
penalty (typically 10–15 seconds) before the request can
be serviced. In addition, considerable amount of energy is
required to spin up the disk, in some cases this can exceed
the energy saved by transitioning the disk to standby
mode.

• Expected length of inactivity periods: Under many typical
workloads found in scientific and other applications,
individual disks do not experience long enough periods
of inactivity (longer than the idleness threshold) thus
limiting the opportunities to save energy.

Achievingenergy proportionalityin datacenters, rather than
just energy saving, has been recently getting attention from
industry and researchers and proposed as an important design
metric [9]. The core principal behind energy proportionality
is that computing equipment (storage, servers, networks, etc.)
should consume power in proportion to their load level, i.e.,
a computing component that consumesx watts at full load,
should consumex · p

100 when running atp-% load.
The energy management approach we consider in this paper

promotes energy proportionality and is different from existing
approaches, as it is based on handling energy management in
a groupof disks rather than controlling disks individually. We
show that our energy management is scalable to large datacen-
ters with thousands of disks and preserves important features
of the storage system such as parallelism and fault tolerance.
As explained later, our approach exploitsdata replication
which is used in many datacenters for reasons such as fault
tolerance and load balancing. Popular distributed file systems,
such as HDFS (Hadoop Distributed File System) [10] and GFS
(Google File System) [11], also automatically replicate data
by default. Data replication can help saving energy because
when a data item is replicated several times, there is often an
opportunity to select a replica found on a currently spinning
disk, thus avoiding the costs (spin-up energy) involved in



Fig. 1. Energy management (EM) models: Basic EM with mirroring works
like “binary”, either 100% disks running or 50% disks running. Gradual EM
with mirroring can spin down disks individually, hence “gradual”. However,
the upper limit of energy saving is constrained to 50% even at extremely low
load. EM with fractional replication (our approach) provides more flexible
energy management, and the maximum energy saving can be selectedby
configuration.

accessing a replica found on a disk which is currently in sleep
mode.

Although replication requires additional storage space, it is a
relatively cheap resource as it is reported that storage resources
in datacenters are often considerably under-utilized and use
only a small fraction of the total available capacity (less than
25% according to several studies) [3], [12], [13]. In this paper,
we present a novel replication strategy that achieves energy
benefits while maintaining performance and fault tolerance. In
particular, ourfractional replication enables flexible gradual
energy management based on workloads which promotes
energy proportionality.

Figure 1 illustrates energy management (EM) models based
on mirroring and our replication technique. With mirroring,
disk contents are copied from one disk to another. Thus,
mirroring can spin down up to half of total disks. As shown
in Figure 1, typical mirroring can achieve up to 50% energy
saving under certain conditions. eRAID [13] is an example of
this. Disk mirroring with gradual EM model is more flexible
by controlling disks individually. The work by Lang et al. [12]
is based on this EM model. The EM model is more flexible
as it controls disks individually, but it is still limited toa
maximum of 50% energy saving. Naturally, replicating with
a greater replication factor (e.g., 3) enables further energy
saving (e.g., 67%), but such techniques are still rigid, lacking
gradual adaptation to workloads. Our replication model is
more flexible, and the maximum energy saving can be selected
by configuration. We discuss this in more detail in Section III.

Another important challenge is to determine when to tran-
sition the disks to lower or higher power states. One typical
approach for this is to use a set of thresholds for a load metric.
For example, Lang et al. [12] use CPU utilization as their load
metric, and assume that disk power states are changed at some
threshold points of the load metric. Similarly, PARAID [5]
monitors disk utilization and spins disks up/down based on
some thresholds. In addition, workload characteristics can be
significantly different among datacenters due to the type of

applications they run, and also can change over time in the
same datacenter.

Our solution, called FREP (Fractional Replication for En-
ergy Proportionality), considers the disks in each disk array
as a single unit which can be spun down or up. We refer to
spinning up and down of such units as “gear-shift”. As we
will discuss, our gear-shift mechanism incorporates both pre-
dictive and reactive mechanisms, rather than simply relying on
static thresholds. To improve performance, we maintain load
balancing among the disk arrays that are currently spinningby
access request re-direction. Fordownshifts(for energy saving),
we makepredictionsbased on past historical information. For
upshifts(for performance guarantees), we utilizereactive in-
formation in order to respond to any performance degradation
quickly. As a basis for these, FREP provides a replication
strategy (and its associated functions). We believe that FREP
is an important tool for achievingenergy proportionalityin
storage systems. Our main contributions include the following:

• We present basic functions and strategies for FREP
energy management, including replication strategy, load
distribution, and update consistency.

• We present a prediction model based on past historical
observations with de Bruijn graphs [14] to enable proba-
bilistic decisions. In addition, we present our constraint-
based gear-shift mechanism, by which FREP can shift
gears for energy management.

• We provide extensive evaluation results with a diverse set
of traces, including two Cello99 traces [15] 6-month apart
from each other, two OLTP traces [16], and synthetic
traces with different workload characteristics.

• We also show that our gear-shift mechanism can be used
to enhance PARAID-type systems in terms of energy
management with performance guarantees.

The paper is organized as follows. In Section II, we discuss
some related work on energy management in datacenters. In
Section III, we introduce the FREP replication strategy, and
a series of functions for I/O service and energy management
in such a replicated environment. Our prediction model with
de Bruijn graphs is introduced in Section IV, where the FREP
gear-shift mechanism based on the prediction model is also
described. Our extensive experimental results with several
workload sets are presented in Section V. Conclusions and
some directions for future work are presented in Section VI.

II. RELATED WORK

Our work is inspired by Power-aware RAID (PARAID) [5]
which was the first work to introduce the concept of gear-
shifting based on system load as reconfiguration. It provides
a replication strategy, called skewed striping, for disk energy
management without service disruption. The main difference
is that, PARAID shifts gears within a RAID unit by spinning
up/down one or more disks in the array, while we do it across
multiple RAID arrays. Another difference is the conditions
leading to a gear-shift. PARAID relies on disk utilization to
make its gear-shift decisions, while FREP monitors the degree
of SLA satisfaction for reconfiguration.



Lang et al. [12] used mirroring for disk energy management.
Traditionally, mirroring gives two options — running all the
disks (100%) or half of disks (50%). The authors present
gradual disk power control combined with load balancing
techniques by using a new replication strategy, called chained
declustering. Although this new technique provides more
flexibility, energy saving is still limited to 50%, since at
most 50% of the disks can be spun down. However in real
systems the degree of load variation can be more dramatic.
For example, in [17], the authors observed a high degree of
load variation (over a factor of three) in a commercial web site.
Since datacenters usually tend to over provision resourcesto
satisfy peak loads, there may be many opportunities to save
energy by factors much greater than 50%.

Similar to our approach, Rabbit [18] provides a skewed data
placement strategy for energy proportionality in a MapReduce
type cluster. For a dataset withB blocks, the primary replica is
spread evenly among the firstp nodes (B/p blocks per node).
The rest of the nodes hold the remainingr− 1 replicas where
a node with indexi (i > p ) holdingB/i blocks. The number
of nodes (s) needed to hold ther − 1 non-primary replicas
satisfiess ≥ per−1. Rabbit provides energy proportionality by
allowing one-by-one deactivation of nodes along an expansion
chain. Each dataset may have its own expansion chain. In
power saving mode, a load-balancing algorithm ensures that
data accesses are distributed evenly among the active nodes
even though their data load is highly skewed. While sharing
some similarities with FREP in terms of skewed replication
and energy proportionality, there are also some differences
between the two techniques. FREP is designed to be used in
large datacenters where performance requirements are often
dictated by service level agreements (SLA). For that reason,
one of the main concerns of FREP is to save energy while
satisfying these SLAs. This is done by observing workloads
and SLA violations and then adjusting the number of active
disks using probabilistic prediction heuristics. Rabbit does not
employ such mechanisms. FREP also provides some more im-
plementation details such as analysis of storage requirements
for replication and the determination of a feasible range of
values for the number of primary nodes. Another important
difference is that in Rabbit the number of nodes holding
additional replicas grows exponentially and also depends on
p (i.e., the number of primary nodes), while FREP is more
flexible and does not impose such restrictions.

Although energy management is a crucial problem for
datacenters, performance guarantees may be even more im-
portant. Hence, energy management needs to be performed
within acceptable performance bounds. As pointed out in [19],
simple dynamic energy management techniques, such as
timeout-based disk spin-down may pay significant perfor-
mance penalty. This makes administrators of datacenters re-
luctant to employ such approaches in these cases where
system performance is a crucial requirement. To provide
energy saving within a controlled performance environment,
several research works have taken system SLAs into account.
Hibernator [7] employs response time constraint, and considers

an optimization problem to minimize energy subject to a given
constraint. Similarly, eRAID [13] uses a response time con-
straint in addition to a system throughput constraint for their
energy saving problem. However, we observed that average
response times can experience a very high degree of variance,
sometimes exceeding three orders of magnitude. Elnozahy et
al. [20] employ a “percentile-based response time” to specify
the performance constraint for Web servers. In this work, we
also employ this to define system SLAs.

Both static and dynamic techniques have been studied for
workload-adaptive energy management. A well known static
technique, which we call2-competitivealgorithm [4], is based
on transitioning the disk to sleep mode whenever it experiences
a period of inactivity greater thanβ

Pτ

whereβ is the energy
penalty (in Joules) for having to serve a request while the
disk is in sleep mode (i.e., spinning the disk down and then
spinning it up in order to serve a request) andPτ is the rate of
energy consumption of the disk (in Watts) when spinning. This
technique does not attempt to predict the workload and may
sometimes lead to unstable performance. Dynamic techniques
include employing a multiple set of “experts” [21], [22].
In [21], a set of timeout values are combined to determine
the next idleness timeout based on associated weights varied
over time, based on the past history. In [22], rather than
using an aggregated result, one expert is chosen for energy
management, whenever needed, based on the weight values.
In updating weight values, this work considered both energy
saving and response time latencies. Chung et al. [23] estab-
lished Markov chains for dynamic energy management, and
calculated state transition probabilities based on observations
for non-stationary workloads. Energy management actions are
determined based on the probabilities. Our prediction model is
also probabilistic and refers to past observations for workload
adaptability. In fact, the de Bruijn graph used by FREP
(Section IV) corresponds to a special type of Markov chain.

III. T HE FREP SYSTEM MODEL

We are particularly interested inread-many, write-rareen-
vironments, as many datacenters use write off-loading [24]or
Log Structured Files techniques [25] to batch together write
transactions and minimize their effect on power consumption.

FREP manages power states on the basis of a group of disks
(e.g., a RAID array). In other words, a group of disks (which
form a RAID array) are transitioned together to eitherstandby
or activestate in the course of energy management. We assume
that the entire disks in a group are either in a standby state
(non-spinning), or they are all spinning in the active state.1

Formally, we definenode as an array of disks managed
together with respect to energy management. Thus, a node is a
collection of disks and there is no disk sharing between nodes.
For example, a node can be a RAID-5 array that includes data
and parity disks. For scalability, a large storage system can be
divided into multiple disjointpartitions, each of which consists

1We interchangeably use “standby/active”, “spun-down/spun-up”, and
“powered-off/powered-on” for disk array state.



TABLE I
NOTATION

Symbol Description
Ni A node with indexi (Ni ∈ N )
Di Original data forNi

Di(
a

b
) a/b fraction of Di

Vi Storage volume ofNi

Wi Replica storage forNi

n Total number of nodes (= |N |)
m Number of CS nodes
n−m Number of non-CS nodes
w Number of active nodes
n− w Number of standby nodes
C Storage capacity
ρ Storage utilization
Li(w) Load for nodei with w active nodes
LIF Load imbalance factor;LIF = 0 means

balanced load
R(p) p-% response time in ascending order in a

time frame
p threshold minimal probability for satisfying down-shift

condition

of its own set of participating nodes. In the rest of this paper,
all functions for energy management and analysis refer to a
single partition. A partition of a storage system consists of a
set of nodesN = {Ni}. We distinguish between two classes
of nodes: Covering Set (CS) nodes that are always spinning
and contain between them a copy of each data item in the
partition, andnon-CSnodes that can change their power states
for energy management purposes. For ease of exposition, we
assumen nodes in total, where the firstm (1 ≤ m < n) nodes
with the lowest indexes are CS nodes, i.e.,{N1, N2, .., Nm},
and the rest are non-CS nodes, i.e.,{Nm+1, Nm+2, .., Nn}.
Table I summarizes notations used in this paper.

FREP reconfigures the system based on the current work-
load, we also call this process “gear-shift”, from the entire
set of nodes active (the highest gear level) to only the CS
nodes active (the lowest gear level). Naturally, the lower
the gear level, the greater energy saving can be achieved.
Figure 2 illustrates our gear-shift model, from the lowest gear
level to the highest gear level. In the figure, filled nodes are
active, whereas non-filled nodes are standby. In the lowest
gear level, only CS nodes are active (disks associated with
CS nodes are spinning) while at the highest gear level all the
nodes are active. As explained later, for any node in standby
mode, all requests to its data are redirected and serviced (in a
balanced fashion) by other active nodes that hold an associated
replica. Our replication enables continuous service regardless
of energy management with minimal storage requirement, as
discussed in the next section.

Figure 3 shows an example of a storage system with
multiple partitions with different configurations. As shown
in the figure, each partition can be configured with different
number of CS and non-CS nodes. As mentioned, our energy
management functions are effective within a partition.

Fig. 2. FREP gear-shift model:Gear-shift is based on current workload. At
highest gear level, all nodes are active (best performance),at lowest gear level
only a fraction of the nodes (CS nodes) are active (greatest energy saving).
Filled and empty nodes denote active and standby nodes respectively.

Fig. 3. FREP partitions

A. Replication strategy

The main idea behind FREP is to utilize data replication
in order to avoid performance penalties. We will show that
our replication scheme can achieve continuous data availability
even in energy saving mode. On the other hand, energy man-
agement without replication usually causes severe latencies
because of the need to spin up disks from standby node, an
operation that can take tens of seconds to get back to service
(hence unacceptable to datacenters in general). For example, as
shown in the evaluation section, a simple energy management
technique based on the2-competitive algorithm[4] mentioned
earlier, may sometimes incur response time penalty causing
performance degradation by a factor of 10.

Next we outline the general structure of our replication
scheme. We assume that before replication is introduced each
nodeNi has some original data denoted byDi. We denote
by, Di(

a
b
) an a/b fraction ofDi. After replication each node

will hold some replicated data in addition to its original data
as follows: (a) Each CS node gets an equal fraction of the
replicated data from each non-CS node; (b) For fault tolerance
and load balancing purposes, non-CS nodes maintain replicas
of original data associated with CS nodes. Again, each non-CS
node gets an equal fraction of the replicated data from each
CS node; (c) Non-CS nodes keep replicas of original data
(Di’s) from specific other non-CS nodes in a skewed way as
explained later. We call cases (a) and (b)balanced-replication
and (c)skewed-replication.

Figure 4 illustrates an example of our replication scheme
with 6 nodes (in a partition), two of which are CS nodes.



CS nodes non-CS nodes
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Fig. 4. FREP replication scheme with 6 nodes

Since there are two CS nodes in this setting, they each keep a
disjoint half of non-CS node data. Non-CS nodes also maintain
disjoint replicas of CS node data. As there are four such nodes
each gets a disjoint quarter of the data. This replication isdone
strictly for fault tolerance and performance as will be discussed
in Section III-F. In addition, non-CS nodes maintain a part of
other non-CS node replicas based on the gear-shift principle.
The replication between non-CS nodes helps to distribute the
request load in energy saving mode (i.e., a non-highest gear
level).

We next explain the skewed-replication, the replication
scheme used between non-CS nodes. The original dataDi of
a non-CS nodeNi (i > m+1) are replicated equally to other
non-CS nodes with lower indexes, i.e.,Nj for m+1 ≤ j < i,
in a random and disjoint fashion. This is done as follows.
For eachj for (m + 1 ≤ j < i), we randomly select 1

i−1 of
the blocks ofDi (original data of non-CS nodeNi) without
replacement, and copy them to nodeNj .

B. Storage requirements

We denote the storage requirement for replicas at each node
by Wi. Let Vi be the size in bytes ofDi, i.e., the data volume
of Ni. The following equation shows the storage requirement
for replicated data on each node.

Wi =











∑n
k=m+1 Vk/m if 1 ≤ i ≤ m;

∑m
k=1 Vk/(n−m) if i = n;

Wi+1 + Vi+1/i otherwise.

(1)

In the equation, the first case is for CS nodes, and the second
case is for the last non-CS nodeNn. These nodes only hold
replication data resulting from balanced-replications. The third
case is a recursive expression for the storage requirements
resulting from the skewed-replication for non-CS nodes de-
scribed above (except for non-CS nodeNn).

We next discuss the total storage requirement for FREP.
For simplicity, from now on, we assume that each node holds
the same volume of original data, i.e.,∀Ni Vi = V , so
that the total storage for original data isnV . Clearly storage
requirements are at least2nV as each item is replicated at least
once, the next proposition shows that it is less than3nV .

Proposition 3.1:The total storage requirementW for FREP
is W ≈ 3nV −mV (1 + ln n

m
).

Proof: Since CS nodes maintain a whole replica for non-
CS nodes and non-CS nodes also maintain a whole copy for

CS nodes,W = 2nV + α, whereα is the storage require-
ment for skewed-replication (i.e., replication between non-CS
nodes). For each non-CS nodeNi, the storage requirement
for its replica is i−(m+1)

i−1 · V , for i ≥ m + 1, and hence, the
additional storageα is,

α =

n
∑

k=m+1

k − (m+ 1)

k − 1
· V = V

n−1
∑

k=m

k −m

k

= V

[

n−1
∑

k=m

1 −m
n−1
∑

k=m

1

k

]

(2)

For a harmonic numberHn−1 =
∑n−1

k=1
1
k

, it is approximate
to Hn−1 ≈ lnn + γ, where γ is Euler’s constant. Hence,
∑n−1

k=m
1
k

=
∑n−1

k=1
1
k
−

∑m−1
k=1

1
k

= Hn−1 −Hm−1 ≈ lnn +
γ − (lnm+ γ) = ln n

m
.

α ≈ V
[

n−m−m ln
n

m

]

= V
[

n−m(1 + ln
n

m
)
]

(3)

Therefore, the maximum storage requirementW is:

W = 2nV + α ≈ 3nV −mV (1 + ln
n

m
) (4)

Now, let us consider possible CS/non-CS node configura-
tions from the storage perspective. For simplicity, we assume
that all disks in a partition have an equal disk capacityC.

Proposition 3.2:The number of CS nodesm is bounded
by: ρn ≤ m ≤ m∗, whereρ is storage utilization andm∗ is the
largestm that satisfies the inequality:1+ m

n−m
+ln

(

n
m+1

)

≤
1
ρ
.

Proof: We first derive the minimum number of CS nodes
(mmin). Any CS node needs to keep (i) its own copy, and (ii)
replicas for non-CS node. By assumption, (i) =ρC, and (ii) =
ρC · n−m

m
. This cannot not exceed the capacityC. Therefore,

ρC +
ρC(n−m)

m
≤ C

ρn ≤ m (5)

To obtain the maximum number of CS nodes (mmax),
we can conversely consider the minimum number of non-
CS nodes (omin) that are required for replication. Then,
mmax = n − omin. Among non-CS nodes,Nm+1 requires
maintaining the largest space for replication, and hence,omin

depends on the space availability ofNm+1. Nm+1 maintains
(1) its own copy, (ii) CS node replicas, and (iii) non-CS nodes
replicas. We can simply compute that (i) =ρC and (ii) =
ρC · m

n−m
and (iii) = ρC( 1

m+1 +...+ 1
n−1 ) = ρC

∑n−1
k=m+1

1
k

=
Hn−1 −Hm ≈ ρC ln n

m+1 .
Since the summation of (1)+(ii)+(iii) should be less thanC,

we obtain:

ρC + ρC ·
m

n−m
+ ρC · ln

(

n

m+ 1

)

≤ C

1 +
m

n−m
+ ln

(

n

m+ 1

)

≤
1

ρ
(6)
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Fig. 5. Constraints on the number of CS nodes: Based on the constraints
ρn ≤ m ≤ m∗ (Proposition 3.2), it is possible to compute the min/max
number of CS nodes for any configuration.

We definem∗ as the maximumm that satisfies Equation 6.
Combining it with Equation 5, finally,

ρn ≤ m ≤ m∗ (7)

Figure 5 shows an example for possible min/max number
of CS nodes for a system withn = 100 andρ = 0.2. In the
figure, the minimum required number of CS nodes is 20 and
the maximum is 79. In other words, the number of CS nodes
cannot be smaller than 20 or greater than 79 to successfully
accommodate the FREP replication. From the perspective
of energy management, the maximum energy saving can be
obtained up to 80% (i.e.,1− 20

100 ) with the minimal CS node
setting in this example.

C. Load distribution

We next discuss the impact of energy management on load
balancing and how we distribute the load to active nodes by
taking advantage of the replication. In FREP, active nodes
take up load from standby nodes, based on the location of
replicas (the details on implementation of request redirection
for standby nodes are described in Section III-E). For example,
in Figure 4, nodesN1–N5 service requests forN6 whenN6

is in standby, since they haveN6 replicas. Similarly, when
N5 transitions to standby,N1–N4 take upN5 load evenly.
Figure 6 shows an example of load distribution as a function
of the number of active nodes (w). For simplicity, we assume
that the load generated by accessing the original data in each
node is uniform and normalize it to 1 (i.e., load=1). Note that
numbers in parentheses in the figure represent the adjusted
load achieved by our optimization algorithm to mitigate load
imbalance between CS and non-CS nodes. We will discuss it
later in this section.

Next we show how to compute the load for each node based
on the number of active nodes. LetLi(w) be the load for node
i where the number of active nodes isw (m ≤ w ≤ n). By
definition,Li(w = n) = 1 and

∑

i Li(w) = n. We can then
compute load as follows:

Li(w) =











0 if i > w;

Li(w + 1) + 1/w if m < i ≤ w;

1 +
P

n

k=w+1
(1−w−m

k−1
)

m
otherwise.

(8)

CS nodes non-CS nodes
w N1 N2 N3 N4 N5 N6

6 1 1 1 1 1 1
5 1.2 1.2 1.2 1.2 1.2 —
4 1.55 (1.5) 1.55 (1.5) 1.45 (1.5) 1.45 (1.5) — —
3 2.11 (2) 2.11 (2) 1.78 (2) — — —
2 3 3 — — — —

Fig. 6. Example of load distribution: This example shows load before and
after (in parenthesis) optimization, as a function of the number of active nodes
(w). With a lower gear, CS nodes have greater load than non-CS active nodes.
This can be mitigated by our optimization with probabilistic redirection.

In Equation 8, the first case is for standby nodes, and thus
the load is necessarily zero. The second case is for active non-
CS nodes, and can be defined recursively with the newly in-
troduced load at every node spin-down (1/w). Alternatively, it
can be defined (non-recursively) asLi(w) = 1+

∑n
k=w+1

1
k−1 .

The last case is for CS nodes. Since each active non-CS node
takes

∑n
k=w+1

1
k−1 load from standby nodes, the rest of the

load on standby nodes which is equal to
∑n

k=w+1(1−
w−m
k−1 )

should be handled by CS nodes. Therefore, each CS node takes
P

n

k=w+1
(1−w−m

k−1
)

m
in addition to its own load (i.e., 1).

In Figure 6, we see some degree of load imbalance between
CS and non-CS nodes, as non-CS nodes transition standby.
This is the inherent characteristic of our load distribution
algorithm. More accurately, we define a metricload imbalance
factor (LIF) to express how the load deviates from the ideal
balanced state:LIF = given load − balanced load. Thus,
LIF > 0 means over-loaded, whileLIF < 0 means under-
loaded andLIF = 0 indicates perfect load balance.LIFi(w)
representsLIF for nodei where the number of active nodes is
w. Hence,LIF can be expressed asLIFi(w) = Li(w)−n/w,
sincen/w is the ideal balanced load. Figure 7 showsLIF for
CS nodes varying with the number of active nodes in a system
with n = 100 andm = 20. We can see that load is balanced
for the two extremes, i.e.,w = m or w = n. In between these
extremes, we see some degree of load imbalance in the figure.

We now present an optimization technique to reduceLIF
for CS nodes, thus bringing the system closer to a balanced
state. The basic idea is to have non-CS nodes service CS node
load based on replicated data they maintain. To achieve this,
it is possible to redirect requests accessing CS node data to
any active non-CS nodes probabilistically if the corresponding
replicas are kept in such active non-CS nodes. In our optimiza-
tion, we compute the redirection probability (θ) as follows:

θ = min

(

1,

∑m
k=1 LIFk(w)

m
×
n−m

w −m

)

(9)

In the equation,
P

m

k=1
LIFk(w)

m
is simply LIF1(w), since

each CS node has the sameLIF .
The intuition behind this is to redirect requests for any CS

node data more aggressively if either theLIF for CS node
is greater or the number of active non-CS nodes are smaller
(or both). For any request accessing CS node data, we can
probabilistically redirect the request based on the computed θ
but only if any of active non-CS nodes keeps the replica. For
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example, supposeθ = 0.5 and active non-CS nodes keep1/2
of CS node replicas. In that case, 50% requests to CS node
data can be redirected to non-CS nodes (probabilistically), but
50% of them can actually be serviced by active non-CS nodes.
Consequently, it can reduce CS node load by 0.25. Figure 7
showsLIF for CS nodes with and without the optimization
in a system withn = 100 and m = 20. We can see that
our optimization can significantly mitigate load imbalance
compared to the basic one. Except for states with fairly small
number of active non-CS nodes (less than 50 in the graph),
load is almost balanced for active nodes.

D. Update consistency

Since our focus is more onread-dominantenvironments,
FREP provides simplified functionality for new writes and
update consistency. The main principle for writes is that we
redirect write requests for data on standby non-CS nodes to
the replica held on CS nodes, and perform synchronization
later in the reorganization phase(discussed below). Hence,
the basic idea is similar to write off-loading [24], in which
all writes to powered-off disks are redirected to other disks
temporarily. This can slightly increase the load on CS nodes,
but we assume write requests occur infrequently.

More specifically, for an update request to a block ofDi

residing onNi (the node holding the updated block), if all
replicas ofDi are on active nodes, all of them are updated.
Otherwise (i.e., if one or more of the nodes holding replicas
of Di is standby), FREP off-loads the updated block to the
CS node holding its replica, and the updated block inDi

is marked asstale (in the meta data) to prevent subsequent
accesses. For new writes onDi, we distinguish between two
cases (a) a new write to a CS node and (b) a non-CS node. In
case (a), we write it onNi. We then randomly select a non-
CS nodeNj . If Nj is active, we write the new block on it;
otherwise, we mark the appropriate block onNj as stale for
later synchronization. In case (b), ifNi is active, the new block
is added toDi and replicated based on our replication scheme
(described in Section III-A); otherwise, one of CS nodes is
randomly selected, the new block is off-loaded to it, and the
block onNi is then markedstale for later synchronization.
The off-loaded information can also be duplicated to another
separate place (e.g., a centralized cache) to handle unexpected
CS node failures, and cleared whenever reorganization is done.

Fig. 8. FREP mapping table: The mapping entry includes: (1) tworeplica
addresses, one for non-CS node and the other for CS node; and (2) a flag to
indicate staleness.

Whenever the gear goes up to the highest level (i.e.,
performance mode), a backgroundreorganizationprocess is
scheduled. That is, any subsequent down-shift condition en-
ables reorganization to be executed. During the reorganization,
down-shift is postponed. In this phase, all stale blocks in non-
CS nodes are synchronized with the corresponding copies of
CS nodes. New blocks that are off-loaded in CS nodes are
also copied to non-CS nodes, and replication takes place using
our skewed-replicationscheme, as discussed in Section III-A.
After completing reorganization, the gear is then shifted down
if the down-shift condition is still in effect. In case an up-
shift condition arises in the course of reorganization, it will
take priority over it, and the system will resume reorganization
when a down-shift event occurs.

E. Request redirection

In this section, we describe data structure for meta informa-
tion and an algorithm for request redirection for reads, since
we discussed request redirection for load distribution andwrite
procedures in the above two sections.

To enable request redirection, FREP maintains a mapping
table, as shown in Figure 8. When a read request arrives and
the original data block is located in a standby (or failed) node,
FREP first refers to the mapping table. For each data block,
the associated mapping table entry contains replica addresses
in a non-CS node (NRA) and a CS node (CRA), in addition to
a flag indicating update history (stale, clean, empty, etc). For
a block inDi (i > m), the associated NRA can benull, but
CRA should not benull. For a block residing inDi (i ≤ m),
in contrast, the associated NRA should not benull, while CRA
is null.

Algorithm 1 illustrates how the read request is mapped. If
the node indicated by OBA is active, it is not redirected, and
serviced based on the OBA. If the node is not active, we check
the type of node. For a CS node, the request is redirected to
a non-CS node based on the associated NRA. For a non-CS
node, the stale bit is checked, and then it is redirected to CRA
if stale, or to NRA otherwise.

We consider the stripe size for the block size in the mapping
table. If the system is configured with 146 GB disks, 128



Input : Requestr
1 if node(OBA) is activethen
2 Read a block fromOBA;
3 end
4 else
5 Entry e← MappingTable.get(r.address);
6 if node(OBA) is a CS nodethen
7 Read block frome.NRA;
8 end
9 else if e.flag = STALE then

10 Read a block frome.CRA;
11 end
12 else
13 Read a block frome.NRA;
14 end
15 end

Algorithm 1: Request mapping

KB for stripe size, and 24 nodes (this is our experimental
configuration with 120 disks in Section V), the required
amount of storage is less than 230 MB for the mapping
table.2 Since server clusters is typically configured with large
memory (as large as tens of GBs), the mapping table can be
accommodated in the main memory.

F. Fault tolerance

The storage system in many datacenters consists of RAID
arrays. We therefore assume each node is a RAID group of
disks, and thus, most disk failures can be handled by the
RAID fault tolerance functions. For failures that cannot be
dealt with by RAID functions, FREP immediately stops energy
management functions, and standby nodes are spun up. If a
failed node is a non-CS node, all requests to it are redirected
to CS nodes (similar to the case when it is in standby). In the
case of CS node failure, non-CS nodes take over all requests to
that CS node, since non-CS nodes maintain CS node replicas
(as seen in Figure 4). In that case, load for non-CS nodes is
1+ 1

(n−m) , while active CS nodes have load 1. As mentioned,
off-loaded information can be cached to a separate location,
and the information can be used for synchronization in case
of CS node failure.

IV. GEAR-SHIFT MECHANISM

FREP shifts gears for energy management, and as a result,
its energy benefits and response time performance critically
rely on the gear-switch mechanism. In this section, we present
our gear-switch mechanism.

A. Service constraints

Our main goal in designing gear-switching mechanism is
to maximize energy benefits, such that the system SLA is
met. There are various SLA metrics in the literature. Average
response time is one typical example [7], [13]. However, in
real life trace logs we observed a high degree of variation for
this metric (Cello99). As shown in Figure 9, variation of over

2We compute this with 8-byte mapping entry size: NRA(31 bits), CRA
(31 bits), flag (2 bit), and node# (7 bits) and Block# (24 bits)in the address
format.
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3 orders of magnitude is possible. The figure plots average
response time observed with different window sizes from 1
minute to 1 hour. Even with a large time window, we can
still see drastic changes across time. Such a high degree of
variation makes it difficult to use this metric in defining system
SLAs For this reason, we alternatively considerpercentilefor
system SLAs.

Percentile is widely employed in definitions of system
SLAs. For example,availability requirement (for data, node,
etc) is often defined withx-nines, wherex-nines refers to
the number of ‘9’ in percentile value. Thus,5-nines refers
to 99.999% availability. In this paper, we use percentile of
request response time for the system SLA. For instance, we
can specify a service constraint: “99% of requests should
be serviced within 500 msec.” This is a safer metric than
average response time, particularly for such environmentswith
a high degree of variations, in which only smaller number of
delayed completions can critically affect the aggregated result.
Formally, a system SLA is defined:

SLA : R(p) ≤ τ (10)

Here, p is a percentile,R(p) is p-% response time in
ascending order (observed in a given time interval), andτ is
the response time constraint. Thus, we need to provide values
for p andτ to specify an SLA. With the specified SLA, FREP
checks whetherp-% requests lie withinτ . For this, FREP uses
a predictive approach, and makes gear-shift decisions based on
prediction. Before discussing our prediction model, we first
discuss workload diversity with real and synthetic traces,and
then continue to discuss our prediction model based on de
Bruijn graphs.

B. Sensitivity to Workload Characteristics

Workload characteristics can be widely different for systems
or even in a single system over time. Figure 10 compares
request arrival rates from two traces, a Cello99 trace and
an OLTP trace, each of which is from HP Storage Research
Lab [15] and University of Massachusetts [16], respectively.
We call these traces “Cello99” and “umass”. The details of
workload traces used in this paper are described in Section V.
As can be seen in the figure, the traces have fairly distinctive
patterns. The Cello99 trace looks highly bursty going over
to 1,000 requests in a second, while the umass trace is
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relatively uniform moving up and down between arrival rate
0 to 200 per second over time. Another recent observation
also reported significant I/O workload differences for server
systems, including mail, web, and file servers [26].

Figure 11 shows disk idle time distributions for the two
traces described above and three new synthetic traces, eachof
which has an exponential distribution withµ=6ms,µ=20ms,
and µ=50ms, respectively, for inter-arrival time. The first
two synthetic traces were characterized in Hibernator [7] for
OLTP workload (µ=6ms) and Cello99 workload (µ=20ms).
We additionally create the third synthetic trace to represent a
relatively light workload. Note that inter-arrival time for our
cello trace is 29 ms, and for the umass trace is 8 ms. We
assume that the disk isidle if it does not perform any action
over 10 seconds.Here,TBE refers tobreak-even time, a time
interval where the energy consumption in idle mode is equal
to the sum of energy for disk spin-down, standby, and spin-up,
and is computed based on our disk model used in Section V.

In the figure, the Cello99 trace shows a heavy tail, indicating
some devices experienced very long idle times. The umass
trace looks similar to Cello99, but shows a slightly shorter
tail. The synthetic traces show relatively short lengths ofidle
times and non-heavy tails compared to the real-world traces,
and provide lesser opportunities for energy savings for the
2-competitive algorithm (which is based on a fixed idleness
threshold). One interesting observation is that the synthetic
trace withµ=50ms shows smaller opportunities than the real
traces despite heavier arrival rates. These observations suggest
that in order to get better results, we need energy savings
strategies that consider workload characteristics.

Variations in workload characteristics indicates that static
techniques should be ruled out. For example, if we simply
apply the 2-competitive algorithm for the synthetic traces
(particulary for the first two synthetic traces), there willbe
severe performance and energy penalties. Although the static
parameters can be tuned for each workload, it is usually
difficult to capture workload characteristicsa priori. A pre-
dictive approach can be an option for dynamic adaptation to
different workload characteristics. In this paper, we consider
a predictive approach based onprobability that is constructed
based on past observations, as discussed next.
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Fig. 12. A de Bruijn graph: 3 bits and 8 states in the graph.

C. Prediction with de Bruijn graphs

We use “state-based” predictors to probabilistically predict
future states by using a de Bruijn graph. In a de Bruijn graph
with k bits, there exist2k states represented in binary, each of
which has 2 incoming edges and 2 outgoing edges [14]. For
each state, one of two events can take place ,0 or 1, based on
how the current state transitions to the next state along with
the corresponding outgoing edge. With this property, each state
tells us what has happened overk time frames. For example,
if the current state is ‘100’, there was1-event before 2 time
frames, followed by 2 consecutive0-events. Thus, we can
be aware that the most recent event was0-event. Figure 12
illustrates a 3-bit de Bruijn graph with 8 possible states. In
the figure, the current state is ’010’, and the next possible
state is either ’100’ or ’101’ according to the next event.

On a de Bruijn graph, we construct edge probabilities based
on historical information. To achieve this, each node has
two counters,c0 for the number of0-events andc1 for the
number of1-events. These counters are incremented based on
the corresponding event. Figure 13 shows a snapshot of the
counters for state ‘001’. Based on the counter values, edge
probabilities are computed, as shown in the figure.

By configuring max number of tickets (MaxTicket), it is
possible to limit the window length we wish to monitor. The
window length should be equivalent totime frame length×
MaxTicket, where time frame length is an observation interval,



Fig. 13. Counters in a de Bruijn node: Each de Bruijn node contains zero
and one counters (c0 andc1 respectively). Any successive event changes the
values of the counters, thus changing edge probabilities accordingly.

in which a single event (zero or one) is generated based on
the observation. If the total number of tickets is smaller than
MaxTicket, the counters are simply incremented according to
the event. After the total number of tickets reachesMaxTicket,
however, one ticket in a counter is transferred to the other
counter, instead of incrementing the counter. Thus, there will
be no change in the total number of tickets (=MaxTicket) after
this happens. In Figure 13, an0-event occurs, and we see that
a ticket in c1 is transferred toc0 and the probabilities are
recomputed accordingly. Note that the values of the counters
can be zero or a positive integer.

D. Gear-shift algorithm

Now, we present the FREP gear-shift algorithm. For down-
shift, FREP relies on the above prediction model, while it
uses a reactive model for up-shift. We first discuss how FREP
determines down-shift, and then discuss the case of up-shift.

FREP maintains a de Bruijn graph for each partition. To
construct edge probabilities, we assume a0-event happened
if the measured information meets the service constraint (e.g.,
99% of requests are less than 500 ms) in the time frame. On
the other hand, if the percentage of violations is greater than
the given percentile, we assume1-event happened. That is,

event =

{

0 if R(p) ≤ τ ;

1 otherwise.

To determine down-shift, we calculate the probability of
consecutivek zeros (i.e., the probability that the service
constraint will be met for the followingk time frames) at
the end of each time frame. If the computed probability is
greater than a certain threshold (orp threshold), we consider
that the down-shift condition is satisfied, and the node with
the highest index among active non-CS nodes will be sent to
standby mode. Naturally, no down-shift test is performed at
the lowest gear level.

For clarity, we formally describe this procedure as follows.
Let Si be statei in the graph configured withk bits. Hence,
there are max2k states, and we assume thati is the state
number; for exampleS0 indicates state ’000’, whileS7 is for
state ’111’. LetPi,0 be the probability of0-edge atSi, and
similarly Pi,1 be the probability of1-edge atSi. If we suppose
the current state isSa, the probability for consecutivek-zeros
means the probability of transition fromSa to S0, right after

k time frames. Then, the probabilityP is defined:

P =

k−1
∏

i=0

Pa≪i,0 (11)

Here, ‘≪’ is the bitwise shift-left operator. With the resulted
probability, we decide the gear level:

Gear =

{

Gear − 1 if P ≥ p threshold;

Gear otherwise.

We determinek (i.e., the number of bits in the graph) from
the break-even time (TBE). For a given time frame sizeTW ,
we set k = ⌈TBE/TW ⌉. The intuition behind this is that
there is no energy penalty if the followingk consecutive time
frames satisfy the service constraint. Prediction can sometimes
fail due to reasons such as a sudden change in workload
characteristic. In such a case, we give apenalty, and edge
probabilities are totally recomputed. With a penalty, all0-
counters in the graph are dropped by half of their original
values, and the corresponding number of tickets are transferred
to the associated1-counters. This decreases0-probabilities,
resulting in more conservative down-shift decisions thereafter.
For TW and p threshold, we explore the impact of those
parameters in Section V-E.

Making up-shift decisions relies onreactiveinformation. In
our mechanism, FREP immediately up-shifts the gear when-
ever it seesl consecutive misses against the service constraint,
so as to prevent undesired performance degradation. In this
paper, we usedl = 2 by default to prevent any impulsive
up-shift decision due to a temporal degradation. However,
l may have a certain correlation with time frame sizeTW .
Investigation of this would be interesting and planned for
future work. We may consider proactive up-shifts based on
probabilities as well, but we have not seen any advantages for
FREP.

V. EVALUATION OF FREP

In this section, we present our evaluation results. We first
focus on energy benefits (with relaxed constraints), and then
discuss performance guarantees (with tight constraints).Before
reporting our results, we describe our experimental setting and
methods in brief.

A. Experimental Setup

For evaluation, we augmented Disksim [27], which is
widely used for studying storage systems, with energy metrics.
We considered Seagate Cheetah 15K.5 enterprise disks.3 For
this disk model, however, some power information, such
as standby power and spin up/down power, is missing in
the associated documents. For this reason, we alternatively
chose power parameters from Seagate Barracuda specifica-
tion.4 Since the main purpose of our experiments here is to see
applicability of FREP in terms of both performance and power,

3http://www.seagate.com/www/en-us/products/enterprise-hard-
drives/cheetah-15k/

4http://www.seagate.com/support/disc/manuals/sata/100402371a.pdf



Fig. 14. Disk power model (from Seagate Barracuda 7200)

we believe that comparing FREP with existing techniques with
identical power parameters is a fair comparison. The power
model we used in this paper is shown in Figure 14.

We assumed a datacenter environment with 120 disks.
Although our model has no dependency on any specific RAID
organization, we used RAID-5 structure as a unit of energy
management where a RAID-5 array is a node in our termi-
nology. Each array has 4 data disks and 1 parity disk. Thus,
there are 24 RAID arrays in the system (i.e., 24 nodes). We
divided the system into 4 partitions, each of which consistsof
2 CS nodes and 4 non-CS nodes. However, we also conducted
experiments with different partition configurations in order to
examine configuration effects.

We used multiple traces, including real and synthetic work-
loads: 2 Cello99 traces from HP Storage Research Lab [15]: a
1-day trace on May 1st (labeled “cello-1”) and a 3-day trace
between November 15th–17th (labeled “cello-2”); 2 financial
traces provided by University of Massachusetts [16], theseare
labeled “umass-1” and “umass-2”, respectively. The average
inter-arrival time for Cello99 traces is 29.6 ms and 20.9 ms
for cello-1 and cello-2, while it is 8.2 ms and 11.1 ms for
umass-1 and umass-2, respectively.

To map the Cello99 traces to our configuration with 120
disks, we assumed that each disk in the traces is mapped into
a single RAID array. Thus, 24 disks in the traces are mapped
to 120 disks in 24 RAID arrays. The umass traces have no
disk information. To use these traces in our experiments, we
assumed that each application runs with a dedicated RAID
array. Similar to the Cello99 traces, umass requests are mapped
to RAID addresses.

We additionally created 9 synthetic workloads with differ-
ent characteristics, as summarized in Table II. In the table,
“exp(µ)” stands for exponential distribution with meanµ.
For example, exp(6) for arrival distribution represents an
exponential distribution withµ=6ms. The exp(6) and exp(20)
arrival rates were used in Hibernator [7], and we added
one more arrival distribution with exp(50) to consider an
environment with a relative light load . It is observed in the
literature that Internet data access patterns are related to a Zipf
distribution with skewnessα=1.0 [28]. In addition, the authors
in [29] observed more heavily skewed accesses withα=1.8.
We modeled synthetic traces based on those observations, in
addition to uniform access distribution.

TABLE II
SYNTHETIC TRACES

Trace # req. Arrival dist. Disk access dist. # block dist.
S11 1 M exp(6) uniform exp(20)
S12 1 M exp(20) uniform exp(20)
S13 1 M exp(50) uniform exp(20)
S21 1 M exp(6) Zipf(α=1.0) exp(20)
S22 1 M exp(20) Zipf(α=1.0) exp(20)
S23 1 M exp(50) Zipf(α=1.0) exp(20)
S31 1 M exp(6) Zipf(α=1.8) exp(20)
S32 1 M exp(20) Zipf(α=1.8) exp(20)
S33 1 M exp(50) Zipf(α=1.8) exp(20)

We evaluated 4 different systems: NPS (No Power Saving)
is a base system for comparison without energy management;
FTH (Fixed Threshold) is a system employing a fixed idleness
threshold based on the 2-competitive algorithm; PARAID(k, l)
is a PARAID configuration with a total ofl disks with gear
shifting down tok (thus, l − k disks can go standby); and
FREP(n,m) is an FREP configuration with a total ofn nodes
and m CS nodes in a partition. We set up two PARAID
systems (PARAID(5,3) and PARAID(5,2)) and multiple FREP
systems with different configurations, but mainly discuss the
FREP(6,2) configuration. Thus, there are 4 partitions for 24
nodes for FREP(6,2) setting. By definition, PARAID systems
can spin down disks with up to 40% (for PARAID(5,3)) and
60% (for PARAID(5,2)) of the total disks spun down, while
FREP(6,2) can spin down a maximum of 67% disks. We
observed that PARAID(5,1), that allows spinning down of up
to 80% disks, is severely degraded in terms of response time
performance. For example, PARAID(5,1) increased average
response time by a factor of 5 as compared to NPS with
cello-1 trace. We thus excluded this configuration from our
experiments.

As discussed in Section IV, FREP maintains de Bruijn
graphs for gear-switch decisions. For the graphs, we used 5-
second time frame (i.e.,TTF = 5s). Since we configure the
number of bits based on the break-even time (i.e., number
of bits = ⌈TBE/TTF ⌉), the graph is configured with 11 bits,
sinceTBE = 54s based on the power model (Figure 14). In
addition, we conservatively chosep threshold=0.9for down-
shift, and set consecutive miss counterl=2 for up-shift to
consider temporal performance degradation. We discuss the
effects of time frame size andp thresholdin Section V-E.

We first present experimental results under relaxed service
constraints to see the upper bound of energy benefits. After
then, we will show how well FREP performs energy manage-
ment satisfying the given service constraint.

B. Relaxed service constraints

As discussed, FREP makes gear-shift decisions under con-
sideration of service constraints. Here, we first considerre-
laxed constraints. To give a relaxed constraint, we reverse-
engineered NPS logs, then we set service constraints with
numbers greater than double of the numbers in the logs. For



example, 99% response time in the NPS results with cello-1 is
1,485 ms, and we used a number greater than2×1485 ms for
the 99% constraint for relaxation. Thus, FREP focuses more
on energy saving in this case.

Figure 15 compares those two metrics with the real traces.
Overall, FTH is fairly sensitive to workloads with respect
to energy saving, and it shows very poor response times
due to spin-up delays. PARAID and FREP consistently save
energy for different workloads. However, PARAID shows a
higher degree of variation in response time, while FREP shows
fairly stable results by adaptively shifting gears to the given
workload. Interestingly, we can see that FREP yields better
response time than NPS with the cello-2 trace. This can be
explained by the effect of request redirection. Bursty requests
to a single node can be smoothed out by redirecting them
to multiple nodes when FREP is operating in energy saving
mode.For the umass traces, FTH shows an average response
time of 77–173ms, while the others show quite negligible time
(< 4ms) for these non-bursty workloads.

Figure 16 shows the experimental results with a set of
synthetic workloads. With these traces, FTH could make 0%–
20% energy saving, but the mean response time is very poor.
Although not shown in the figure, mean response time in the
worst case was 389 ms forS33, which is 100 times greater
than NPS. The replication-based solutions (i.e., PARAID and
FREP) consistently yield significant energy saving with little
performance loss.

C. Tight service constraints

We next examine FREP under tight service constraints. We
assume the following three types of constraints, based on our
constraint model:R(p) ≤ τ , wherep is a percentile andτ is
a response time constraint.

• C1: (p = 90%) ∧ (τ = 90% NPS response time);
• C2: (p = 95%) ∧ (τ = 95% NPS response time);
• C3: (p = 99%) ∧ (τ = 99% NPS response time).

For comparison, we call relaxed constraintC0.
Figure 17 shows the experimental results under tight con-

straints. In the figure, P(n,m)≡ PARAID(n,m). We can
see that significant percentages of violations occurred for
PARAID in order to obtain energy benefits for all three
constraints. PARAID(5,2) shows heavy violations between
37%–57%. Even in the case of PARAID(5,3), the violations
were over 20% for those real-world traces. FTH also shows
some degree of violations greater than the constraints but
smaller than PARAID. In contrast, FREP largely satisfies the
given constraints. With tight constraints, FREP operates energy
management more conservatively. Nonetheless, we can see that
FREP still achieves non-trivial energy savings. FREP yields
15%–60% energy saving for the cello traces and 3%–15% for
the umass traces.The reason why FREP achieves relatively
greater energy saving with the cello traces is that they have
greater NPS response times as compared with the umass
traces. Thus, the service constraints for the umass workloads
are more restrictive and hence difficult to meet than these of
the cello workloads, leading to the results shown in the figure.

TABLE III
ENERGY SAVING RATES

FREP setting (4,1) (4,2) (6,1) (6,2) (6,3)
Theoretical max 75% 50% 83% 67% 50%

cello-1 68.4% 45.6% 75.9% 60.8% 45.6%
umass-1 68.2% 45.5% 75.3% 60.6% 45.5%

For example, the 99% of NPS response time for the one-day
cello trace is 1.4s, while for the umass-1 it is only 6ms.

Figure 18 shows the results with the synthetic traces forC3
constraints. FREP successfully maintains violation ratesto less
than the 1% constraint. However, it yields energy saving only
with skewed traces (i.e.,S31andS32). We found that skewed
access patterns provide more opportunities to save energy as
compared with uniform access patterns. The reason for that
is that with more skewness a smaller number of disks (and
therefore only some partitions) become more heavily utilized
allowing the remaining partitions to shift to lower gear thus
save more energy. Additionally, as explained before, the reason
why S31had the greatest power saving compared to the others
is because it had the greatest NPS response time and hence the
least restrictive constraint. For example, 99% NPS response
times we observed wereS31=15ms,S32=10ms,S33=8ms.

Summarizing, although energy benefits achieved by FREP
in this case may be reduced, it still provides strong perfor-
mance guarantees. We observed only a single case that slightly
exceeds the given constraint (5.4% for 5% requirement for
cello-1 C2) out of 21 experimental cases.

D. Impact of FREP partition configuration

In this experiment, we configured 4 additional FREP set-
tings with different numbers of nodes and CS nodes for each
partition: FREP(4,1), FREP(4,2), FREP(6,1), and FREP(6,2).

Figure 19 shows the experimental results with cello-1 under
different partition settings. We can see that FREP saves energy
from 40% to 76% compared to NPS. In terms of performance
penalty, defined as the ratio of the mean response time to the
NPS’s, it is only 14% at the worst case. Interestingly, 2 out
of 5 cases showed negative penalty, which implies that FREP
showed better response time than NPS. This is a result of
request redirection as discussed in Section V-B.

Table III summarizes energy saving rates to NPS in various
FREP configurations. As shown in the table, FREP exploits
replications, saving energy over 90% of the theoretical limits.
Theoretical max is simply computed directly from the config-
uration setting. For example, theoretical max for FREP(4,1)
is 75%, since 3 out of 4 nodes can be in the standby mode
at max. The mean response times were less than 86.2 ms for
cello-1 and less than 3.5 ms for umass-1, while NPS showed
75.7 ms and 0.9 ms, respectively.

E. Impact of time frame size and pthreshold

The time frame size (TW ) determines the number of bits
in the de Bruijn graph (= ⌈TBE/TW ⌉), while p threshold
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Fig. 15. Energy saving and average response time (real traces)
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Fig. 16. Energy saving and average response time (Synthetic traces)
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Fig. 17. Energy saving and performance guarantee under specified SLAs
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Fig. 18. Energy saving and performance guarantees (Synthetic traces)
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Fig. 19. Impact of FREP configurations with different number ofCS and non-CS nodes (cello-1)

(denoted byψ) enables probabilistic decisions for down-
shifting on the graph. A greaterTW requires less space
complexity for graph representation with smaller number of
bits. As mentioned, we usedTW = 5s, and thus, the number
of bits was 11. Additionally, we set up a graph withTW = 30s
resulting in three bits for the graph. With those time frame
sizes, we conducted experiments along differentp threshold
values fromψ = 0.1 to ψ = 0.9 incrementing by0.1 (we used
ψ = 0.9 by default) underC1.

Figure 20 shows the results. We compare the results of
the two time frame sizes. As expected, a smaller time frame
size yields greater energy saving, but worse response time.In
contrast, a greater time frame size makes more conservative
gear-shift decisions, thus yielding less energy saving butbetter
performance.

Choosing ap thresholdvalue largely affects both perfor-
mance and energy saving. Increasingp threshold gradually
reduces the level of energy saving due to more conservative
gear-shifts. With respect to performance, average response
time becomes stable asψ ≥ 0.8 for TW = 5. In the case
of TW = 30, ψ = 0.9 improves response time dramatically.
With less than that, there are no significant differences.

Turning our attention to the number of down-shifts. Natu-
rally, smallerp thresholdtends to make more down-shifts. We
observed 78 down-shifts withψ = 0.1 and 20 withψ = 0.9
in the setting ofTW = 5s. At the same time, the number of
down-shifts forTW = 30s was 496 withψ = 0.1 and 34 with
ψ = 0.9. As expected, this shows that a greater time frame size
(i.e., a smaller number of bits) makes more frequent gear-shift
decisions.
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Fig. 20. Impact of time frame size andp threshold(cello-1/C1): Running
with smaller time frame size results in more conservative energymanagement,
yielding lesser energy saving but better response time.p thresholdhas smaller
impact on smaller time frame size.

F. Impact of the number of tickets

It is possible to configureMaxTicket (i.e., the maximum
number of tickets) to set window size, since it limits the
number of observations used for edge probabilities on the de
Bruijn graph. Intuitively, any larger window may allow us to
construct a more accurate graph with many more observations
(due to a greater time length to collect), but may not be
helpful for frequently varying workloads over time (because
each observation has less impact on a larger collection of
observations). With a smaller window, in contrast, it can better
react to the recent workload characteristics.

Figure 21 shows the impact ofMaxTicketwith the cello-1
trace underC1, as in the above experiment. Overall, using
a small window achieves better energy saving but worse
performance, and vice versa. Thus,MaxTicketcan be adjusted
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based on system goals and the expected degree of workload
variations. The number of down-shifts observed was 179 with
MaxTicket = 720, while it was only 20 forMaxTicket =
∞ (used in the other experiments).

G. Applicability of the gear-shift mechanism

We observed a high degree of violations for PARAID
under tight constraints. This is due to the fact that PARAID
refers only to disk utilization for its gear switching, and it
is questionable whether disk utilization is directly relevant
to current load. For example, it can be underestimated due
to a high rate of cache hits, and gear-shift decisions can be
inadequate in this case because there may be a large number
of outstanding requests in the input queue.

Our gear-shift mechanism is based on prediction by learning
from the past history for better adaptability to workloads,and
we have seen that it provides performance guarantees for given
constraints. We applied this mechanism to PARAID and called
it “PARAID*”. The gear-switching operations were exactly
the same as the FREP’s. Figure 22 shows the PARAID*
results with the cello-1 trace. For this experiment, we used
two PARAID configurations, (5,2) and (5,3), with the three
constraints (C1–C3). We can see that PARAID* provides
fairly good performance guarantees, as well as energy savings.
This suggests that our gear-shift technique is applicable to
other systems with a gradual energy management function for
energy benefits with performance guarantees.

H. Evaluation of down-shift decisions

In this section we discuss the quality of gear shifting
decisions using our four workloads. In general, three main
approaches are employed in the literature for gear down-shift
decisions. MAID based products simply perform a down-shift
when the disk idle period exceeds some fixed threshold (FTH),
PARAID uses disk utilization thresholds, whereas FREP de-
termines when to perform a down-shift using probabilistic
prediction based on analysis of past historical events (by using
de Bruijn Graphs).

The advantage of using FREP’s de Bruijn graph prediction
is illustrated in Figure 15 where it is shown that FREP achieves
excellent energy savings while paying a minimal price in terms
of response time. Similarly, in Figures 17(b)–17(d) and 18(b),
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FREP consistently shows the smallest number of response time
constraint violations. In Figure 23, we analyze the qualityof
FREP’s predictions based on the percentage of down-shifts
that were penalized due to service constraint violations for the
four workloads. Recall that a penalty event occurs in FREP
if the service constraint is not met during a period of break-
even time right after the down-shift. Maximizing the number
of down-shifts is essential in order to maximize energy saving,
while at the same time we wish to minimize the number of
penalty events. As shown in the figure, prediction accuracies
are over 80% for most cases (C0 results show almost 100%
accuracy). However, we can see thatC2 and C3 for umass-2
have somewhat higher inaccuracy. Nonetheless, we have seen
that FREP successfully manages the performance level even
for umass-2, as shown in Figure 17. In the case of umass-2
C3, FREP reduced the number of down-shifts to 60% ofC0’s
(due to the penalties).

VI. CONCLUSION

Energy proportionality is one of key metrics for future
datacenters for both energy conservation and performance
guarantees. In this work, we presented a technique called
FREP (Fractional Replication for Energy Proportionality),
for energy management that enhances energy proportionality
in large datacenters. FREP includes a replication strategy
and basic functions to enable flexible energy management.
Specifically, our method provides performance guarantees by
adaptively controlling the power states of a group of disks
based on observed and predicted workloads. Our extensive
experimental results with a broad set of traces showed that
our energy management technique can achieve energy saving
of over 90% of theoretical limits with little performance
loss. With tight service constraints, we showed that FREP
satisfies service constraints in diverse settings. Future planned
work includes extending our data placement algorithm and
mathematical analysis for allowing variable replication factors
to different parts of the data based on their access frequencies.
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