
Assembly Language for Intel-Based

Computers, 4th Edition

Chapter 5: Procedures

Lecture 19: Procedures

 Procedure’s parameters

(c) Pearson Education, 2002. All rights reserved. You may modify and copy this slide show for your personal use, or for

use in the classroom, as long as this copyright statement, the author's name, and the title are not changed.

• Chapter corrections (Web) Assembly language sources (Web)

Slides prepared by Kip R. Irvine

Revision date: 08/22/2002

Modified by Dr. Nikolay Metodiev Sirakov

Kip R. Irvine

http://www.nuvisionmiami.com/books/asm/corrections.htm
http://www.nuvisionmiami.com/kip/asm.htm

Web site Examples March 31.2005, 3PM-4:15PM Irvine, Kip

R. Assembly Language for Intel-Based Computers, 2003.
2

Defining and Using Procedures

• Creating Procedures

• Documenting Procedures

• Example: SumOf Procedure

• CALL and RET Instructions

• Nested Procedure Calls

• Local and Global Labels

• Procedure Parameters

• Flowchart Symbols

• USES Operator

http://www.nuvisionmiami.com/books/asm
../../../../Masm615/Examples

Web site Examples March 31.2005, 3PM-4:15PM Irvine, Kip

R. Assembly Language for Intel-Based Computers, 2003.
3

Creating Procedures

• Large problems can be divided into smaller tasks to
make them more manageable

• A procedure is the ASM equivalent of a Java or C++
function

• Following is an assembly language procedure named
sample:

sample PROC

.

.

ret

sample ENDP

http://www.nuvisionmiami.com/books/asm
../../../../Masm615/Examples

Web site Examples March 31.2005, 3PM-4:15PM Irvine, Kip

R. Assembly Language for Intel-Based Computers, 2003.
4

Documenting Procedures

• A description of all tasks accomplished by the procedure.

• Receives: A list of input parameters; state their usage and

requirements.

• Returns: A description of values returned by the procedure.

• Requires: Optional list of requirements called preconditions that

must be satisfied before the procedure is called.

Suggested documentation for each procedure:

If a procedure is called without its preconditions having been

satisfied, the procedure's creator makes no promise that it will

work.

http://www.nuvisionmiami.com/books/asm
../../../../Masm615/Examples

Web site Examples March 31.2005, 3PM-4:15PM Irvine, Kip

R. Assembly Language for Intel-Based Computers, 2003.
5

Example: SumOf Procedure

;---

SumOf PROC

;

; Calculates and returns the sum of three 32-bit integers.

; Receives: EAX, EBX, ECX, the three integers. May be

; signed or unsigned.

; Returns: EAX = sum, and the status flags (Carry,

; Overflow, etc.) are changed.

; Requires: nothing

;---

add eax,ebx

add eax,ecx

ret

SumOf ENDP

http://www.nuvisionmiami.com/books/asm
../../../../Masm615/Examples

Web site Examples March 31.2005, 3PM-4:15PM Irvine, Kip

R. Assembly Language for Intel-Based Computers, 2003.
6

CALL and RET Instructions

• The CALL instruction calls a procedure

• pushes offset of next instruction on the stack

• copies the address of the called procedure into EIP

• The RET instruction returns from a procedure

• pops top of stack into EIP

http://www.nuvisionmiami.com/books/asm
../../../../Masm615/Examples

Web site Examples March 31.2005, 3PM-4:15PM Irvine, Kip

R. Assembly Language for Intel-Based Computers, 2003.
7

CALL-RET Example (1 of 2)

main PROC

00000020 call MySub

00000025 mov eax,ebx

.

.

main ENDP

MySub PROC

00000040 mov eax,edx

.

.

ret

MySub ENDP

0000025 is the offset of the

instruction immediately

following the CALL

instruction

00000040 is the offset of

the first instruction inside

MySub

http://www.nuvisionmiami.com/books/asm
../../../../Masm615/Examples

Web site Examples March 31.2005, 3PM-4:15PM Irvine, Kip

R. Assembly Language for Intel-Based Computers, 2003.
8

CALL-RET Example (2 of 2)

00000025 ESP

EIP

00000040
The CALL instruction

pushes 00000025 onto

the stack, and loads

00000040 into EIP

00000025 ESP

EIP

00000025The RET instruction

pops 00000025 from the

stack into EIP

http://www.nuvisionmiami.com/books/asm
../../../../Masm615/Examples

Web site Examples March 31.2005, 3PM-4:15PM Irvine, Kip

R. Assembly Language for Intel-Based Computers, 2003.
9

Nested Procedure Calls

main PROC

 .

 .

 call Sub1

 exit

main ENDP

Sub1 PROC

 .

 .

 call Sub2

 ret

Sub1 ENDP

Sub2 PROC

 .

 .

 call Sub3

 ret

Sub2 ENDP

Sub3 PROC

 .

 .

 ret

Sub3 ENDP

(ret to main)

(ret to Sub1)

(ret to Sub2) ESP

By the time Sub3 is called, the

stack contains all three return

addresses:

http://www.nuvisionmiami.com/books/asm
../../../../Masm615/Examples

Web site Examples March 31.2005, 3PM-4:15PM Irvine, Kip

R. Assembly Language for Intel-Based Computers, 2003.
10

Local and Global Labels

main PROC

 jmp L2 ; error!

L1:: ; global label

 exit

main ENDP

sub2 PROC

L2: ; local label

 jmp L1 ; ok

 ret

sub2 ENDP

A local label is visible only to statements inside the same

procedure. A global label is visible everywhere.

http://www.nuvisionmiami.com/books/asm
../../../../Masm615/Examples

Web site Examples March 31.2005, 3PM-4:15PM Irvine, Kip

R. Assembly Language for Intel-Based Computers, 2003.
11

Procedure Parameters (1 of 3)

• A good procedure might be usable in many

different programs

• but not if it refers to specific variable names

• Parameters help to make procedures flexible

because parameter values can change at runtime

http://www.nuvisionmiami.com/books/asm
../../../../Masm615/Examples

Web site Examples March 31.2005, 3PM-4:15PM Irvine, Kip

R. Assembly Language for Intel-Based Computers, 2003.
12

Procedure Parameters (2 of 3)

ArraySum PROC

mov esi,0 ; array index

mov eax,0 ; set the sum to zero

L1: add eax,myArray[esi] ; add each integer to sum

add esi,4 ; point to next integer

loop L1 ; repeat for array size

mov theSum,eax ; store the sum

 ret

ArraySum ENDP

The ArraySum procedure calculates the sum of an array. It

makes two references to specific variable names:

What if you wanted to calculate the sum of two or three

arrays within the same program?

http://www.nuvisionmiami.com/books/asm
../../../../Masm615/Examples

Web site Examples March 31.2005, 3PM-4:15PM Irvine, Kip

R. Assembly Language for Intel-Based Computers, 2003.
13

Procedure Parameters (3 of 3)

ArraySum PROC

; Receives: ESI points to an array of doublewords,

; ECX = number of array elements.

; Returns: EAX = sum

;---

mov eax,0 ; set the sum to zero

L1: add eax,[esi] ; add each integer to sum

add esi,4 ; point to next integer

loop L1 ; repeat for array size

 ret

ArraySum ENDP

This version of ArraySum returns the sum of any doubleword

array whose address is in ESI. The sum is returned in EAX:

http://www.nuvisionmiami.com/books/asm
../../../../Masm615/Examples

Web site Examples March 31.2005, 3PM-4:15PM Irvine, Kip

R. Assembly Language for Intel-Based Computers, 2003.
14

Flowchart Symbols

• The following symbols are the basic building blocks

of flowcharts:

begin / end

process (task)

decision
procedure

call

yes

no

manual input

display

(Includes two symbols not listed on page 166 of the book.)

http://www.nuvisionmiami.com/books/asm
../../../../Masm615/Examples

Web site Examples March 31.2005, 3PM-4:15PM Irvine, Kip

R. Assembly Language for Intel-Based Computers, 2003.
15

begin

push esi, ecx

eax = 0

add eax,[esi]

add esi, 4

CX > 0?

cx = cx - 1

yes

no

pop ecx, esi

end

ArraySum Procedure

 push esi

 push ecx

 mov eax,0

AS1:

 add eax,[esi]

 add esi,4

 loop AS1

 pop ecx

 pop esi

Flowchart for

the ArraySum

Procedure

http://www.nuvisionmiami.com/books/asm
../../../../Masm615/Examples

Web site Examples March 31.2005, 3PM-4:15PM Irvine, Kip

R. Assembly Language for Intel-Based Computers, 2003.
16

Your turn . . .

Draw a flowchart that expresses the following

pseudocode:

input exam grade from the user

if(grade > 70)

 display "Pass"

else

 display "Fail"

endif

http://www.nuvisionmiami.com/books/asm
../../../../Masm615/Examples

Web site Examples March 31.2005, 3PM-4:15PM Irvine, Kip

R. Assembly Language for Intel-Based Computers, 2003.
17

. . . (Solution) begin

grade > 70?

display "Pass"display "Fail"

end

input exam grade

yesno

http://www.nuvisionmiami.com/books/asm
../../../../Masm615/Examples

Web site Examples March 31.2005, 3PM-4:15PM Irvine, Kip

R. Assembly Language for Intel-Based Computers, 2003.
18

Your turn . . .

• Modify the flowchart in the previous slide to allow the

user to continue to input exam scores until a value of

–1 is entered

http://www.nuvisionmiami.com/books/asm
../../../../Masm615/Examples

Web site Examples March 31.2005, 3PM-4:15PM Irvine, Kip

R. Assembly Language for Intel-Based Computers, 2003.
19

USES Operator

• Lists the registers that will be saved

ArraySum PROC USES esi ecx

 mov eax,0 ; set the sum to zero

 etc.

MASM generates the following code:

ArraySum PROC

 push esi

 push ecx

 .

 .

 pop ecx

 pop esi

 ret

ArraySum ENDP

http://www.nuvisionmiami.com/books/asm
../../../../Masm615/Examples

Web site Examples March 31.2005, 3PM-4:15PM Irvine, Kip

R. Assembly Language for Intel-Based Computers, 2003.
20

When not to push a register

SumOf PROC ; sum of three integers

push eax ; 1

add eax,ebx ; 2

add eax,ecx ; 3

pop eax ; 4

ret

SumOf ENDP

The sum of the three registers is stored in EAX on line (3), but

the POP instruction replaces it with the starting value of EAX on

line (4):

http://www.nuvisionmiami.com/books/asm
../../../../Masm615/Examples

Web site Examples March 31.2005, 3PM-4:15PM Irvine, Kip

R. Assembly Language for Intel-Based Computers, 2003.
21

Program Design Using Procedures

• Top-Down Design (functional decomposition)

involves the following:

• design your program before starting to code

• break large tasks into smaller ones

• use a hierarchical structure based on procedure calls

• test individual procedures separately

http://www.nuvisionmiami.com/books/asm
../../../../Masm615/Examples

Web site Examples March 31.2005, 3PM-4:15PM Irvine, Kip

R. Assembly Language for Intel-Based Computers, 2003.
22

Integer Summation Program (1 of 4)

Main steps:

• Prompt user for multiple integers

• Calculate the sum of the array

• Display the sum

Description: Write a program that prompts the user for

multiple 32-bit integers, stores them in an array,

calculates the sum of the array, and displays the sum on

the screen.

http://www.nuvisionmiami.com/books/asm
../../../../Masm615/Examples

Web site Examples March 31.2005, 3PM-4:15PM Irvine, Kip

R. Assembly Language for Intel-Based Computers, 2003.
23

Procedure Design (2 of 4)

Main

 Clrscr ; clear screen

 PromptForIntegers

 WriteString ; display string

 ReadInt ; input integer

 ArraySum ; sum the integers

 DisplaySum

 WriteString ; display string

 WriteInt ; display integer

http://www.nuvisionmiami.com/books/asm
../../../../Masm615/Examples

Web site Examples March 31.2005, 3PM-4:15PM Irvine, Kip

R. Assembly Language for Intel-Based Computers, 2003.
24

Structure Chart (3 of 4)

Summation

Program (main)

Clrscr PromptForIntegers ArraySum DisplaySum

WriteStringWriteString ReadInt WriteIntWriteInt

gray indicates

library

procedure

• View the stub program

• View the final program

http://www.nuvisionmiami.com/books/asm
../../../../Masm615/Examples
Sum1.asm
Sum2.asm

Web site Examples March 31.2005, 3PM-4:15PM Irvine, Kip

R. Assembly Language for Intel-Based Computers, 2003.
25

Sample Output (4 of 4)

Enter a signed integer: 550

Enter a signed integer: -23

Enter a signed integer: -96

The sum of the integers is: +431

http://www.nuvisionmiami.com/books/asm
../../../../Masm615/Examples

